Electronic Supplementary Information

Phosphine-Catalyzed [4 + 1] Annulation of 2-Tosylamino-chalcones with Allenoates: Synthesis of trans-2,3-Disubstitued Indolines

ZhenzhenGao, Chang Wang, Chunhao Yuan, Leijie Zhou, Yumei Xiao,* and Hongchao Guo*

Department of Applied Chemistry, China Agricultural University, Beijing 100193, China

Contents

General Information	S2
Preparation of 2-Tosylaminochalcones 6	S2–S3
General Procedure for the [4 + 1] Annulation Reaction	S3
Analytic and Characterization Data for the Products 8	S4–S16
¹ H and ¹³ C NMR Spectra of the Products 8	S17–S41
X-Ray Crystallographic Data of 8aa	S42–S51

General Information

Unless otherwise indicated, all compounds and reagents were purchased from commercial suppliers and purified by standard techniques. Reactions were monitored through thin-layer chromatography (TLC) on silica gel–precoated glass plates. Chromatograms were visualized by fluorescence quenching under UV light at 254 nm. Flash column chromatography was performed using Qingdao Haiyang flash silica gel (200–300 mesh). Infrared spectra were recorded using a Bruker Optics TENSOR 27 instrument. ¹H and ¹³C NMR spectra were recorded using a Bruker-300 spectrometer. IR spectra were recorded with an FT-IR spectrophotometer and are reported as cm⁻¹. HRMS analyses were carried out on an electrospray ionization (ESI) apparatus using time-of-flight (TOF) mass spectrometry. X-ray crystallographic data were collected using a Bruker SMART CCD-based diffractometer equipped with a low-temperature apparatus operated at 100K.

Preparation of 2-Tosylaminochalcones 6

2-Tosylaminochalcone (6a) was prepared according to the literature procedure^{1, 2}.

(1) Preparation of 2-Tosylaminochalcone (6a)

A dry and nitrogen-flushed 250-mL Schlenk flask, equipped with a magnetic stirring bar and a septum, was charged with a solution of 2-aminobenzyl alcohol (2.46 g, 20 mmol) in CHCl₃ (100 mL). TsCl (4.18 g, 1.1 equiv) and pyridine (0.1 mL) was added, and the reaction mixture was stirred for 12 h at room temperature. Thereafter, the

¹ LóPez, M. V.; Bermejo, M. R.; Vázquez, M. E.; Taglietti, A.; Zaragoza, G.; Pedrido, R.; Martínez-Calvo, M. Org. Biomol. Chem. **2010**, *8*, 357.

² Lee, Y. T.; Jang Y. J.; Syu, S.; Chou, S. C.; Lee, C. J.; Lin, W. W. Chem. Commun. 2012, 48, 8135.

solvent was removed by evaporation in vacuo. Without purification, the crude product was dissolved in dichloromethane (50 mL) and then PCC (5.173 g, 1.2 equiv) was added. The reaction mixture was stirred for 4 h at room temperature and then filtered through Celite 545 followed by washing with CH₂Cl₂. Thereafter, the solvent was removed by evaporation in vacuo. Purification by flash chromatography (dichloromethane/hexanes: 2/1) furnished 2-tosylaminobenzaldehyde (5.34 g, 97%). A dry and nitrogen-flushed 100-mL Schlenk flask, equipped with a magnetic stirring bar and a septum, was charged with a solution of N-Ts Benzaldehyde (2.75 g, 10 mmol) in toluene (50 mL). 1-phenyl-2-(triphenylphosphoranylidene)ethanone (4.18 g, 1.1 equiv) was added, and the reaction mixture was stirred for 12 h at 80 °C. Thereafter, the solvent was removed by evaporation in vacuo. Purification in vacuo. Purification by flash chromatography (dichloromethane/hexanes: 6/1) furnished **6a** (3.02 g, 80%).

(2) Preparation of 2-Tosylaminochalcone Derivatives

Other 2-tosylaminochalcone derivatives was synthesized according to the literature procedure ^{3, 4}.

General Procedure for [4 + 1] Cycloaddition Reaction of 2-Tosylaminochalcones with Allenoate

Under a nitrogen atmosphere, to a stirred solution of 2-tosylaminochalcones **6** (0.2 mmol) and benzoic acid (0.04 mmol, 20 mol%) in THF (2 mL) was respectively added fresh 2,3-butadienoate **7** (0.3 mmol) and PBu₃ (0.06 mmol, 30 mol%) via syringes . Then the reaction solution was vigorously stirred at 40 °C and monitored by TLC. After the reaction was complete, the mixture was directly purified by column chromatography on silica gel (petroleum ether/EtOAc as the eluent) to give the corresponding product.

³ Yang, W.; Du, D. M. Chem. Commun. 2013, 49, 8842.

⁴ Huang, Y. M.; Zheng, C. W.; Zhao, G. RSC Adv. 2013, 3, 16999.

Characterization Data for the [4 + 1] Cycloaddition Products 8 Ethyl (*E*)-3-(3-(2-oxo-2-phenylethyl)-1-tosylindolin-2-yl)acrylate (8aa)

Prepared according to the general procedure as described above in 71%yield. It was purified by flash chromatography (10% EtOAc/PE) to afford a white solid. mp = 166 – 168 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.81 (m, 1H), 7.65 – 7.56 (m, 3H), 7.55 – 7.40 (m, 4H), 7.36 – 7.29 (m, 1H), 7.17 (dd, *J* = 15.5, 4.7 Hz, 1H), 7.11 – 7.04 (m, 2H), 7.00 (d, *J* = 8.1 Hz, 2H), 6.30 (dd, *J* = 15.5, 1.7 Hz, 1H), 4.64 – 4.52 (m, 1H), 4.19 (q, *J* = 7.1 Hz, 2H), 3.46 (dd, *J* = 10.5, 2.2 Hz, 1H), 2.79 (dd, *J* = 18.6, 4.0 Hz, 1H), 2.25 (s, 3H), 1.75 (dd, *J* = 16.4, 8.4 Hz, 1H), 1.29 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (75 MHz, DMSO-d₆) δ 198.0, 165.5, 146.7, 145.0, 140.4, 136.1, 134.1, 133.9, 133.8, 130.3, 129.0, 127.9, 127.1, 126.0, 125.5, 121.1, 116.6, 67.1, 60.5, 45.1, 42.3, 21.2, 14.3; IR (film) v_{max} 2981, 1717, 1682, 1597, 1477, 1462, 1449, 1401, 1359, 1302, 1274, 1216,1169, 1092, 1037, 985, 816, 756, 708, 690, 670, 661, 625, 587, 571, 539 cm⁻¹; HRMS (ESI) calcd for C₂₈H₂₇NO₅S⁺ [M + Na]⁺ 512.1502, found 512.1502.

Ethyl (E)-3-(3-(2-oxo-2-(o-tolyl)ethyl)-1-tosylindolin-2-yl)acrylate (8ba)

Prepared according to the general procedure as described above in 83%yield. It was purified by flash chromatography (10% EtOAc/PE) to afford a white solid. mp = 121 – 123 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.78 (d, *J* = 8.2 Hz, 1H), 7.51 (m, 3H), 7.33 (m, 4H), 7.21 – 6.93 (m, 5H), 6.28 (dd, *J* = 15.5, 1.6 Hz, 1H), 4.64 – 4.49 (m, 1H), 4.17 (q, *J* = 7.1 Hz, 2H), 3.43 (m, 1H), 2.78 (dd, *J* = 18.5, 4.0 Hz, 1H), 2.40 (s, 3H), 2.22 (s, 3H), 1.76 (dd, *J* = 18.6, 10.6 Hz, 1H), 1.28 (t, *J* = 7.1 Hz, 3H).; ¹³C NMR (75 MHz, CDCl₃) δ 200.3, 166.2, 145.5, 144.2, 140.8, 138.8, 136.2, 135.0, 134.8, 133.6, 129.7, 129.6, 128.7, 128.4, 126.8, 125.5, 125.1, 124.9, 121.8, 117.4, 67.4, 60.4, 47.5, 42.9, 21.7, 21.3, 14.2; IR (film) v_{max} 2982, 1717, 1680, 1602, 1478, 1462, 1359, 1302, 1274, 1169, 1092, 1034, 982, 815, 757, 708, 690, 662, 626, 571, 541 cm⁻¹; HRMS (ESI) calcd for C₂₉H₂₉NO₅S⁺ [M + Na]⁺ 526.1659, found 526.1660.

Ethyl (E)-3-(3-(2-oxo-2-(m-tolyl)ethyl)-1-tosylindolin-2-yl)acrylate (8ca)

Prepared according to the general procedure as described above in 87%yield. It was purified by flash chromatography (10% EtOAc/PE) to afford a white solid. mp = 158 – 160°C; ¹H NMR (300 MHz, CDCl₃) δ 7.79 (m, 1H), 7.51 (m, 3H), 7.45 – 7.36 (m, 1H), 7.35 – 7.25 (m, 3H), 7.17 (m, 1H), 7.09 (m, 2H), 7.00 (d, J = 8.0 Hz, 2H), 6.29 (dd, J = 15.5, 1.7 Hz, 1H), 4.58 (m, 1H), 4.18 (q, J = 7.1 Hz, 2H), 3.54 – 3.33 (m, 1H), 2.80 (dd, J = 18.6, 4.0 Hz, 1H), 2.41 (s, 3H), 2.23 (s, 3H), 1.75 (dd, J = 18.6, 10.7 Hz, 1H), 1.28 (m, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 197.3, 166.2, 145.5, 144.1, 140.7, 138.5 136.0, 134.8, 134.2, 133.6, 129.7, 128.7, 128.3, 128.1, 127.0, 125.1, 125.0, 124.9, 121.9, 117.4, 67.3, 60.4, 45.3, 42.7, 21.4, 21.3, 14.2; IR (film) v_{max} 2981, 1717, 1681, 1602, 1478, 1462, 1359, 1303, 1274,1169, 1092, 1034, 982, 815, 757, 708, 690, 662, 626, 571, 541 cm⁻¹; HRMS (ESI) calcd for C₂₉H₂₉NO₅S⁺ [M + Na]⁺ 526.1659, found 526.1656.

Ethyl (E)-3-(3-(2-oxo-2-(p-tolyl)ethyl)-1-tosylindolin-2-yl)acrylate (8da)

Prepared according to the general procedure as described above in 81%yield. It was purified by flash chromatography (10% EtOAc/PE) to afford a white solid. mp = 168 – 170 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.78 (d, *J* = 8.1 Hz, 1H), 7.49 (m, 4H), 7.35 – 7.27 (m, 1H), 7.19 (m, 3H), 7.15 – 7.02 (m, 3H), 6.99 (d, *J* = 8.1 Hz, 2H), 6.27 (dd, *J* = 15.5, 1.7 Hz, 1H), 4.61 – 4.47 (m, 1H), 4.16 (q, *J* = 7.1 Hz, 2H), 3.43 (m, 1H), 2.74 (dd, *J* = 18.5, 4.0 Hz, 1H), 2.42 (s, 3H), 2.24 (s, 3H), 1.71 (dd, *J* = 18.6, 10.7 Hz, 1H), 1.27 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 197.3, 166.2, 145.5, 144.1, 140.7, 138.5 136.0, 134.8, 134.2, 133.6, 129.7, 128.7, 128.3, 128.1, 127.0, 125.1, 125.0, 124.9, 121.9, 117.4, 67.3, 60.4, 45.3, 42.7, 21.4, 21.3, 14.2; IR (film) v_{max} 2981, 1717, 1681, 1602, 1478, 1462, 1359, 1303, 1274,1169, 1092, 1034, 982, 815, 757, 708, 690, 662, 626, 571, 541 cm⁻¹; HRMS (ESI) calcd for C₂₉H₂₉NO₅S⁺ [M + Na]⁺ 526.1659, found 526.1656.

Ethyl (*E*)-3-(3-(2-(4-methoxyphenyl)-2-oxoethyl)-1-tosylindolin-2-yl)acrylate (8ea)

Prepared according to the general procedure as described above in 73%yield. It was purified by flash chromatography (10% EtOAc/PE) to afford a white solid. mp = 173 – 175 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.79 (d, *J* = 8.0 Hz, 1H), 7.62 – 7.48 (m, 4H), 7.35 – 7.27 (m, 1H), 7.15 (dd, *J* = 15.5, 4.8 Hz, 1H), 7.09 – 6.98 (m, 3H), 6.89 (d, *J* = 8.9 Hz, 2H), 6.28 (dd, *J* = 15.5, 1.7 Hz, 1H), 4.60 – 4.52 (m, 1H), 4.18 (q, *J* = 7.1 Hz, 2H), 3.89 (s, 3H), 3.49 – 3.40 (m, 1H), 2.72 (dd, *J* = 18.4, 4.1 Hz, 1H), 2.28 (s, 3H), 1.73 (dd, *J* = 18.4, 10.6 Hz, 1H), 1.28 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (75 MHz, DMSO-d₆) δ 195.5, 166.2, 163.7, 145.5, 144.0, 140.8, 135.0, 133.8, 130.1, 129.8, 129.1, 128.7, 127.0, 125.1, 124.9, 121.9, 117.4, 113.7, 67.4, 60.4, 55.5, 44.9, 42.8, 21.5, 14.2; IR (film) v_{max} 2963, 1717, 1672, 1600, 1575, 1511, 1477, 1461, 1421, 1359, 1305, 1261, 1219, 1168, 1092, 1029, 987, 814, 757, 666, 586, 570 cm⁻¹; HRMS (ESI) calcd for C₂₉H₂₉NO₆S⁺ [M + Na]⁺ 542.1608, found 542.1604.

Ethyl (E)-3-(3-(2-(4-chlorophenyl)-2-oxoethyl)-1-tosylindolin-2-yl)acrylate (8fa)

Prepared according to the general procedure as described above in 78%yield. It was purified by flash chromatography (11% EtOAc/PE) to afford a white solid. mp = 168 – 171 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.79 (m, 1H), 7.60 – 7.46 (m, 4H), 7.46 – 7.36 (m, 2H), 7.36 – 7.27 (m, 1H), 7.20 – 6.96 (m, 5H), 6.28 (dd, *J* = 15.5, 1.6 Hz, 1H), 4.54 (m, 1H), 4.18 (q, *J* = 7.1 Hz, 2H), 3.54 – 3.37 (m, 1H), 2.75 (dd, *J* = 18.6, 4.0 Hz, 1H), 2.26 (s, 3H), 1.73 (dd, *J* = 18.6, 10.6 Hz, 1H), 1.28 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 166.0, 144.9, 144.5, 139.5, 135.8, 135.6, 134.6, 133.6, 130.4, 129.9, 128.9, 128.6, 127.8, 127.0, 125.3, 122.1, 118.5, 67.6, 60.5, 45.0, 42.5, 21.5, 14.2; IR (film) v_{max} 1717, 1682.8, 1590, 1478, 1462, 1401, 1360, 1303, 1275, 1214, 1169, 1092, 1035, 988, 816, 757, 708, 666, 629, 586, 572, 541, 529 cm⁻¹; HRMS (ESI) calcd for C₂₈H₂₅CINO₅S⁺ [M + Na]⁺ 546.1112, found 546.1115.

Ethyl (*E*)-3-(3-(2-(3-bromophenyl)-2-oxoethyl)-1-tosylindolin-2-yl)acrylate (8ga)

Prepared according to the general procedure as described above in 56%yield. It was purified by flash chromatography (11% EtOAc/PE) to afford a white solid. mp = 122 – 124 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.80 (m, 1H), 7.76 – 7.69 (m, 2H), 7.61 – 7.48 (m, 3H), 7.39 – 7.29 (m, 2H), 7.20 – 7.01 (m, 5H), 6.29 (dd, *J* = 15.5, 1.7 Hz, 1H), 4.56 (dt, *J* = 4.8, 1.8 Hz, 1H), 4.19 (q, *J* = 7.1 Hz, 2H), 3.44 (dd, *J* = 10.6, 2.1 Hz, 1H), 2.76 (dd, *J* = 18.7, 4.0 Hz, 1H), 2.28 (s, 3H), 1.75 (dd, *J* = 18.7, 10.5 Hz, 1H), 1.29 (t, *J* = 7.1 Hz, 4H); ¹³C NMR (75 MHz, CDCl₃) δ 195.8, 166.2, 145.2, 144.4, 140.8, 137.7, 136.4, 134.9, 133.3, 130.8, 130.2, 129.7, 128.9, 127.0, 126.3, 125.2, 124.9, 122.9, 122.1, 117.5, 67.3, 60.5, 45.3, 42.5, 21.6, 14.2; IR (film) v_{max} 3066, 2980,1716, 1687, 1596, 1567, 1477, 1462, 1422, 1359, 1303, 1262, 1211, 1169, 1092, 1036, 981, 905, 870, 800, 757, 740, 707, 681, 666, 625, 570, 541, 496 cm⁻¹; HRMS (ESI) calcd for C₂₈H₂₆BrlNO₅S⁺ [M + Na]⁺ 590.0607, found 590.0610.

Ethyl (E)-3-(3-(2-(4-bromophenyl)-2-oxoethyl)-1-tosylindolin-2-yl)acrylate (8ha)

Prepared according to the general procedure as described above in 64%yield. It was purified by flash chromatography (11% EtOAc/PE) to afford a pale yellow solid. mp = $158 - 160 \,^{\circ}$ C; ¹H NMR (300 MHz, CDCl₃) δ 7.79 (d, $J = 8.1 \,\text{Hz}$, 1H), 7.51 (m, 6H), 7.31 (m, 1H), 7.19 - 7.04 (m, 3H), 7.01 (d, $J = 8.1 \,\text{Hz}$, 2H), 6.27 (dd, J = 15.5, 1.7 Hz, 1H), 4.58 - 4.48 (m, 1H), 4.17 (q, $J = 7.1 \,\text{Hz}$, 2H), 3.50 - 3.36 (m, 1H), 2.73 (dd, J = 18.6, 4.0 Hz, 1H), 2.26 (s, 3H), 1.72 (dd, J = 18.6, 10.6 Hz, 1H), 1.27 (t, $J = 7.2 \,\text{Hz}$, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 195.8, 166.2, 145.2, 144.4, 140.8, 137.7, 136.4, 134.9, 133.3, 130.8, 130.2, 129.7, 128.9, 127.0, 126.3, 125.2, 124.9, 122.9, 122.1, 117.5, 67.3, 60.5, 45.3, 42.5, 21.6, 14.2; IR (film) ν_{max} 3065, 2981, 2928,1716, 1684, 1586, 1478, 1462, 1397, 1360, 1274, 1213, 1168, 1092, 1071, 1034, 1010, 988, 903, 815, 756, 738, 708, 665, 628, 572 cm⁻¹; HRMS (ESI) calcd for C₂₈H₂₆BrNO₅S⁺ [M + Na]⁺ 590.0607, found 590.0601.

Ethyl (E)-3-(3-(2-(2-chlorophenyl)-2-oxoethyl)-1-tosylindolin-2-yl)acrylate (8ia)

Prepared according to the general procedure as described above in 61%yield. It was purified by flash chromatography (11% EtOAc/PE) to afford a white solid. mp = 168 – 171 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.79 (m, 1H), 7.60 – 7.48 (m, 4H), 7.45 – 7.38 (m, 2H), 7.36 – 7.28 (m, 1H), 7.19 – 7.06 (m, 3H), 7.05 – 7.00 (m, 2H), 6.28 (dd, J = 15.5, 1.7 Hz, 1H), 4.55 (m, 1H), 4.18 (q, J = 7.1 Hz, 2H), 3.57 – 3.34 (m, 1H), 2.76 (dd, J = 18.6, 4.1 Hz, 1H), 2.27 (s, 3H), 1.88 – 1.63 (m, 1H), 1.28 (t, J = 7.1 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 166.0, 144.9, 144.5, 139.5, 135.8, 135.6, 134.6, 133.6, 130.4, 129.9, 128.9, 128.6, 127.8, 127.0, 125.5, 122.1, 118.5, 67.6, 60.5, 45.0, 42.5, 21.5, 14.2; IR (film) v_{max} 1717, 1683, 1590, 1478, 1462, 1401, 1360, 1303, 1275, 1214, 1169, 1092, 1035, 988, 816, 757, 708, 666, 629, 586, 573, 541, 529 cm⁻¹; HRMS (ESI) calcd for C₂₈H₂₅CINO₅S⁺ [M + Na]⁺ 546.1112, found 546.1115.

Prepared according to the general procedure as described above in 58%yield. It was purified by flash chromatography (11% EtOAc/PE) to afford a white solid. mp = 173 – 175 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.06 (s, 1H), 7.94 – 7.84 (m, 4H), 7.78 (m, 3H), 7.60 (m, 8.3 Hz, 3H), 7.51 (m, 2H), 7.37 – 7.28 (m, 1H), 7.20 (m, 1H), 7.11 (m, 2H), 6.92 (d, *J* = 8.0 Hz, 2H), 6.32 (m, 1H), 6.32 (dd, *J* = 15.5, 1.4 Hz, 1H), 4.64 (d, *J* = 4.7 Hz, 1H), 4.18 (q, *J* = 7.1 Hz, 2H), 3.50 (m, 1H), 2.97 (dd, *J* = 18.6, 3.9 Hz, 1H), 2.05 (s, 3H), 1.91 (dd, *J* = 18.5, 10.8 Hz, 1H), 1.28 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 197.1, 166.2, 145.5, 144.2, 140.8, 135.7, 134.9, 133.6, 133.3, 132.3, 129.7, 129.4, 128.8, 128.5, 127.9, 127.0, 127, 125.1, 124.9, 123.4, 121.9, 117.4, 67.3, 60.4, 45.4, 42.8, 21.3, 14.2; IR (film) v_{max} 3060, 2980, 2926, 1715, 1677, 1627, 1596, 1525, 1477,1463, 1358, 1303, 1274, 1213, 1169, 1124, 1092, 1037, 982, 943, 919, 862, 815, 755, 736, 707, 666, 639, 626, 584, 570, 540, 478 cm⁻¹; HRMS (ESI) calcd for C₃₂H₂₉NO₅S⁺ [M + Na]⁺ 562.1659, found 562.1660.

Ethyl (E)-3-(5-methyl-3-(2-oxo-2-phenylethyl)-1-tosylindolin-2-yl)acrylate (8ka)

Prepared according to the general procedure as described above in 69%yield. It was purified by flash chromatography (11% EtOAc/PE) to afford a white solid. mp = 153 – 155 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.67 (m, 1H), 7.63 – 7.54 (m, 3H), 7.53 – 7.39 (m, 4H), 7.18 (d, *J* = 4.7 Hz, 1H), 7.15 – 7.07 (m, 2H), 6.99 (d, *J* = 8.0 Hz, 2H), 6.90 – 6.82 (m, 1H), 6.29 (dd, *J* = 15.5, 1.7 Hz, 1H), 4.61 – 4.45 (m, 1H), 4.18 (q, *J* = 7.1 Hz, 2H), 3.47 – 3.32 (m, 1H), 2.77 (dd, *J* = 18.6, 4.1 Hz, 1H), 2.30 (s, 3H), 2.24 (s, 3H), 1.70 (dd, *J* = 18.6, 10.6 Hz, 2H), 1.28 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 197.2, 166.2, 145.5, 144.0, 138.4, 136.0, 135.0, 134.8, 133.7, 133.4, 129.7, 129.4, 128.5, 127.8, 127.0, 125.4, 121.8, 117.3, 67.4, 60.3, 45.2, 42.6, 21.4, 21.0, 14.2; IR (film) v_{max} 2963, 2926, 1718, 1683, 1597, 1581, 1489, 1449, 1402, 1358, 1303, 1274, 1230, 1205, 1168, 1140, 1091, 1039, 985, 878, 816, 760, 739, 706, 690, 670, 657, 604, 576, 542 cm⁻¹; HRMS (ESI) calcd for C₂₉H₂₉NO₅S⁺ [M + Na]⁺ 526.1659, found 526.1660.

Ethyl (*E*)-3-(3-(2-(2-methoxyphenyl)-2-oxoethyl)-5-methyl-1-tosylindolin-2-yl)-acrylate (8la)

Prepared according to the general procedure as described above in 78%yield. It was purified by flash chromatography (12.5% EtOAc/PE) to afford a white solid. mp = 148 – 150 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.66 (d, *J* = 8.3 Hz, 1H), 7.54 (dd, *J* = 18.6, 8.5 Hz, 4H), 7.19 – 7.06 (m, 2H), 7.02 (d, *J* = 8.1 Hz, 2H), 6.93 – 6.79 (m, 3H), 6.27 (dd, *J* = 15.5, 1.7 Hz, 1H), 4.65 – 4.44 (m, 1H), 4.17 (q, *J* = 7.1 Hz, 2H), 3.89 (s, 3H), 3.38 (m, 1H), 2.69 (dd, *J* = 18.3, 4.0 Hz, 1H), 2.28 (d, *J* = 4.8 Hz, 6H), 1.68 (dd, *J* = 18.2, 10.7 Hz, 1H), 1.27 (t, *J* = 7.0 Hz, 3H).; ¹³C NMR (75 MHz, DMSO-d₆) δ 199.4, 165.6, 158.6, 146.9, 144.6, 138.0, 134.6, 134.5, 134.2, 133.9, 130.1, 129.9, 129.8, 129.4, 127.2, 127.0, 126.2, 120.9, 120.8, 116.2, 112.7, 67.3, 60.5, 56.0, 50.1, 42.7, 21.2, 20.9, 14.3; IR (film) ν_{max} 2962, 2926, 1717, 1680, 1597, 1486, 1462, 1437, 1397, 1359, 1260, 1167, 1091, 1025, 989, 815, 758, 738, 706, 689, 669, 604, 570, 544 cm⁻¹; HRMS (ESI) calcd for C₂₉H₂₉NO₅S⁺ [M + Na]⁺ 556.1764, found 556.1764.

Ethyl (*E*)-3-(3-(2-(4-methoxyphenyl)-2-oxoethyl)-5-methyl-1-tosylindolin-2-yl)-acrylate (8ma)

Prepared according to the general procedure as described above in 83%yield. It was purified by flash chromatography (12.5% EtOAc/PE) to afford a white solid. mp = $142 - 144 \,^{\circ}C$; ¹H NMR (300 MHz, DMSO-d₆) δ 7.58 (m, 2H), 7.52 - 7.43 (m, 3H), 7.18 - 7.07 (m, 3H), 7.06 - 6.97 (m, 4H), 6.07 (dd, $J = 15.5, 1.7 \,\text{Hz}, 1H$), 4.56 - 4.46 (m, 1H), 4.11 (q, $J = 7.1 \,\text{Hz}, 2H$), 3.83 (s, 3H), 3.34 (m, 1H), 2.84 (dd, $J = 18.5, 4.7 \,\text{Hz}, 1H$), 2.48 (m, $J = 3.7, 1.8 \,\text{Hz}, 1H$), 2.22 (s, 3H), 2.20 (s, 3H), 1.76 (dd, $J = 18.5, 9.6 \,\text{Hz}, 1H$), 1.20 (t, $J = 7.1 \,\text{Hz}, 3H$); ¹³C NMR (75 MHz, DMSO-d₆) δ 196.3, 165.6, 163.6, 146.9, 144.9, 138.0, 134.7, 134.4, 133.9, 130.3, 129.4, 129.1, 127.0, 126.4, 121.0, 116.5, 114.1, 67.3, 60.5, 55.9, 44.8, 42.4, 21.3, 20.9, 14.3; IR (film) $v_{max} 2962$, 1718, 1672, 1600, 1575, 1511, 1489, 1463, 1421, 1358, 1305, 1262, 1234, 1207, 1168, 1111, 1091,1034, 987, 881, 816, 736, 707, 668, 600, 574, 543 \,\text{cm}^{-1}; HRMS (ESI) calcd for C₂₉H₂₉NO₅S⁺ [M + Na]⁺ 556.1764, found 556.1765.

Ethyl (*E*)-3-(3-(2-(3-bromophenyl)-2-oxoethyl)-5-methyl-1-tosylindolin-2-yl)acrylate (8na)

Prepared according to the general procedure as described above in 61%yield. It was purified by flash chromatography (10% EtOAc/PE) to afford a pale yellow solid. mp = 160 – 162 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.76 – 7.63 (m, 3H), 7.59 – 7.45 (m, 3H), 7.39 – 7.28 (m, 1H), 7.18 – 7.07 (m, 2H), 7.02 (m, 2H), 6.84 (m, 1H), 6.27 (dd, *J* = 15.5, 1.7 Hz, 1H), 4.67 – 4.41 (m, 1H), 4.17 (q, *J* = 7.1 Hz, 2H), 3.36 (m, 1H), 2.72 (dd, *J* = 18.7, 3.9 Hz, 1H), 2.27 (d, *J* = 8.6 Hz, 6H), 1.67 (dd, *J* = 18.8, 10.6 Hz, 1H), 1.27 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 196.1, 166.1, 145.3, 143.9, 138.3, 135.0, 134.9, 134.7, 133.5, 131.8, 129.7, 129.5, 129.2, 128.6, 127.0, 125.4, 121.9, 117.3, 67.3, 60.3, 45.1, 42.5, 21.5, 21., 14.2; IR (film) v_{max} 2981, 1716, 1684, 1586, 1488, 1399, 1359, 1303, 1274, 1229, 1203, 1168, 1091, 1072, 1038, 1011, 987, 816, 737, 707, 666, 605, 576, 542 cm⁻¹; HRMS (ESI) calcd for C₂₉H₂₈BrNO₅S⁺ [M + Na]⁺604.0764, found 604.0768.

Ethyl (*E*)-3-(3-(2-(4-bromophenyl)-2-oxoethyl)-5-methyl-1-tosylindolin-2-yl)acrylate (80a)

Prepared according to the general procedure as described above in 83%yield. It was purified by flash chromatography (10% EtOAc/PE) to afford a pale yellow solid. mp = $160 - 162 \,^{\circ}$ C; ¹H NMR (300 MHz, CDCl₃) δ 7.66 (m, 1H), 7.61 – 7.54 (m, 2H), 7.53 – 7.41 (m, 4H), 7.19 – 7.07 (m, 2H), 7.01 (d, *J* = 8.0 Hz, 2H), 6.85 (s, 1H), 6.27 (dd, *J* = 15.5, 1.7 Hz, 1H), 4.56 – 4.45 (m, 1H), 4.17 (q, *J* = 7.1 Hz, 2H), 3.37 (dd, *J* = 10.4, 2.2 Hz, 1H), 2.73 (dd, *J* = 18.7, 4.0 Hz, 1H), 2.29 (s, 3H), 2.26 (s, 3H), 1.66 (dd, *J* = 18.7, 10.6 Hz, 1H), 1.27 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 196.1, 166.1, 145.3, 143.9, 138.3, 135.0, 134.9, 134.7, 133.5, 131.8, 129.7, 129.5, 129.2, 128.6, 127.0, 125.4, 121.9, 117.3, 67.3, 60.4, 45.1, 42.5, 21.5, 21.0, 14.2. IR (film) v_{max} 2981, 1716, 1684, 1586, 1488, 1399, 1359, 1303, 1274, 1229, 1203, 1168, 1091, 1071, 1038, 1011, 987, 816, 737, 707, 666, 605, 576, 542 cm⁻¹; HRMS (ESI) calcd for C₂₉H₂₈BrNO₅S⁺ [M + Na]⁺604.0764, found 604.0768.

Ethyl (E)-3-(5-fluoro-3-(2-oxo-2-phenylethyl)-1-tosylindolin-2-yl)acrylate (8pa)

Prepared according to the general procedure as described above in 67%yield. It was purified by flash chromatography (10% EtOAc/PE) to afford a white solid. mp = 163 – 165 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.74 (dd, *J* = 8.9, 4.6 Hz, 1H), 7.63 – 7.54 (m, 3H), 7.52 – 7.38 (m, 4H), 7.13 (dd, *J* = 15.5, 4.7 Hz, 1H), 7.06 – 6.94 (m, 3H), 6.77 (dd, *J* = 8.1, 2.5 Hz, 1H), 6.28 (dd, *J* = 15.5, 1.7 Hz, 1H), 4.64 – 4.51 (m, 1H), 4.18 (q, *J* = 7.1 Hz, 2H), 3.41 (d, *J* = 7.7 Hz, 1H), 2.72 (dd, *J* = 18.5, 4.3 Hz, 1H), 2.25 (s, 3H), 1.72 (dd, *J* = 18.6, 10.4 Hz, 1H), 1.28 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 196.7, 166.1, 162.1, 158.8, 145.0, 144.3, 136.8, 135.8, 135.8, 135.7, 134.6, 133.6, 129.9, 128.6, 127.7, 127.0, 122.1, 118.8, 118.7, 115.7, 115.4, 112.3, 112.0, 67.6, 60.4, 44.9, 42.6, 21.4, 14.2; IR (film) v_{max} 3063, 2982, 1717, 1683, 1598, 1482, 1449, 1401, 1360,1303, 1275, 1234, 1204, 1168, 1136, 1091, 1038, 986, 926, 868, 817, 749, 706, 690, 671, 657, 604, 578, 542 cm⁻¹; HRMS (ESI) calcd for C₂₈H₂₆FNO₅S⁺ [M + Na]⁺ 530.1408, found 530.1404.

Ethyl (*E*)-3-(3-(2-(4-bromophenyl)-2-oxoethyl)-5-fluoro-1-tosylindolin-2-yl)acrylate (8qa)

Prepared according to the general procedure as described above in 85%yield. It was purified by flash chromatography (10% EtOAc/PE) to afford a pale yellow solid. mp = $178 - 180 \,^{\circ}$ C; ¹H NMR (300 MHz, CDCl₃) δ 7.73 (dd, J = 8.9, 4.6 Hz, 1H), 7.61 – 7.52 (m, 2H), 7.52 – 7.40 (m, 4H), 7.10 (dd, J = 15.5, 4.7 Hz, 1H), 7.06 – 6.95 (m, 3H), 6.76 (dd, J = 7.9, 2.6 Hz, 1H), 6.26 (dd, J = 15.5, 1.6 Hz, 1H), 4.59 – 4.44 (m, 1H), 4.17 (q, $J = 7.1 \,$ Hz, 2H), 3.39 (dd, J = 10.0, 2.8 Hz, 1H), 2.68 (dd, J = 18.6, 4.3 Hz, 1H), 2.27 (s, 3H), 1.70 (dd, J = 18.6, 10.3 Hz, 1H), 1.27 (t, $J = 7.1 \,$ Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 195.7, 166.0, 162.0, 158.8, 144.8, 144.3, 136.7, 135.6, 135.5, 134.6, 134.5, 131.9, 129.8, 129.2, 128.8, 127.0, 122.1, 118.8, 118.7, 115.8, 115.5, 112.3, 112.0, 67.6, 60.5, 44.8, 42.5, 29.6, 21.5, 14.1; IR (film) v_{max} 2982, 1716, 1685, 1586, 1483, 1398, 1361, 1303, 1275, 1168, 1136, 1092, 1071, 1031, 987, 816, 756, 707, 665, 605, 578, 542 cm⁻¹; HRMS (ESI) calcd for C₂₈H₂₆BrFNO₅S⁺ [M + Na]⁺608.0513, found 608.0508.

Ethyl (*E*)-3-(5-chloro-3-(2-oxo-2-phenylethyl)-1-tosylindolin-2-yl)acrylate (8ra)

Prepared according to the general procedure as described above in 70%yield. It was purified by flash chromatography (10% EtOAc/PE) to afford a white solid. mp = 168 – 170 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.72 (m, 1H), 7.65 – 7.56 (m, 3H), 7.53 – 7.39 (m, 4H), 7.32 – 7.23 (m, 1H), 7.13 (dd, 1H), 7.08 – 6.98 (m, 3H), 6.27 (dd, *J* = 15.5, 1.7 Hz, 1H), 4.60 – 4.54 (m, 1H), 4.18 (q, *J* = 7.1 Hz, 2H), 3.47 – 3.37 (m, 1H), 2.75 (dd, *J* = 18.6, 4.2 Hz, 1H), 2.24 (s, 3H), 1.73 (dd, *J* = 18.6, 10.5 Hz, 1H), 1.28 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 166.0, 144.9, 144.5, 139.5, 135.8, 135.6, 134.6, 133.6, 130.4, 129.9, 128.9, 128.6, 127.8, 127.0, 125.3, 122.1, 118.5, 67.6, 60.5, 45.0, 42.5, 21.5, 14.2; IR (film) v_{max} 3064, 2981, 1717, 1683, 1597, 1468, 1449, 1402, 1361, 1304, 1274, 1216, 1168, 1115, 1090, 1037, 984, 817, 758, 736, 690, 667, 595, 541 cm⁻¹; HRMS (ESI) calcd for C₂₈H₂₆ClNO₅S⁺ [M + Na]⁺ 546.1112, found 546.1110.

Ethyl (*E*)-3-(3-(2-(3-bromophenyl)-2-oxoethyl)-5-chloro-1-tosylindolin-2-yl)acrylate (8sa)

Prepared according to the general procedure as described above in 60%yield. It was purified by flash chromatography (11% EtOAc/PE) to afford a pale yellow solid. mp = $158 - 160 \,^{\circ}C$; ¹H NMR (300 MHz, CDCl₃) δ 7.75 – 7.66 (m, 3H), 7.60 – 7.44 (m, 3H), 7.38 – 7.26 (m, 2H), 7.17 – 6.99 (m, 4H), 6.25 (dd, *J* = 15.5, 1.7 Hz, 1H), 4.59 – 4.49 (m, 1H), 4.17 (q, *J* = 7.1 Hz, 2H), 3.47 – 3.33 (m, 1H), 2.71 (dd, *J* = 18.7, 4.1 Hz, 1H), 2.26 (s, 3H), 1.71 (dd, *J* = 18.8, 10.4 Hz, 1H), 1.26 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 195.6, 166.0, 144.7, 144.4, 139.5, 135.3, 134.7, 134.5, 131.9, 130.4, 129.9, 129.2, 129.0, 128.9, 127.0, 125.2, 122.2, 118.4, 67.5, 60.5, 44.9, 42.4, 21.5, 14.2; IR (film) ν_{max} 1717, 1687, 1597, 1566, 1470, 1422, 1361, 1304, 1275, 1261, 1211, 1167, 1115, 1090, 1036, 816, 764, 750, 666, 592, 542 cm⁻¹; HRMS (ESI) calcd for C₂₈H₂₅BrClNO₅S⁺ [M + Na]⁺ 626.0198, found 626.0198.

Ethyl (*E*)-3-(3-(2-(4-bromophenyl)-2-oxoethyl)-5-chloro-1-tosylindolin-2-yl)acrylate (8ta)

Prepared according to the general procedure as described above in 67%yield. It was purified by flash chromatography (11% EtOAc/PE) to afford a pale yellow solid. mp = 198 – 200 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.71 (d, *J* = 8.6 Hz, 1H), 7.62 – 7.54 (m, 2H), 7.52 – 7.41 (m, 3H), 7.32 – 7.26 (m, 1H), 7.15 – 6.99 (m, 4H), 6.24 (dd, *J* = 15.5, 1.6 Hz, 1H), 4.61 – 4.46 (m, 1H), 4.18 (q, *J* = 7.1 Hz, 1H), 3.40 (d, *J* = 7.9 Hz, 1H), 2.70 (dd, *J* = 18.6, 4.1 Hz, 1H), 2.26 (s, 3H), 1.71 (dd, *J* = 18.6, 10.4 Hz, 1H), 1.27 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 195.6, 166.0, 144.7, 144.4, 139.5, 135.3, 134.7, 134.5, 131.9, 130.4, 129.9, 129.2, 129.0, 128.9, 127.0, 125.2, 122.2, 118.5, 67.5, 60.5, 44.9, 42.4, 21.5 14.2; IR (film) v_{max} 2980, 1717, 1685, 1585, 1470, 1399, 1362, 1304, 1274, 1214, 1167, 1115, 1091, 1071, 1036, 987, 873, 816, 738, 666, 595, 542 cm⁻¹; HRMS (ESI) calcd for C₂₈H₂₅BrClNO₅S⁺ [M + Na]⁺ 626.0198, found 626.0198.

Ethyl (*E*)-3-(5-bromo-3-(2-(4-bromophenyl)-2-oxoethyl)-1-tosylindolin-2-yl)acrylate (8ua)

Prepared according to the general procedure as described above in 69%yield. It was purified by flash chromatography (11% EtOAc/PE) to afford a pale yellow solid. mp = 203 – 205 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.66 (d, *J* = 8.6 Hz, 1H), 7.58 (m, 2H), 7.53 – 7.38 (m, 4H), 7.18 (d, *J* = 1.7 Hz, 1H), 7.09 (m, 1H), 7.03 (m, 1H), 6.24 (dd, *J* = 15.5, 1.6 Hz, 1H), 4.61 – 4.46 (m, 1H), 4.17 (q, *J* = 7.1 Hz, 2H), 3.40 (d, *J* = 7.7 Hz, 1H), 2.71 (dd, *J* = 18.7, 4.1 Hz, 1H), 2.26 (s, 2H), 1.70 (dd, *J* = 18.7, 10.5 Hz, 1H), 1.27 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 195.6, 165.9, 144.6, 144.4, 140.0, 135.7, 134.7, 134.5, 131.9, 129.9, 129.2, 128.8, 128.1, 127.0, 122.2, 118.8, 117.9, 67.4, 60.5, 44.9, 42.4, 21.5, 14.2; IR (film) v_{max} 2981, 1717, 1684, 1585, 1468, 1399, 1362, 1304, 1274, 1213, 1167, 1115, 1092, 1070, 1031, 987, 815, 737, 708, 666, 585 cm⁻¹; HRMS (ESI) calcd for C₂₈H₂₅Br₂NO₅S⁺ [M + Na]⁺ 669.9694, found 669.9690.

Ehyl (E)-3-(4-bromo-3-(2-oxo-2-phenylethyl)-1-tosylindolin-2-yl)acrylate (8ua)

Prepared according to the general procedure as described above in 55%yield. It was purified by flash chromatography (11% EtOAc/PE) to afford a pale yellow solid. mp = $158 - 160 \,^{\circ}$ C; ¹H NMR (300 MHz, CDCl₃) δ 7.73 (dd, J = 8.9, 4.6 Hz, 1H), 7.61 – 7.52 (m, 2H), 7.52 – 7.40 (m, 4H), 7.10 (dd, J = 15.5, 4.7 Hz, 1H), 7.06 – 6.95 (m, 3H), 6.76 (dd, J = 7.9, 2.6 Hz, 1H), 6.26 (dd, J = 15.5, 1.6 Hz, 1H), 4.59 – 4.44 (m, 1H), 4.17 (q, J = 7.1 Hz, 2H), 3.39 (dd, J = 10.0, 2.8 Hz, 1H), 2.68 (dd, J = 18.6, 4.3 Hz, 1H), 2.27 (s, 3H), 1.70 (dd, J = 18.6, 10.3 Hz, 1H), 1.27 (t, J = 7.1 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 195.6, 166.0, 144.7, 144.4, 139.5, 135.3, 134.7, 134.5, 131.9, 130.4, 129.9, 129.2, 129.0, 128.9, 127.0, 125.2, 122.2, 118.5, 67.5, 60.5, 44.9, 42.4, 21.5, 14.2; IR (film) v_{max} 1717, 1687, 1597, 1566, 1470, 1421, 1361, 1304, 1275, 1261, 1211, 1167, 1115, 1090, 1036, 816, 764, 750, 666, 592, 542 cm⁻¹; HRMS (ESI) calcd for C₂₈H₂₅BrClNO₅S⁺ [M + Na]⁺ 626.0198, found 626.0198.

Methyl (E)-3-(3-(2-oxo-2-phenylethyl)-1-tosylindolin-2-yl)acrylate (8ab)

Prepared according to the general procedure as described above in 59%yield. It was purified by flash chromatography (11% EtOAc/PE) to afford a white solid. mp = 182 – 185 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.79 (d, *J* = 8.2 Hz, 1H), 7.65 – 7.54 (m, 3H), 7.53 – 7.38 (m, 4H), 7.36 – 7.24 (m, 1H), 7.18 (dd, *J* = 15.5, 4.8 Hz, 1H), 7.10 – 7.03 (m, 2H), 6.99 (d, *J* = 8.0 Hz, 2H), 6.30 (dd, *J* = 15.5, 1.7 Hz, 1H), 4.58 – 4.50 (m, 1H), 3.71 (s, 3H), 3.48 – 3.37 (m, 1H), 2.79 (dd, *J* = 18.6, 4.0 Hz, 1H), 2.23 (s, 3H), 1.73 (dd, *J* = 18.6, 10.7 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 197.1, 166.6, 145.8, 144.1, 140.7, 135.9, 134.8, 133.5, 133.4, 129.7, 128.7, 128.5, 127.7, 126.9, 125.2, 124.9, 121.4, 117.4, 67.2, 51.5, 45.2, 42.6, 21.4; IR (film) v_{max} 1723, 1682, 1597, 1477, 1461, 1449, 1359, 1306, 1276, 1216, 1169, 1092, 1028, 987, 815, 756, 708, 690, 671, 661, 623, 586, 572, 540.31 cm⁻¹; HRMS (ESI) calcd for C₂₇H₂₅NO₅S⁺ [M + Na]⁺ 498.1346, found 498.1343.

Prepared according to the general procedure as described above in 65%yield. It was purified by flash chromatography (11% EtOAc/PE) to afford a white solid. mp = 162 – 165 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.79 (d, *J* = 8.1 Hz, 1H), 7.64 – 7.54 (m, 3H), 7.53 – 7.38 (m, 4H), 7.35 – 7.27 (m, 1H), 7.16 – 7.03 (m, 3H), 6.99 (d, *J* = 8.0 Hz, 2H), 6.26 (dd, *J* = 15.5, 1.7 Hz, 1H), 4.86 – 4.69 (m, 1H), 4.62 – 4.47 (m, 1H), 3.55 – 3.34 (m, 1H), 2.76 (dd, *J* = 18.6, 4.1 Hz, 1H), 2.23 (s, 3H), 1.92 – 1.78 (m, 2H), 1.78 – 1.68 (m, 2H), 1.61 (s, 1H), 1.58 – 1.16 (m, 7H); ¹³C NMR (75 MHz, CDCl₃) δ 197.1, 165.6, 145.0, 144.1, 140.7, 135.9, 134.8, 133.7, 133.4, 129.7, 128.7, 128.5, 127.7, 126.9, 125.1, 124.9, 122.4, 117.4, 72.7, 67.3, 45.2, 42.6, 31.6, 25.3, 23.7, 21.4; IR (film) v_{max} 2938, 2860, 1714, 1683, 1597, 1478, 1450, 1361, 1260, 1216, 1170, 1092, 1017, 986, 932, 814, 756, 708, 690, 670, 662, 626, 571, 542 cm⁻¹; HRMS (ESI) calcd for C₃₂H₃₃NO₅S⁺ [M + Na]⁺ 566.1972, found 566.1963.

tert-Butyl (E)-3-(3-(2-oxo-2-phenylethyl)-1-tosylindolin-2-yl)acrylate (8ad)

Prepared according to the general procedure as described above in 68%yield. It was purified by flash chromatography (11% EtOAc/PE) to afford a white solid. mp = 171 – 173 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.79 (m, 1H), 7.64 – 7.54 (m, 3H), 7.54 – 7.39 (m, 4H), 7.35 – 7.26 (m, 1H), 7.10 – 7.06 (m, 2H), 7.06 – 6.96 (m, 3H), 6.20 (dd, J = 15.5, 1.7 Hz, 1H), 4.54 (dt, J = 4.7, 1.8 Hz, 1H), 3.51 – 3.37 (m, 1H), 2.76 (dd, J = 18.6, 4.2 Hz, 1H), 2.23 (s, 3H), 1.74 (dd, J = 18.6, 10.5 Hz, 1H), 1.47 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 197.0, 165.5, 144.2, 144.1, 140.8, 136.0, 134.9, 133.8, 133.4, 129.7, 128.7, 128.5, 127.7, 126.9, 125.1, 125.0, 123.6, 117.4, 80.4, 77.4, 77.0, 76.6, 67.3, 45.2, 42.6, 28.0, 21.4; IR (film) v_{max} 2978, 2932, 1711, 1683, 1597, 1477, 1461, 1450, 1393, 1361, 1310, 1255, 1216, 1168, 1092, 1027, 984, 931, 902, 848, 815, 757, 738, 707, 690, 670, 661, 627, 587, 571, 541 cm⁻¹; HRMS (ESI) calcd for C₃₀H₃₁NO₅S⁺ [M + Na]⁺ 540.1815, found 540.1809.

50 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 ſl (ppm)

X-Ray Crystallography Data

Crystallographic data for **8aa** has been deposited with the Cambridge Crystallographic Data Centre as deposition number CCDC 995194 and 995195. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

X-Ray Crystallography Data of 8aa

Table 1. Crystal data and structure refinement for 8aa.

Identification code	8aa
Empirical formula	$C_{28}H_{27}NO_5S$
Formula weight	489.57
Temperature	173(2) K
Wavelength	0.71073 Å
Crystal system, space group	Monoclinic, P2(1)/n
Unit cell dimensions	$a = 10.290(3) \text{ Å}$ $alpha = 90 ^{\circ}.$
	$b = 16.124(4) \text{ Å}$ $beta = 106.600(3)^{\circ}$.
	c = 15.403(4) Å gamma = 90 °.
Volume	2449.1(12)Å ³
Z, Calculated density	$4, 1.328 \text{ Mg/m}^3$
Absorption coefficient	0.172 mm^{-1}
F(000)	1032
Crystal size	0.39 x 0.34 x 0.30 mm
Theta range for data collection	2.42 to 27.50 °.
Limiting indices	-13<=h<=12, -20<=k<=20, -19<=l<=19
Reflections collected / unique	17780 / 5581 [R(int) = 0.0435]
Completeness to theta $= 27.50$	99.3%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	1.0000 and 0.6712
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	5581 / 0 / 318
Goodness-of-fit on F^2	1.200
Final R indices [I>2sigma(I)]	R1 = 0.0601, $wR2 = 0.1316$
R indices (all data)	R1 = 0.0644, WR2 = 0.1343
Largest diff. peak and hole	0.248 and -0.381 e. Å ⁻³

	Х	у	Z	U(eq)
S(1)	1486(1)	2534(1)	6168(1)	32(1)
O(1)	1346(2)	3166(1)	5498(1)	44(1)
O(2)	1329(2)	1680(1)	5906(1)	41(1)
O(3)	3969(2)	684(1)	8963(1)	34(1)
O(4)	6887(2)	667(1)	6697(1)	51(1)
O(5)	6240(2)	1388(1)	5391(1)	46(1)
N(1)	3037(2)	2613(1)	6857(1)	28(1)
C(1)	3616(2)	1908(1)	7472(1)	28(1)
C(2)	4145(2)	2296(1)	8438(1)	27(1)
C(3)	4134(2)	3215(1)	8239(1)	26(1)
C(4)	4649(2)	3868(1)	8820(1)	31(1)
C(5)	4478(2)	4671(1)	8486(1)	35(1)
C(6)	3824(2)	4817(1)	7579(1)	36(1)
C(7)	3320(2)	4169(1)	6983(1)	33(1)
C(8)	3472(2)	3373(1)	7334(1)	26(1)
C(9)	371(2)	2758(1)	6810(1)	32(1)
C(10)	-194(2)	2105(1)	7171(2)	40(1)
C(11)	-1019(2)	2278(2)	7716(2)	50(1)
C(12)	-1286(2)	3094(2)	7904(2)	55(1)
C(13)	-733(2)	3731(2)	7526(2)	54(1)
C(14)	96(2)	3573(1)	6982(2)	43(1)
C(15)	-2200(4)	3279(3)	8492(3)	91(1)
C(16)	3267(2)	2078(1)	9055(1)	28(1)
C(17)	3334(2)	1165(1)	9295(1)	28(1)
C(18)	2607(2)	864(1)	9949(1)	31(1)
C(19)	1665(2)	1349(1)	10209(2)	43(1)
C(20)	1012(3)	1038(2)	10808(2)	56(1)
C(21)	1302(3)	246(2)	11154(2)	56(1)
C(22)	2247(3)	-237(2)	10908(2)	46(1)
C(23)	2894(2)	69(1)	10303(1)	35(1)
C(24)	4725(2)	1486(1)	7186(1)	31(1)
C(25)	5097(2)	1659(1)	6454(1)	34(1)
C(26)	6174(2)	1180(1)	6222(2)	37(1)
C(27)	7214(3)	936(2)	5051(2)	55(1)
C(28)	6670(3)	131(2)	4643(2)	54(1)

Table 2. Atomic coordinates $(x \ 10^4)$ and equivalent isotropic displacement parameters $(A^2 \ x \ 10^3)$ for **8aa**. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

S(1)-O(1)	1.4282(16)
S(1)-O(2)	1.4303(15)
S(1)-N(1)	1.6496(17)
S(1)-C(9)	1.753(2)
O(3)-C(17)	1.217(2)
O(4)-C(26)	1.204(3)
O(5)-C(26)	1.344(3)
O(5)-C(27)	1.452(3)
N(1)-C(8)	1.433(2)
N(1)-C(1)	1.491(2)
C(1)-C(24)	1.498(3)
C(1)-C(2)	1.561(2)
C(1)-H(1)	1.0000
C(2)-C(3)	1.513(3)
C(2)-C(16)	1.527(3)
C(2)-H(2)	1.0000
C(3)-C(4)	1.386(3)
C(3)-C(8)	1.390(3)
C(4)-C(5)	1.387(3)
C(4)-H(4)	0.9500
C(5)-C(6)	1.386(3)
C(5)-H(5)	0.9500
C(6)-C(7)	1.390(3)
C(6)-H(6)	0.9500
C(7)-C(8)	1.384(3)
C(7)-H(7)	0.9500
C(9)-C(14)	1.385(3)
C(9)-C(10)	1.394(3)
C(10)-C(11)	1.382(3)
С(10)-Н(10)	0.9500
C(11)-C(12)	1.391(4)
C(11)-H(11)	0.9500
C(12)-C(13)	1.382(4)
C(12)-C(15)	1.510(4)
C(13)-C(14)	1.379(3)
С(13)-Н(13)	0.9500
C(14)-H(14)	0.9500
C(15)-H(15A)	0.9800
C(15)-H(15B)	0.9800
C(15)-H(15C)	0.9800
C(16)-C(17)	1.516(3)
C(16)-H(16A)	0.9900
C(16)-H(16B)	0.9900

Table 3. Bond lengths [Å] and angles [°] for $\pmb{8aa}.$

C(17)-C(18)	1.497(3)
C(18)-C(19)	1.389(3)
C(18)-C(23)	1.392(3)
C(19)-C(20)	1.382(3)
C(20)-C(21)	1.382(4)
C(20)-H(20)	0.9500
C(21)-C(22)	1.381(4)
C(21)-H(21)	0.9500
C(22)-C(23)	1.382(3)
C(22)-H(22)	0.9500
C(23)-H(23)	0.9500
C(24)-C(25)	1.321(3)
C(24)-H(24)	0.9500
C(25)-C(26)	1.475(3)
C(25)-H(25)	0.9500
C(27)-C(28)	1.481(3)
C(27)-H(27A)	0.9900
C(27)-H(27B)	0.9900
C(28)-H(28A)	0.9800
C(28)-H(28B)	0.9800
C(28)-H(28C)	0.9800
O(1)-S(1)-O(2)	120.14(9)
O(1)-S(1)-N(1)	106.79(9)
O(2)-S(1)-N(1)	105.50(9)
O(1)-S(1)-C(9)	108.24(10)
O(2)-S(1)-C(9)	108.58(10)
N(1)-S(1)-C(9)	106.87(9)
C(26)-O(5)-C(27)	116.52(19)
C(8)-N(1)-C(1)	108.46(14)
C(8)-N(1)-S(1)	119.94(12)
C(1)-N(1)-S(1)	119.17(13)
N(1)-C(1)-C(24)	111.03(15)
N(1)-C(1)-C(2)	105.54(14)
C(24)-C(1)-C(2)	112.01(15)
N(1)-C(1)-H(1)	109.4
C(24)-C(1)-H(1)	109.4
C(2)-C(1)-H(1)	109.4
C(3)-C(2)-C(16)	112.26(15)
C(3)-C(2)-C(1)	102.64(14)
C(16)-C(2)-C(1)	113.17(15)
C(3)-C(2)-H(2)	109.5
C(16)-C(2)-H(2)	109.5
C(1)-C(2)-H(2)	109.5
C(4)-C(3)-C(8)	119.74(18)
C(4)-C(3)-C(2)	129.38(17)

C(8)-C(3)-C(2)	110.87(16)
C(3)-C(4)-C(5)	119.04(18)
C(3)-C(4)-H(4)	120.5
C(5)-C(4)-H(4)	120.5
C(6)-C(5)-C(4)	120.41(19)
C(6)-C(5)-H(5)	119.8
C(4)-C(5)-H(5)	119.8
C(5)-C(6)-C(7)	121.35(19)
C(5)-C(6)-H(6)	119.3
C(7)-C(6)-H(6)	119.3
C(8)-C(7)-C(6)	117.38(18)
C(8)-C(7)-H(7)	121.3
C(6)-C(7)-H(7)	121.3
C(7)-C(8)-C(3)	122.04(18)
C(7)-C(8)-N(1)	127.52(17)
C(3)-C(8)-N(1)	110.42(16)
C(14)-C(9)-S(1)	120.43(17)
C(10)-C(9)-S(1)	118.96(16)
C(11)-C(10)-C(9)	119.3(2)
С(11)-С(10)-Н(10)	120.4
C(10)-C(11)-C(12)	120.6(2)
С(10)-С(11)-Н(11)	119.7
С(12)-С(11)-Н(11)	119.7
C(13)-C(12)-C(11)	119.1(2)
C(13)-C(12)-C(15)	120.5(3)
C(11)-C(12)-C(15)	120.4(3)
C(14)-C(13)-C(12)	121.3(2)
С(14)-С(13)-Н(13)	119.3
С(12)-С(13)-Н(13)	119.3
C(13)-C(14)-C(9)	119.1(2)
C(13)-C(14)-H(14)	120.4
C(9)-C(14)-H(14)	120.4
C(12)-C(15)-H(15A)	109.5
C(12)-C(15)-H(15B)	109.5
H(15A)-C(15)-H(15B)	109.5
C(12)-C(15)-H(15C)	109.5
H(15A)-C(15)-H(15C)	109.5
H(15B)-C(15)-H(15C)	109.5
C(17)-C(16)-C(2)	112.42(15)
C(17)-C(16)-H(16A)	109.1
C(2)-C(16)-H(16A)	109.1
C(17)-C(16)-H(16B)	109.1
C(2)-C(16)-H(16B)	109.1
H(16A)-C(16)-H(16B)	107.9

O(3)-C(17)-C(18)	120.59(18)
O(3)-C(17)-C(16)	120.56(17)
C(19)-C(18)-C(23)	119.58(18)
C(19)-C(18)-C(17)	122.40(18)
C(23)-C(18)-C(17)	118.02(18)
C(20)-C(19)-C(18)	120.0(2)
C(20)-C(19)-H(19)	120.0
C(18)-C(19)-H(19)	120.0
C(19)-C(20)-C(21)	120.0(2)
C(19)-C(20)-H(20)	120.0
C(21)-C(20)-H(20)	120.0
C(22)-C(21)-C(20)	120.4(2)
C(22)-C(21)-H(21)	119.8
C(20)-C(21)-H(21)	119.8
C(21)-C(22)-C(23)	119.8(2)
C(21)-C(22)-H(22)	120.1
C(23)-C(22)-H(22)	120.1
C(22)-C(23)-C(18)	120.2(2)
C(22)-C(23)-H(23)	119.9
C(18)-C(23)-H(23)	119.9
C(25)-C(24)-C(1)	125.90(18)
C(25)-C(24)-H(24)	117.0
C(1)-C(24)-H(24)	117.0
C(24)-C(25)-C(26)	121.16(19)
C(24)-C(25)-H(25)	119.4
C(26)-C(25)-H(25)	119.4
O(4)-C(26)-O(5)	124.2(2)
O(4)-C(26)-C(25)	125.6(2)
O(5)-C(26)-C(25)	110.24(19)
O(5)-C(27)-C(28)	112.2(2)
O(5)-C(27)-H(27A)	109.2
C(28)-C(27)-H(27A)	109.2
O(5)-C(27)-H(27B)	109.2
C(28)-C(27)-H(27B)	109.2
H(27A)-C(27)-H(27B)	107.9
C(27)-C(28)-H(28A)	109.5
C(27)-C(28)-H(28B)	109.5
H(28A)-C(28)-H(28B)	109.5
C(27)-C(28)-H(28C)	109.5
H(28A)-C(28)-H(28C)	109.5
H(28B)-C(28)-H(28C)	109.5

Symmetry transformations used to generate equivalent atoms:

U11	U22	U33	U	23	U13	U12
S(1)	36(1)	32(1)	24(1)	-3(1)	1(1)	2(1)
O(1)	52(1)	45(1)	28(1)	6(1)	0(1)	1(1)
O(2)	47(1)	36(1)	35(1)	-11(1)	3(1)	1(1)
O(3)	40(1)	30(1)	35(1)	-1(1)	15(1)	4(1)
O(4)	50(1)	51(1)	54(1)	-3(1)	16(1)	18(1)
O(5)	58(1)	37(1)	56(1)	-2(1)	38(1)	2(1)
N(1)	31(1)	27(1)	25(1)	1(1)	6(1)	4(1)
C(1)	32(1)	26(1)	25(1)	1(1)	8(1)	3(1)
C(2)	27(1)	29(1)	24(1)	0(1)	7(1)	1(1)
C(3)	24(1)	28(1)	28(1)	1(1)	10(1)	-1(1)
C(4)	32(1)	34(1)	27(1)	-2(1)	7(1)	-2(1)
C(5)	36(1)	30(1)	38(1)	-5(1)	9(1)	-5(1)
C(6)	37(1)	27(1)	43(1)	4(1)	11(1)	-1(1)
C(7)	33(1)	32(1)	32(1)	5(1)	8(1)	1(1)
C(8)	26(1)	26(1)	27(1)	-2(1)	8(1)	0(1)
C(9)	27(1)	32(1)	34(1)	-4(1)	1(1)	2(1)
C(10)	36(1)	32(1)	48(1)	-2(1)	7(1)	0(1)
C(11)	39(1)	54(2)	60(2)	-3(1)	17(1)	-9(1)
C(12)	36(1)	65(2)	68(2)	-24(1)	20(1)	-7(1)
C(13)	38(1)	45(1)	80(2)	-24(1)	17(1)	1(1)
C(14)	36(1)	32(1)	57(1)	-5(1)	7(1)	2(1)
C(15)	67(2)	105(3)	122(3)	-46(2)	59(2)	-20(2)
C(16)	32(1)	29(1)	25(1)	-1(1)	9(1)	1(1)
C(17)	29(1)	30(1)	24(1)	-1(1)	5(1)	0(1)
C(18)	35(1)	29(1)	29(1)	1(1)	11(1)	-1(1)
C(19)	52(1)	35(1)	49(1)	6(1)	27(1)	6(1)
C(20)	67(2)	49(1)	70(2)	9(1)	46(2)	10(1)
C(21)	68(2)	54(2)	60(2)	14(1)	41(1)	-1(1)
C(22)	57(1)	39(1)	44(1)	11(1)	20(1)	2(1)
C(23)	40(1)	33(1)	31(1)	2(1)	10(1)	2(1)
C(24)	36(1)	25(1)	32(1)	-1(1)	9(1)	3(1)
C(25)	41(1)	27(1)	36(1)	0(1)	14(1)	5(1)
C(26)	40(1)	30(1)	44(1)	-6(1)	17(1)	-2(1)
C(27)	61(2)	45(1)	77(2)	-12(1)	48(1)	-4(1)
C(28)	66(2)	46(1)	62(2)	-9(1)	36(1)	0(1)

Table 4. Anisotropic displacement parameters (A² x 10³) for **8aa**. The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2 a^{*2} U^{11} + ... + 2 h k a^* b^* U^{12}]$

	Х	У	Z	U(eq)
H(1)	2883	1499	7465	33
H(2)	5098	2109	8727	32
H(4)	5113	3767	9439	38
H(5)	4811	5125	8881	42
H(6)	3719	5371	7360	43
H(7)	2888	4269	6359	39
H(10)	-14	1547	7045	48
H(11)	-1407	1835	7965	60
H(13)	-927	4289	7642	65
H(14)	473	4017	6728	51
H(15A)	-2918	2859	8386	137
H(15B)	-2608	3828	8340	137
H(15C)	-1668	3268	9130	137
H(16A)	3570	2409	9618	34
H(16B)	2314	2230	8747	34
H(19)	1470	1894	9974	51
H(20)	364	1368	10983	67
H(21)	847	33	11563	67
H(22)	2452	-777	11155	55
H(23)	3537	-265	10127	41
H(24)	5202	1055	7566	37
H(25)	4665	2099	6070	41
H(27A)	8044	837	5555	66
H(28A)	5821	223	4165	82
H(28B)	6498	-230	5110	82
H(28C)	7331	-134	4383	82

Table 5. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (A² x 10^3) for **8aa**.

Table 6. Torsion angles [°] for **8aa**.

O(1)-S(1)-N(1)-C(8)	58.64(16)
O(2)-S(1)-N(1)-C(8)	-172.47(14)
C(9)-S(1)-N(1)-C(8)	-57.03(16)
O(1)-S(1)-N(1)-C(1)	-163.64(13)

O(2)-S(1)-N(1)-C(1)	-34.74(16)
C(9)-S(1)-N(1)-C(1)	80.69(15)
C(8)-N(1)-C(1)-C(24)	-107.95(17)
S(1)-N(1)-C(1)-C(24)	109.97(16)
C(8)-N(1)-C(1)-C(2)	13.63(19)
S(1)-N(1)-C(1)-C(2)	-128.45(14)
N(1)-C(1)-C(2)-C(3)	-13.83(18)
C(24)-C(1)-C(2)-C(3)	107.11(17)
N(1)-C(1)-C(2)-C(16)	107.39(17)
C(24)-C(1)-C(2)-C(16)	-131.67(17)
C(16)-C(2)-C(3)-C(4)	66.8(2)
C(1)-C(2)-C(3)-C(4)	-171.39(19)
C(16)-C(2)-C(3)-C(8)	-112.02(18)
C(1)-C(2)-C(3)-C(8)	9.82(19)
C(8)-C(3)-C(4)-C(5)	0.8(3)
C(2)-C(3)-C(4)-C(5)	-177.91(19)
C(3)-C(4)-C(5)-C(6)	-1.3(3)
C(4)-C(5)-C(6)-C(7)	0.2(3)
C(5)-C(6)-C(7)-C(8)	1.2(3)
C(6)-C(7)-C(8)-C(3)	-1.7(3)
C(6)-C(7)-C(8)-N(1)	179.89(18)
C(4)-C(3)-C(8)-C(7)	0.7(3)
C(2)-C(3)-C(8)-C(7)	179.66(17)
C(4)-C(3)-C(8)-N(1)	179.37(16)
C(2)-C(3)-C(8)-N(1)	-1.7(2)
C(1)-N(1)-C(8)-C(7)	170.73(19)
S(1)-N(1)-C(8)-C(7)	-47.5(3)
C(1)-N(1)-C(8)-C(3)	-7.8(2)
S(1)-N(1)-C(8)-C(3)	133.93(14)
O(1)-S(1)-C(9)-C(14)	-33.8(2)
O(2)-S(1)-C(9)-C(14)	-165.74(17)
N(1)-S(1)-C(9)-C(14)	80.90(18)
O(1)-S(1)-C(9)-C(10)	148.56(16)
O(2)-S(1)-C(9)-C(10)	16.62(19)
N(1)-S(1)-C(9)-C(10)	-96.74(17)
C(14)-C(9)-C(10)-C(11)	-0.9(3)
S(1)-C(9)-C(10)-C(11)	176.71(17)
C(9)-C(10)-C(11)-C(12)	0.0(4)

C(10)-C(11)-C(12)-C(13)	1.1(4)
C(10)-C(11)-C(12)-C(15)	179.4(3)
C(11)-C(12)-C(13)-C(14)	-1.2(4)
C(15)-C(12)-C(13)-C(14)	-179.5(3)
C(12)-C(13)-C(14)-C(9)	0.3(4)
C(10)-C(9)-C(14)-C(13)	0.8(3)
S(1)-C(9)-C(14)-C(13)	-176.83(18)
C(3)-C(2)-C(16)-C(17)	-176.99(15)
C(1)-C(2)-C(16)-C(17)	67.4(2)
C(2)-C(16)-C(17)-O(3)	-4.3(3)
C(2)-C(16)-C(17)-C(18)	175.65(16)
O(3)-C(17)-C(18)-C(19)	-167.2(2)
C(16)-C(17)-C(18)-C(19)	12.8(3)
O(3)-C(17)-C(18)-C(23)	12.7(3)
C(23)-C(18)-C(19)-C(20)	-0.6(4)
C(17)-C(18)-C(19)-C(20)	179.3(2)
C(18)-C(19)-C(20)-C(21)	0.4(4)
C(19)-C(20)-C(21)-C(22)	0.4(5)
C(20)-C(21)-C(22)-C(23)	-0.9(4)
C(21)-C(22)-C(23)-C(18)	0.8(4)
C(19)-C(18)-C(23)-C(22)	0.0(3)
C(17)-C(18)-C(23)-C(22)	-179.9(2)
N(1)-C(1)-C(24)-C(25)	-4.7(3)
C(2)-C(1)-C(24)-C(25)	-122.4(2)
C(1)-C(24)-C(25)-C(26)	-177.77(19)
C(27)-O(5)-C(26)-O(4)	2.0(3)
C(27)-O(5)-C(26)-C(25)	-177.09(18)
C(24)-C(25)-C(26)-O(4)	-7.9(4)
C(24)-C(25)-C(26)-O(5)	171.18(19)
C(26)-O(5)-C(27)-C(28)	83.2(3)

Symmetry transformations used to generate equivalent atoms:

Table 7. Hydrogen bonds for $\pmb{8aa}$ [Å and °].

D-H...A d(D-H) d(H...A)

<(DHA)

d(D...A)