Determination of relative stereochemistry of 3aa

The relative configuration of 3aa-syn and 3aa-anti were determined by chemical transformation and subsequent comparison with a known compound of similar structure. ${ }^{7}$

Procedure of oxidation:

An oven-dried 10 mL pyrex vial was loaded with $\mathbf{3 a a}$ ($136.0 \mathrm{mg}, 0.5 \mathrm{mmol}$) followed by acetonitrile (2.5 mL). The resulting colourless solution was added with a 1 M solution of $\mathrm{NaH}_{2} \mathrm{PO}_{4}$ ($0.66 \mathrm{mmol}, 1.0 \mathrm{~mL}$), a 50% aqueous solution of $\mathrm{H}_{2} \mathrm{O}_{2}(0.50 \mathrm{mmol}, 35 \mu \mathrm{~L})$ and a 1 M solution of $\mathrm{NaClO}_{2}(0.70 \mathrm{mmol}, 0.70 \mathrm{~mL})$ keeping the temperature at $10{ }^{\circ} \mathrm{C}$. The reaction mixture was allowed to react for 30 minutes when saturated aqueous solution of $\mathrm{Na}_{2} \mathrm{SO}_{3}$ was added. The aqueous solution was extracted with $\mathrm{AcOEt}(3 \times 10 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(2 \times 10 \mathrm{~mL})$ and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under vacuum. The reaction crude was purified by preparative TLC (5 hexanes/ $5 \mathrm{Et}_{2} \mathrm{O}, 3$ runs) to afford:

15aa-syn as a colourless oil ($54 \mathrm{mg}, 36 \%$)
${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.55$ (br, $1 \mathrm{H}, O H$), $7.53(\mathrm{~d}, 1 \mathrm{H}, J=7.3 \mathrm{~Hz}$), $7.26(\mathrm{dd}, 1 \mathrm{H}, J=8.0$, $4.4 \mathrm{~Hz}), 7.10(\mathrm{~d}, 2 \mathrm{H}, J=4.3 \mathrm{~Hz}), 6.57(\mathrm{~d}, 1 \mathrm{H}, J=9.5 \mathrm{~Hz}), 6.09(\mathrm{dd}, 1 \mathrm{H}, J=9.5,6.0 \mathrm{~Hz}), 5.26(\mathrm{dd}$, $1 \mathrm{H}, J=8.9,6.3 \mathrm{~Hz}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 2.53-2.36(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.38(\mathrm{~m}, 2 \mathrm{H}), 1.37-1.06(\mathrm{~m}, 4 \mathrm{H})$, $0.83(\mathrm{t}, 3 \mathrm{H}, J=6.5 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 178.6,154.7,134.3,127.8,127.1,126.4$, 126.1, 125.5, 124.7, 53.4, 53.1, 49.1, 29.5, 27.5, 22.5, 13.7.

HRMS (ESI) $\mathrm{m} / \mathrm{z}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$Calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{4} \mathrm{Na} 326.1368$, found 326.1365 .

15aa-anti as a colourless oil ($10 \mathrm{mg}, 6 \%$).
${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.50(\mathrm{bs}, 1 \mathrm{H}), 7.30-7.02(\mathrm{~m}, 4 \mathrm{H}), 6.56(\mathrm{~d}, 1 \mathrm{H}, J=9.5 \mathrm{~Hz}), 6.11$ $(\mathrm{dd}, 1 \mathrm{H}, J=9.3,6.0 \mathrm{~Hz}), 5.34-5.16(\mathrm{~m}, 1 \mathrm{H}), 3.92-3.73(\mathrm{~m}, 3 \mathrm{H}), 2.49-2.29(\mathrm{~m}, 1 \mathrm{H}), 1.69-1.52$ (m, 2H), $1.41-1.10(\mathrm{~m}, 4 \mathrm{H}), 1.01-0.75(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 178.6,155.1,134.1,127.7,127.3,126.4,125.0,124.8,53.2,53.0$, 48.5, 28.8, 28.2, 22.4, 13.7.

HRMS (ESI) $\mathrm{m} / \mathrm{z}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$Calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{4} \mathrm{Na} 326.1368$, found 326.1373.

Table 4. Determination of relative configuration of 3aa

15aa-syn and 15aa-anti
Reference Compound ${ }^{7}$

${ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
$\delta 53.4,53.1,49.1$
$\delta 53.5$ (C-2); 53.1 (OMe); 49.2 (C-9)

${ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
$\delta 53.2,53.0,48.5$
$\delta 53.2$ (OMe); 53.0 (C-2); 48.4 (C-9)

X-ray crystallography: Determination of absolute stereochemistry of 5dc-syn

Crystal of suitable size was selected from a solid sample of compound $\mathbf{5 d c}$-syn in $\mathrm{Et}_{2} \mathrm{O}$ by a slow evaporation of the solvent. An X-ray diffraction study on a single crystal of 5dc-syn led to the molecular structure shown in Figure 1.

In the measurement, performed at room temperature, a certain degree of conformational disorder was present in the ethoxyl group. The conformation of the rest of the molecule is affected by the hydrogen interaction between $\mathrm{O}(3)$ and $\mathrm{O}(1)$, the $\mathrm{O}(3) \cdots \mathrm{O}(1)$ distance being 2.911(4) \AA. The absolute configuration R, R of the chiral centers $\mathrm{C}(5)$ and $\mathrm{C}(13)$ was established on the basis of the Flack's parameter (0.017(11)) [Flack, H. D. Acta Cryst. 1983, A39, 876-881].

The CIF file has also been deposited with the Cambridge Crystallographic Data Centre, deposition number CCDC 1057075.These data can be obtained free of charge from CCDC via www.ccdc.cam.ac.uk/data request/cif

Figure 1. ORTEP diagram of compound 5dc-syn Ellipsoids are at 30\% probability.

Table 5 Bond lengths [\AA] and angles [${ }^{\circ}$] for 5dc-syn

$\mathrm{Br}(1)-\mathrm{C}(1)$	1.896(3)
$\mathrm{C}(1)-\mathrm{C}(9)$	1.376(6)
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.380(6)$
$\mathrm{C}(2)-\mathrm{C}(3)$	1.382(5)
$\mathrm{C}(2)-\mathrm{H}(2)$	0.9300
$\mathrm{C}(3)-\mathrm{C}(4)$	1.383(4)
$\mathrm{C}(3)-\mathrm{H}(3)$	0.9300
$\mathrm{C}(4)-\mathrm{C}(8)$	1.394(4)
$\mathrm{C}(4)-\mathrm{N}(1)$	1.423(4)
$\mathrm{N}(1)-\mathrm{C}(10)$	1.359(4)
$\mathrm{N}(1)$-C(5)	1.482(4)
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.500(5)$
$\mathrm{C}(5)-\mathrm{C}(13)$	1.544(5)
$\mathrm{C}(5)-\mathrm{H}(5)$	0.9800
$\mathrm{C}(6)-\mathrm{C}(7)$	1.312(5)
$\mathrm{C}(6)-\mathrm{H}(6)$	0.9300
$\mathrm{C}(7)-\mathrm{C}(8)$	1.463(5)
$\mathrm{C}(7)-\mathrm{H}(7)$	0.9300
$\mathrm{C}(8)-\mathrm{C}(9)$	1.391(5)
$\mathrm{C}(9)-\mathrm{H}(9)$	0.9300
$\mathrm{C}(10)-\mathrm{O}(1)$	1.209(4)
$\mathrm{C}(10)-\mathrm{O}(2)$	1.329(4)
$\mathrm{O}(2)-\mathrm{C}(11)$	1.457(4)
$\mathrm{C}(11)-\mathrm{C}(12 \mathrm{~B})$	1.397(14)
$\mathrm{C}(11)-\mathrm{C}(12 \mathrm{~A})$	1.542(12)
$\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A})$	0.9700
$\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~B})$	0.9700
$\mathrm{C}(12 \mathrm{~A})-\mathrm{H}(12 \mathrm{~A})$	0.9600
$\mathrm{C}(12 \mathrm{~A})-\mathrm{H}(12 \mathrm{~B})$	0.9600
$\mathrm{C}(12 \mathrm{~A})-\mathrm{H}(12 \mathrm{C})$	0.9600
$\mathrm{C}(12 \mathrm{~B})-\mathrm{H}(12 \mathrm{D})$	0.9600
$\mathrm{C}(12 \mathrm{~B})-\mathrm{H}(12 \mathrm{E})$	0.9600
$\mathrm{C}(12 \mathrm{~B})-\mathrm{H}(12 \mathrm{~F})$	0.9600
$\mathrm{C}(13)-\mathrm{C}(15)$	1.514(5)
$\mathrm{C}(13)-\mathrm{C}(14)$	$1.539(5)$
$\mathrm{C}(13)-\mathrm{H}(13)$	0.9800
$\mathrm{C}(14)-\mathrm{O}(3)$	1.402(5)
$\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~A})$	0.9700
$\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B})$	0.9700

$\mathrm{O}(3)-\mathrm{H}(3 \mathrm{~A})$	0.8200
$\mathrm{C}(15)-\mathrm{C}(20)$	$1.373(5)$
$\mathrm{C}(15)-\mathrm{C}(16)$	$1.393(5)$
$\mathrm{C}(16)-\mathrm{C}(17)$	1.381(6)
$\mathrm{C}(16)-\mathrm{H}(16)$	0.9300
$\mathrm{C}(17)-\mathrm{C}(18)$	1.361(8)
$\mathrm{C}(17)-\mathrm{H}(17)$	0.9300
$\mathrm{C}(18)-\mathrm{C}(19)$	1.367(8)
$\mathrm{C}(18)-\mathrm{H}(18)$	0.9300
$\mathrm{C}(19)-\mathrm{C}(20)$	1.385(6)
$\mathrm{C}(19)-\mathrm{H}(19)$	0.9300
$\mathrm{C}(20)-\mathrm{H}(20)$	0.9300
$\mathrm{C}(9)-\mathrm{C}(1)-\mathrm{C}(2)$	121.5(3)
$\mathrm{C}(9)-\mathrm{C}(1)-\mathrm{Br}(1)$	118.2(3)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{Br}(1)$	120.3(3)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	119.1(3)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2)$	120.5
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(2)$	120.5
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	120.2(3)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(3)$	119.9
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(3)$	119.9
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(8)$	120.5(3)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{N}(1)$	122.4(3)
$\mathrm{C}(8)-\mathrm{C}(4)-\mathrm{N}(1)$	117.2(3)
$\mathrm{C}(10)-\mathrm{N}(1)-\mathrm{C}(4)$	124.3(2)
$\mathrm{C}(10)-\mathrm{N}(1)-\mathrm{C}(5)$	117.7(3)
$\mathrm{C}(4)-\mathrm{N}(1)-\mathrm{C}(5)$	117.5(2)
$\mathrm{N}(1)-\mathrm{C}(5)-\mathrm{C}(6)$	109.0(3)
$\mathrm{N}(1)-\mathrm{C}(5)-\mathrm{C}(13)$	111.0(3)
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(13)$	112.6(3)
$\mathrm{N}(1)-\mathrm{C}(5)-\mathrm{H}(5)$	108.0
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{H}(5)$	108.0
$\mathrm{C}(13)-\mathrm{C}(5)-\mathrm{H}(5)$	108.0
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(5)$	122.0(3)
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{H}(6)$	119.0
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{H}(6)$	119.0
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	120.7(3)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{H}(7)$	119.7
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{H}(7)$	119.7
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(4)$	119.0(3)

$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(7)$	122.1(3)
$\mathrm{C}(4)-\mathrm{C}(8)-\mathrm{C}(7)$	118.9(3)
$\mathrm{C}(1)-\mathrm{C}(9)-\mathrm{C}(8)$	119.6(3)
$\mathrm{C}(1)-\mathrm{C}(9)-\mathrm{H}(9)$	120.2
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{H}(9)$	120.2
$\mathrm{O}(1)-\mathrm{C}(10)-\mathrm{O}(2)$	123.6(3)
$\mathrm{O}(1)-\mathrm{C}(10)-\mathrm{N}(1)$	123.5(3)
$\mathrm{O}(2)-\mathrm{C}(10)-\mathrm{N}(1)$	112.9(3)
$\mathrm{C}(10)-\mathrm{O}(2)-\mathrm{C}(11)$	116.5(3)
$\mathrm{C}(12 \mathrm{~B})-\mathrm{C}(11)-\mathrm{O}(2)$	110.8(7)
$\mathrm{O}(2)-\mathrm{C}(11)-\mathrm{C}(12 \mathrm{~A})$	110.4(5)
$\mathrm{O}(2)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A})$	109.6
$\mathrm{C}(12 \mathrm{~A})-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A})$	109.6
$\mathrm{O}(2)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~B})$	109.6
$\mathrm{C}(12 \mathrm{~A})-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~B})$	109.6
$\mathrm{H}(11 \mathrm{~A})-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~B})$	108.1
$\mathrm{C}(11)-\mathrm{C}(12 \mathrm{~A})-\mathrm{H}(12 \mathrm{~A})$	109.5
$\mathrm{C}(11)-\mathrm{C}(12 \mathrm{~A})-\mathrm{H}(12 \mathrm{~B})$	109.5
$\mathrm{H}(12 \mathrm{~A})-\mathrm{C}(12 \mathrm{~A})-\mathrm{H}(12 \mathrm{~B})$	109.5
$\mathrm{C}(11)-\mathrm{C}(12 \mathrm{~A})-\mathrm{H}(12 \mathrm{C})$	109.5
$\mathrm{H}(12 \mathrm{~A})-\mathrm{C}(12 \mathrm{~A})-\mathrm{H}(12 \mathrm{C})$	109.5
$\mathrm{H}(12 \mathrm{~B})-\mathrm{C}(12 \mathrm{~A})-\mathrm{H}(12 \mathrm{C})$	109.5
$\mathrm{C}(11)-\mathrm{C}(12 \mathrm{~B})-\mathrm{H}(12 \mathrm{D})$	109.5
$\mathrm{C}(11)-\mathrm{C}(12 \mathrm{~B})-\mathrm{H}(12 \mathrm{E})$	109.5
$\mathrm{H}(12 \mathrm{D})-\mathrm{C}(12 \mathrm{~B})-\mathrm{H}(12 \mathrm{E})$	109.5
$\mathrm{C}(11)-\mathrm{C}(12 \mathrm{~B})-\mathrm{H}(12 \mathrm{~F})$	109.5
$\mathrm{H}(12 \mathrm{D})-\mathrm{C}(12 \mathrm{~B})-\mathrm{H}(12 \mathrm{~F})$	109.5
$\mathrm{H}(12 \mathrm{E})-\mathrm{C}(12 \mathrm{~B})-\mathrm{H}(12 \mathrm{~F})$	109.5
$\mathrm{C}(15)-\mathrm{C}(13)-\mathrm{C}(14)$	113.7(3)
$\mathrm{C}(15)-\mathrm{C}(13)-\mathrm{C}(5)$	111.0(3)
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(5)$	111.9(3)
$\mathrm{C}(15)-\mathrm{C}(13)-\mathrm{H}(13)$	106.6
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{H}(13)$	106.6
$\mathrm{C}(5)-\mathrm{C}(13)-\mathrm{H}(13)$	106.6
$\mathrm{O}(3)-\mathrm{C}(14)-\mathrm{C}(13)$	114.5(3)
$\mathrm{O}(3)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~A})$	108.6
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~A})$	108.6
$\mathrm{O}(3)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B})$	108.6
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B})$	108.6
$\mathrm{H}(14 \mathrm{~A})-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B})$	107.6
$\mathrm{C}(14)-\mathrm{O}(3)-\mathrm{H}(3 \mathrm{~A})$	109.5

$\mathrm{C}(20)-\mathrm{C}(15)-\mathrm{C}(16)$	$117.5(3)$
$\mathrm{C}(20)-\mathrm{C}(15)-\mathrm{C}(13)$	$120.7(3)$
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}(13)$	$121.9(3)$
$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{C}(15)$	$120.8(4)$
$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{H}(16)$	119.6
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{H}(16)$	119.6
$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{C}(16)$	$120.6(5)$
$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{H}(17)$	119.7
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{H}(17)$	119.7
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$	$119.6(4)$
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{H}(18)$	120.2
$\mathrm{C}(19)-\mathrm{C}(18)-\mathrm{H}(18)$	120.2
$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(20)$	$120.0(5)$
$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{H}(19)$	120.0
$\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{H}(19)$	120.0
$\mathrm{C}(15)-\mathrm{C}(20)-\mathrm{C}(19)$	$121.5(4)$
$\mathrm{C}(15)-\mathrm{C}(20)-\mathrm{H}(20)$	119.3
$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{H}(20)$	119.3

Mechanistic Insights: Replacing the N, O-acetal 1 B with a preformed quinolinium ion

Synthesis of quinolinium triflate A

The ethoxycarbonylquinolinium triflate \mathbf{A} was synthesized following a previously reported procedure. ${ }^{8}$ A 25 mL oven-dried Schlenk tube, under Argon protection, was charged with 1b (742 $\mathrm{mg}, 3.0 \mathrm{mmol}$) and toluene. The resulting colourless solution was cooled at $0{ }^{\circ} \mathrm{C}$ and trimethylsilyl trifluoromethanesulfonate ($667 \mathrm{mg}, 0.54 \mathrm{~mL}, 3.0 \mathrm{mmol}$) was added dropewise over 15 minutes. Upon addition of TMSOTf, a fine white solid is formed. The reaction mixture was allowed to stir for 30 min at $0^{\circ} \mathrm{C}$ and 45 min at rt then it was filtered. The resulting solid was washed with $\mathrm{Et}_{2} \mathrm{O}$ and dried 3 hours under vacuum to afford the title compound $\mathbf{A}(917 \mathrm{mg}, 87 \%)$. Spectral data are consistent with the literature. ${ }^{8}$

Orgacatalyzed alkylation using isolated quinolinium triflate

A flame-dried 10 mL Schlenk tube was charged with $\mathbf{A}(57 \mathrm{mg}, 0.15 \mathrm{mmol})$ followed by DCM $(0.60 \mathrm{~mL})$ under argon atmosphere. The resulting solution was cooled at $0^{\circ} \mathrm{C}$ and $\mathbf{L 3 b}(0.03 \mathrm{mmol}$, $19 \mathrm{mg})$ and distilled hexanal $(45 \mu \mathrm{~L}, 0.45 \mathrm{mmol})$ were added. The reaction mixture was allowed to react at the same temperature for 4 hour. The reaction was quenched by adding water (5 mL) and the aqueous phase was extracted with ether ($3 \times 10 \mathrm{~mL}$). The organic phases were dried over MgSO_{4}, filtered and concentrated under vaccum to afford a yellowish oil. The analysis of the reaction crude by ${ }^{1} \mathrm{H}$ NMR showed a regioisomeric ratio of $\mathbf{4 b a} / \mathbf{3} \mathbf{b a}=7 / 93$, a diasteroisomeric ratio of $\mathbf{3} \mathbf{b a}-$ syn/3ba-anti $=65 / 35$ and 38% of quinoline (with respect to the products). Subsequent flash chromatography (7 hexanes $/ 3 \mathrm{Et}_{2} \mathrm{O}, \mathrm{R}_{\mathrm{f}}=0.25$) gave a colourless oil as mixture of 3ba-syn+anti (23
$\mathrm{mg}, 50 \%$). The ee was determined by Daicel Chiralcel AD-H column (hexane- i-PrOH, 98:2) flow rate $1.0 \mathrm{ml} / \mathrm{min} ; 220 \mathrm{~nm} ; \mathbf{3 b a}-$ syn $t_{\mathrm{R}}($ minor $)=11.2 \mathrm{~min}, t_{\mathrm{R}}($ major $)=13.2 \mathrm{~min} ; 44 \%$ ee; 3ba-anti t_{R} $($ minor $)=10.3 \mathrm{~min}, t_{\mathrm{R}}($ major $)=10.9 \mathrm{~min} ; 54 \%$ ee.

Mechanistic Insights: Optimized reaction condition analyzed by ${ }^{1}$ H NMR

A dried NMR tube was loaded with $\mathrm{N}-\mathrm{O}$ acetal $\mathbf{1 a}(23 \mathrm{mg}, 0.1 \mathrm{mmol})$, propionaldehyde $(17 \mathrm{mg}$, $0.30 \mathrm{mmol})$, L3b ($12 \mathrm{mg}, 0.02 \mathrm{mmol}$) and toluene- $\mathrm{d}_{8}(0.40 \mathrm{~mL})$. After 5 minutes a ${ }^{1} \mathrm{H}$ NMR was recorded $\left(\mathrm{t}_{0}\right)$ and p-toluensulfonic acid was added at room temperature. The subsequent ${ }^{1} \mathrm{H}$ NMR spectra were recorded according to the indicated time. Signals of the corresponding enamine (6.31 and 4.10 ppm) cannot be detected (see, M. B. Schmid, K. Zeitler, and R. M. Gschwind, R., J. Am. Chem. Soc. 2011, 133, 7065).

$\mathrm{N}-\mathrm{O}$ Acetal 1a
${ }^{1} \mathrm{H} \operatorname{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

N, O-acetal 1a, propionaldehyde,
L3b, Tol- $\mathrm{d}_{8}, t=0 \mathrm{~min}$
$+\mathrm{TsOH}, t=5 \mathrm{~min}$
$t=15 \mathrm{~min}$
$t=30 \mathrm{~min}$
$t=1 \mathrm{~h}$
$t=1.5 \mathrm{~h}$

General Procedure for the enantioselective alkylation of quinolines with aldehydes.

General Procedure A (without in situ reduction)

An oven-dried 10 mL pyrex vial was charged with the specified N, O-acetal 1a-f (1.0 eq) in toluene $(0.25 \mathrm{M})$ and $\mathbf{L 3 b}(20 \mathrm{~mol} \%)$ and the appropriate aldehyde (3.0 eq). The resulting solution was cooled to the specified temperature and added with anhydrous p-toluensulfonic acid ($20 \mathrm{~mol} \%$). The mixture was allowed to react until no N, O-acetal was detected by TLC (pre-treated with 10% triethylamine in hexanes), quenched with water (5 ml per 0.20 mmol of N, O-acetal), extracted three times with $\mathrm{Et}_{2} \mathrm{O}$ and the combined organic phases were dried over MgSO_{4}. Removal of solvents afforded a crude which was purified by flash chromatography or/and preparative TLC.

General Procedure B (with in situ reduction)

An oven-dried 10 mL pyrex vial was loaded with the specified $\mathrm{N}-\mathrm{O}$ acetal $\mathbf{1 a - f}(1.0 \mathrm{eq})$ in toluene $(0.25 \mathrm{M})$ and $\mathbf{L 3 b}(20 \mathrm{~mol} \%)$ and the appropriate aldehyde (3.0 eq). The resulting solution was cooled to the specified temperature and added with anhydrous p-toluensulfonic acid ($20 \mathrm{~mol} \%$). The mixture was allowed to react until no N, O-acetal was detected by TLC (pre-treated with 10% triethylamine in hexanes). The solution was then cooled at $0{ }^{\circ} \mathrm{C}$, diluted with methanol $(0.40 \mathrm{~mL}$ per 0.20 mmol of N, O-acetal) and additioned with sodium borohydride (6.0 eq). Upon disappearance of aldehyde 3, the reaction mixture was quenched with water (5 ml per 0.20 mmol of N, O-acetal) and the resulting aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$ four times. The combined organic layers were dried over MgSO_{4}, filtered and concentrated to afford a residue which was purified by flash chromatography or/and preparative TLC.

The racemic products were prepared following the general procedure A or B:

- 3aa, 3ad, 3ba, 3cd, 3ga, 5ad, 5cd, 5ha, replacing L3b with pyrrolidine ($20 \mathrm{~mol} \%$);
- 3ab, 3da, 3ed, 3ef, 5ab, 5ac, 5cc, 5dc, 5ec, 5ed, replacing L3b with (R)-L1 (10 mol\%) and (S)$\mathbf{L 1}$ (10 mol\%) and replacing p-toluensulfonic acid with $\operatorname{In(OTf})_{3}(20 \mathrm{~mol} \%)$.

Note: the 1,4-adducts of both type $\mathbf{4}$ and $\mathbf{6}$ were in some cases not isolated in a pure state and the corresponding NMR spectra have not been reported.

Table 6: Overview of Products

Expanded Table 6

Entry	Y	PG	R	General Procedure	$\mathrm{Q}^{\mathbf{a}}$ (\%)	$\begin{aligned} & 1,2 / 1,4 \\ & \text { add. } \end{aligned}$	$\begin{aligned} & \text { 1,2:Syn } \\ & \text { /Anti }^{\text {b }} \end{aligned}$
1	H	$\mathrm{CO}_{2} \mathrm{Me}$	H	A	6\%	95/5	-
2	H	$\mathrm{CO}_{2} \mathrm{Me}$	H	B	8\%	95/5	-
3	H	$\mathrm{CO}_{2} \mathrm{Me}$	Ph	B	$<1 \%$	81/19	77/33
4	H	$\mathrm{CO}_{2} \mathrm{Me}$	CH_{3}	A	4\%	90/10	82/18
5	H	$\mathrm{CO}_{2} \mathrm{Me}$	CH_{3}	B	2\%	91/9	83/17
6	H	$\mathrm{CO}_{2} \mathrm{Et}$	$\mathrm{C}_{4} \mathrm{H}_{9}$	A	5\%	92/8	78/22
7	H	Cbz	H	A	$<1 \%$	96/4	-
8	H	Cbz	H	B	$<1 \%$	96/4	-
9	H	Cbz	Ph	B	$<1 \%$	n.d.	77/33
10	H	Cbz	CH_{3}	A	$<1 \%$	89/11	80/20
11	$6-\mathrm{Br}$	$\mathrm{CO}_{2} \mathrm{Et}$	Ph	B	$<1 \%$	n.d.	73/27
12	$6-\mathrm{Br}$	$\mathrm{CO}_{2} \mathrm{Et}$	$\mathrm{C}_{4} \mathrm{H}_{9}$	A	2\%	88/12	71/29
13	$6-\mathrm{NO}_{2}$	$\mathrm{CO}_{2} \mathrm{Et}$	CH_{3}	B	$<1 \%$	81/19	65/35
14	$6-\mathrm{NO}_{2}$	$\mathrm{CO}_{2} \mathrm{Et}$	CH_{3}	B	$<1 \%$	81/19	65/35
15	$6-\mathrm{NO}_{2}$	$\mathrm{CO}_{2} \mathrm{Et}$	Ph	B	$<1 \%$	80/20	70/30
16	$6-\mathrm{OMe}$	$\mathrm{CO}_{2} \mathrm{Et}$	$\mathrm{C}_{4} \mathrm{H}_{9}$	A	3\%	91/9	65/35
17	6-Me	$\mathrm{CO}_{2} \mathrm{Et}$	$\mathrm{C}_{4} \mathrm{H}_{9}$	A	$<1 \%$	88/12	71/29
18	4-Me	$\mathrm{CO}_{2} \mathrm{Et}$	$\mathrm{C}_{4} \mathrm{H}_{9}$	B	5\%	Na	63/37

${ }^{\mathrm{a}} \mathrm{Q}=$ corresponding quinoline; ${ }^{\mathrm{b}}$ Regio- and diastereoselectivity determined by ${ }^{\mathrm{I}} \mathrm{H}$ NMR of the reaction crude.

(R)-Methyl 2-((R)-1-oxohexan-2-yl)quinoline$1(2 H)$-carboxylate and (S)-methyl 2-((R)-1-oxohexan-2-yl)quinoline-1(2H)-carboxylate (3aa-
syn + anti)
According the general procedure A, N,O-acetal 1a ($34 \mathrm{mg}, 0.15 \mathrm{mmol}$), L3b ($18 \mathrm{mg}, 0.03 \mathrm{mmol}$), freshly distilled hexanal ($45 \mathrm{mg}, 0.45 \mathrm{mmol}$), anhydrous p-toluensulfonic acid ($5 \mathrm{mg}, 0.03 \mathrm{mmol}$), toluene (0.60 mL) was allowed to react at $0{ }^{\circ} \mathrm{C}$ for 15 h . Subsequent flash chromatography (8 hexanes $/ 2 \mathrm{Et}_{2} \mathrm{O}, \mathrm{R}_{\mathrm{f}}=0.29$) afforded a colourless oil ($38 \mathrm{mg}, 89 \%$) as inseparable mixture of 3aa$\operatorname{syn}(I)$ and 3aa-anti(II). ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.54\left(\mathrm{~d}, 1 \mathrm{H}, J=2.9 \mathrm{~Hz}, H_{(I I)}\right), 9.44\left(\mathrm{~d}, 1 \mathrm{H}_{(I)}\right.$, $J=4.5 \mathrm{~Hz}), 7.54-7.04\left(\mathrm{~m}, 4 \mathrm{H}_{(I+I)}\right), 6.65-6.49\left(\mathrm{~m}, 1 \mathrm{H}_{(I+I)}\right), 6.08\left(\mathrm{dd}, 1 \mathrm{H}_{(I+I)}, J=9.5,6.0 \mathrm{~Hz}\right), 5.39$ $-5.24\left(\mathrm{~m}_{(I+I I}, 1 \mathrm{H}\right), 3.80\left(\mathrm{~s}, 3 \mathrm{H}_{(I I)}\right), 3.77\left(\mathrm{~s}, 3 \mathrm{H}_{(I)}\right), 2.54-2.40\left(\mathrm{~m}, 1 \mathrm{H}_{(I I)}\right) 2.38-2.24\left(\mathrm{~m}, 1 \mathrm{H}_{(I)}\right), 1.80$ $-1.62\left(\mathrm{~m}, 1 \mathrm{H}_{(I I+I)}\right), 1.62-1.47\left(\mathrm{~m}, 1 \mathrm{H}_{(I+I)}\right), 1.37-1.10\left(\mathrm{~m}, 4 \mathrm{H}_{(I+I)}\right), 0.83\left(\mathrm{t}, 3 \mathrm{H}_{(I+I)}, \mathrm{J}=6.8 \mathrm{~Hz},\right)$. ${ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 202.7_{(I+I)}, 154.9_{(I I+I)}, 134.2,128.2,128.1,127.2,126.7,126.5$, $126.4,125.2,125.0,124.8,56.6_{(I)}, 55.9_{(I I}, 53.4_{(I+I)}, 52.2_{(I+I)}, 29.8_{(I)}, 29.4_{(I I}, 25.3_{(I+I)}, 22_{1} 7_{(I+l)}$, $13.8_{(I+I)}$.

HPLC analysis: Daicel Chiralcel AD-H column (hexane- i-PrOH, 97:3) flow rate $1.0 \mathrm{ml} / \mathrm{min} ; 220$ $\mathrm{nm} ; \mathbf{3 a a}-\operatorname{syn}_{t_{\mathrm{R}}}($ minor $)=10.3 \mathrm{~min}, t_{\mathrm{R}}($ major $)=11.8 \mathrm{~min}, 95.6 \%$; 3aa-antit $t_{\mathrm{R}}(\operatorname{minor})=9.2 \mathrm{~min}, t_{\mathrm{R}}$ (major) $=9.7 \mathrm{~min}, 77.6 \%$ ee .

Methyl 4-(1-oxohexan-2-yl)quinoline-1(4H)-carboxylate (4aa-syn +anti)
The faster eluting fraction of the above flash chromatography (8 hexanes $/ 2$ $\mathrm{Et}_{2} \mathrm{O}, \mathrm{R}_{\mathrm{f}}=0.46$) gave the title compound as inseparable mixture of $4 \mathrm{aa}-$ syn and 4aa-anti ($3 \mathrm{mg}, 7 \%$). Major diastereomer (I), minor diastereomer (II).
${ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.69-9.60\left(\mathrm{~m}, 1 \mathrm{H}_{(I+I)}\right), 8.01\left(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}_{(I+I)}\right), 7.32-7.04(\mathrm{~m}$, $\left.4 \mathrm{H}_{(I+I)}\right), 5.39\left(\mathrm{dd}, 1 \mathrm{H}_{(I I)}, J=7.6,6.1 \mathrm{~Hz}\right), 5.29\left(\mathrm{dd}, 1 \mathrm{H}_{(I)}, J=7.6,6.0 \mathrm{~Hz}\right), 3.91\left(\mathrm{~s}, 3 \mathrm{H}_{(I+I)}\right), 3.86-$ $3.80\left(\mathrm{~m}, 1 \mathrm{H}_{(I)}\right), 3.74\left(\mathrm{t}, 1 \mathrm{H}_{(I I)}, J=6.2 \mathrm{~Hz}\right), 2.57-2.43\left(\mathrm{~m}, 1 \mathrm{H}_{(I+I I)}\right), 1.80-1.67\left(\mathrm{~m}, 1 \mathrm{H}_{(I+I I}\right), 1.55-$ $1.40\left(\mathrm{~m}, 1 \mathrm{H}_{(I+I)}\right), 1.36-1.04\left(\mathrm{~m}, 4 \mathrm{H}_{(I+I)}\right), 0.93-0.78\left(\mathrm{~m}, 3 \mathrm{H}_{(I+I)}\right)$.
${ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 204.6,204.4,153.0,137.2,137.1,129.5,128.9,128.6,128.4$, $128.4,128.3,128.1,127.2,127.1,125.3,125.2,121.7,110.6,110.0,58.8,58.7,53.6,38.9,38.7$, 29.8, 29.7, 26.2, 25.4, 22.9, 22.8, 13.9, 13.9.

HPLC analysis: Daicel Chiralcel AD-H column (hexane- i - $\mathrm{PrOH}, 97: 3$); flow rate $1.0 \mathrm{~mL} / \mathrm{min} ; 220$ nm ; $(\mathrm{I}) \mathrm{t}_{\mathrm{R}}($ major $)=8.0 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=8.5 \mathrm{~min} 95 \%$ ee; $(\mathrm{II}) \mathrm{t}_{\mathrm{R}}($ minor $)=9.7 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ major $)=11.2$ $\min , 99 \%$ ee.

(S)-Methyl 2-(2-oxoethyl)quinoline-1(2H)-carboxylate (3ab)

Following the general procedure A, N, O-acetal 1a ($47 \mathrm{mg}, 0.20 \mathrm{mmol}$), L3b (25 $\mathrm{mg}, 0.04 \mathrm{mmol}$), acetaldehyde ($26 \mathrm{mg}, 0.60 \mathrm{mmol}$), anhydrous p-toluensulfonic acid ($7 \mathrm{mg}, 0.04 \mathrm{mmol}$), toluene (0.80 mL) were allowed to react at $0^{\circ} \mathrm{C}$ for 2 h . Subsequent flash chromatography (7 hexanes $/ 3 \mathrm{Et}_{2} \mathrm{O}, \mathrm{R}_{\mathrm{f}}=0.20$) afforded an orange oil ($29 \mathrm{mg}, 62 \%$).
${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.69(\mathrm{~s}, 1 \mathrm{H}), 7.52(\mathrm{~d}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 7.24-7.03(\mathrm{~m}, 3 \mathrm{H}), 6.52(\mathrm{~d}$, $1 \mathrm{H}, J=9.5 \mathrm{~Hz}), 6.11(\mathrm{dd}, 1 \mathrm{H}, J=9.4,6.0 \mathrm{~Hz}), 5.56(\mathrm{dd}, 1 \mathrm{H}, J=13.3,6.5 \mathrm{~Hz}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 2.58$ (d, $2 \mathrm{H}, J=6.9 \mathrm{~Hz}$).
${ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 199.8,154.7,133.9,128.1,128.0,126.9,126.6,126.0,124.9$, 124.8, 53.4, 48.4, 47.5.

HRMS (ESI) $\mathrm{m} / \mathrm{z}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$Calcd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{NO}_{3} \mathrm{Na}$ 254.0793, found 254.0792.
HPLC analysis: Daicel Chiralcel AD-H column (hexane- i - $\mathrm{PrOH}, 95: 5$) flow rate $1.0 \mathrm{ml} / \mathrm{min} ; 220$ $\mathrm{nm} ; t_{\mathrm{R}}($ major $)=13.8 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=18.9 \mathrm{~min} ; 1.6 \%$ ee.

(R)-Methyl 2-((R)-1-oxopropan-2-yl)quinoline$1(2 H)$-carboxylate and (S)-methyl 2-((R)-1-oxopropan-2-yl)quinoline-1(2H)-carboxylate (3ad$\boldsymbol{s y n}+\boldsymbol{a n t i})$

Following the general procedure A, $N-O$ acetal $\mathbf{1 a}(47 \mathrm{mg}, 0.20 \mathrm{mmol})$, L3b ($25 \mathrm{mg}, 0.04 \mathrm{mmol}$), propionaldehyde ($35 \mathrm{mg}, 0.60 \mathrm{mmol}$), anhydrous p-toluensulfonic acid ($7 \mathrm{mg}, 0.04 \mathrm{mmol}$) and toluene (0.80 mL) were allowed to react at $0{ }^{\circ} \mathrm{C}$ for 5.5 h . Subsequent flash chromatography (8 hexanes $/ 2 \mathrm{Et}_{2} \mathrm{O}, \mathrm{R}_{\mathrm{f}}=0.17$) gave a colourless oil as mixture of 3ad-syn(I) and 3ad-anti(II) (42 mg , 85\%).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.65\left(\mathrm{~d}, 1 \mathrm{H}_{(I I}, J=1.6 \mathrm{~Hz}\right), 9.53\left(\mathrm{~d}, 1 \mathrm{H}_{(I)}, J=2.9 \mathrm{~Hz}\right), 7.57-7.41$ $\left(\mathrm{m}, 1 \mathrm{H}_{(I+I I)}\right), 7.29-7.19\left(\mathrm{~m}, 1 \mathrm{H}_{(I+I I)}\right), 7.09\left(\mathrm{~d}, 2 \mathrm{H}_{(I+I I)}, J=4.2 \mathrm{~Hz}\right), 6.64-6.51\left(\mathrm{~m}, 1 \mathrm{H}_{(I+I I)}\right), 6.14$ $\left(\mathrm{dd}, 1 \mathrm{H}_{(I I)} J=9.6,5.9 \mathrm{~Hz}\right), 6.06\left(\mathrm{dd}, 1 \mathrm{H}_{(I)}, J=9.5,6.0 \mathrm{~Hz}\right), 5.36-5.26\left(\mathrm{~m}, 1 \mathrm{H}_{(I+I I)}\right), 3.80\left(\mathrm{~s}, 3 \mathrm{H}_{(I I)}\right)$, $3.79\left(\mathrm{~s}, 3 \mathrm{H}_{(I)}\right), 2.63-2.44\left(\mathrm{~m}, 1 \mathrm{H}_{(I+I I)}\right), 1.05\left(\mathrm{~d}, 3 \mathrm{H}_{(I I)}, J=7.3 \mathrm{~Hz}\right), 1.05\left(\mathrm{~d}, 3 \mathrm{H}_{(I)}, J=7.3 \mathrm{~Hz}\right)$.
${ }^{13} \mathrm{CNMR}\left(62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) $\delta 203.2,202.8,128.7,128.6,128.1,127.5,127.1,127.0,126.9,125.5$, $125.5,125.6,54.8,54.0,53.9,53.8,53.6,52.3,50.5,34.7,31.0,31.0,30.4,24.0,23.3,10.8,10.7$, 10.5.

Methyl 4-(1-oxopropan-2-yl)quinoline-1(4H)-carboxylate (4ad-syn+anti)

The faster eluting fraction of the above flash chromatography $\left(8 \mathrm{Hex} / 2 \mathrm{Et}_{2} \mathrm{O}, \mathrm{Rf}=\right.$ 0.21) the title compound was recovered as a colourless oil ($3 \mathrm{mg}, 7 \%$). Major diastereomer (I), minor diastereomer (II).
${ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.72\left(\mathrm{~d}, 1 \mathrm{H}_{(I+I I)}, J=1.2 \mathrm{~Hz}\right), 8.06-7.98\left(\mathrm{~m}, 1 \mathrm{H}_{(I+I I)}\right), 7.33-7.05(\mathrm{~m}$, $\left.4 \mathrm{H}_{(I+I I)}\right), 5.44\left(\mathrm{dd}, 1 \mathrm{H}_{(I I)}, J=7.6,6.1 \mathrm{~Hz}\right), 5.22\left(\mathrm{dd}, 1 \mathrm{H}_{(I)}, J=7.8,5.8 \mathrm{~Hz}\right), 3.99\left(\mathrm{t}, 1 \mathrm{H}_{(I)}\right), 3.91(\mathrm{~s}$, $\left.3 \mathrm{H}_{(I+I I)}\right), 3.77\left(\mathrm{t}, 1 \mathrm{H}_{(I I)}, J=6.1 \mathrm{~Hz}\right), 2.75-2.54\left(\mathrm{~m}, 1 \mathrm{H}_{(I+I I)}\right), 1.05\left(\mathrm{~m}, 3 \mathrm{H}_{(I+I I)}\right)$.
${ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 202.7,202.3,152.4,134.6,134.6,128.2,128.1,127.6,127.0$, $126.6,126.5,126.3,125.0,124.9,124.7,53.5,53.4,53.3,53.0,51.8,49.9,10.2,10.0$.

Following the general procedure A, N, O-acetal 1b ($49 \mathrm{mg}, 0.20 \mathrm{mmol}$), L3b ($25 \mathrm{mg}, 0.04 \mathrm{mmol}$), freshly distilled hexanal ($60 \mathrm{mg}, 0.60 \mathrm{mmol}$), anhydrous p-toluensulfonic acid ($7 \mathrm{mg}, 0.04 \mathrm{mmol}$), toluene (0.80 mL) were allowed to react at $0{ }^{\circ} \mathrm{C}$ for 16 h . Subsequent flash chromatography (7 hexanes $/ 3 \mathrm{Et}_{2} \mathrm{O}, \mathrm{R}_{\mathrm{f}}=0.25$) gave colourless oil ($51 \mathrm{mg}, 85 \%$) as inseparable mixture of 3ba-syn (I) and 3ba-anti(II).
${ }^{1} \mathrm{H}$ NMR ($\left.250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.54\left(\mathrm{~d}, 1 \mathrm{H}_{(I I}, J=2.9 \mathrm{~Hz}\right), 9.44\left(\mathrm{~d}, 1 \mathrm{H}_{(I)}, J=4.6 \mathrm{~Hz}\right), 7.58-7.37(\mathrm{~m}$, $\left.1 \mathrm{H}_{(I+I I)}\right), 7.29-7.16\left(\mathrm{~m}, 1 \mathrm{H}_{(I+I I)}\right), 7.09\left(\mathrm{~d}, 2 \mathrm{H}_{(I+I I)}, J=4.0 \mathrm{~Hz}\right), 6.65-6.50\left(\mathrm{~m}, 1 \mathrm{H}_{(I+I I)}\right), 6.08(\mathrm{dd}$, $1 \mathrm{H}_{(I+I I)}, J=9.5,6.0 \mathrm{~Hz}$), $5.31\left(\mathrm{dd}, 1 \mathrm{H}_{(I+I I)}, J=7.9,6.0 \mathrm{~Hz}\right), 4.36-4.10\left(\mathrm{~m}_{(I+I I)}, 2 \mathrm{H}\right), 2.53-2.39\left(\mathrm{~m}_{(I I)}\right.$, $1 \mathrm{H}), 2.39-2.22\left(\mathrm{~m}_{(I)}, 1 \mathrm{H}\right), 1.81-1.46\left(\mathrm{~m}_{(I+I I)}, 2 \mathrm{H}\right), 1.39-1.05\left(\mathrm{~m}_{(I+I I)}, 7 \mathrm{H}\right), 0.84\left(3 \mathrm{H}_{(I+I I}, \mathrm{t}, J=6.8\right.$ Hz).
${ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 202.8_{(I+I I)}, 154.4_{(I+I I)}, 134.4,128.1,128.0,127.2,126.8,126.5$, $126.4,125.3,124.8,124.8,62.6,62.5,56.7_{(I I)}, 56.0_{(I)}, 52.1_{(I I)}, 52.1_{(I)}, 29.5_{(I+I I)}, 25.3_{(I)}, 25.3_{(I I)}$, $22.8_{(I+I I)}, 14.5_{(I+I I)}, 13.9_{(I+I)}$.

HPLC analysis: Daicel Chiralcel AD-H column (hexane- i-PrOH, 98:2) flow rate $1.0 \mathrm{ml} / \mathrm{min} ; 220$ $\mathrm{nm} ; \mathbf{3 b a}-$ syn $t_{\mathrm{R}}($ minor $)=11.2 \mathrm{~min}, t_{\mathrm{R}}($ major $)=13.2 \mathrm{~min} ; 83 \%$ ee; $\mathbf{3 b a}$-anti $t_{\mathrm{R}}($ minor $)=10.3 \mathrm{~min}$, t_{R} (major) $=10.9 \mathrm{~min} ; 76 \%$ ee

(S)-Benzyl 2-(2-oxoethyl)quinoline-1(2H)-carboxylate (3cb)

Following the general procedure A, N, O-acetal $\mathbf{1 c}(62 \mathrm{mg}, 0.20 \mathrm{mmol})$, L3b (25 $\mathrm{mg}, 0.04 \mathrm{mmol}$), acetaldehyde ($26 \mathrm{mg}, 0.60 \mathrm{mmol}$), anhydrous p-toluensulfonic acid ($7 \mathrm{mg}, 0.04$ $\mathrm{mmol})$, toluene $(0.80 \mathrm{~mL})$ were allowed to react at $0^{\circ} \mathrm{C}$ for 16 h . Subsequent flash chromatography (7 hexanes $/ 3 \mathrm{Et}_{2} \mathrm{O}, \mathrm{R}_{\mathrm{f}}=0.18$) gave a colourless oil ($44 \mathrm{mg}, 72 \%$).
${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.67(\mathrm{t}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz}$, $), 7.55(\mathrm{~d}, 1 \mathrm{H}, J=5.9 \mathrm{~Hz}), 7.42-7.31(\mathrm{~m}$, $5 \mathrm{H}), 7.26-7.17$ (m, 1H), 7.09 (d, 2H, $J=4.2 \mathrm{~Hz}$), 6.52 (d, $J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{dd}, 1 \mathrm{H}, J=9.5$, $6.0 \mathrm{~Hz}), 5.58(\mathrm{dd}, 1 \mathrm{H}, J=6.5,6.5 \mathrm{~Hz}), 5.30(\mathrm{~d}, 1 \mathrm{H}, J=12.3 \mathrm{~Hz}), 5.20(\mathrm{~d}, 1 \mathrm{H}, J=12.3 \mathrm{~Hz}), 2.61-$ 2.54 (m, 2H).
${ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 199.7,154.0,136.0,133.9,128.7,128.4,128.2,128.1,127.9$, 126.9, 126.6, 126.0, 124.9, 124.8, 68.2, 48.5, 47.5.

HRMS (ESI) $\mathrm{m} / \mathrm{z}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$Calcd for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{NO}_{3} \mathrm{Na} 330.1106$, found 330.1105 .

Following the general procedure A, N, O-acetal $\mathbf{1 c}(62 \mathrm{mg}, 0.20 \mathrm{mmol})$, $\mathbf{L 3 b}(25 \mathrm{mg}, 0.04 \mathrm{mmol})$, propionaldehyde ($35 \mathrm{mg}, 0.60 \mathrm{mmol}$), anhydrous p-toluensulfonic acid ($7 \mathrm{mg}, 0.04 \mathrm{mmol}$) and toluene (0.80 mL) were allowed to react at $0^{\circ} \mathrm{C}$ for 13 h . Subsequent preparative TLC (7 hexanes $/ 3$ $\mathrm{Et}_{2} \mathrm{O}, 4$ runs, $\mathrm{R}_{\mathrm{f}}=0.67$) afforded a colourless oil as a mixture of $\mathbf{3 c d}-\operatorname{syn}(I)$ and $\mathbf{3 c d}-$ anti(II) $(55 \mathrm{mg}$, 85\%).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.63\left(\mathrm{~d}, 1 \mathrm{H}_{(I I}, J=1.5 \mathrm{~Hz}\right), 9.52\left(\mathrm{~d}, 1 \mathrm{H}_{(I)}, J=2.8 \mathrm{~Hz}\right), 7.62-7.46$ $\left(\mathrm{m}, 1 \mathrm{H}_{(I+I I)}\right), 7.43-7.17\left(\mathrm{~m}, 6 \mathrm{H}_{(I+I I)}\right), 7.09\left(\mathrm{~d}, 2 \mathrm{H}_{(I+I I)}, J=4.9 \mathrm{~Hz}\right), 6.64-6.51\left(\mathrm{~m}, 1 \mathrm{H}_{(I+I I)}\right), 6.13$ $\left(\mathrm{dd}, 1 \mathrm{H}_{(I I}, J=9.6,5.9 \mathrm{~Hz}\right), 6.04\left(\mathrm{dd}, 1 \mathrm{H}_{(I)}, J=9.6,6.0 \mathrm{~Hz}\right), 5.38-5.14\left(\mathrm{~m}, 3 \mathrm{H}_{(I+I I)}\right), 2.62-2.45$ $\left(\mathrm{m}, 1 \mathrm{H}_{(I+I I)}\right), 1.07\left(\mathrm{~d}, 3 \mathrm{H}_{(I)}, J=7.1 \mathrm{~Hz}\right), 1.04\left(\mathrm{~d}, 3 \mathrm{H}_{(I I}, J=7.2 \mathrm{~Hz}\right)$.
${ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 202.5,202.2,154.5,154.3,136.0,135.9,134.6,128.7,128.4$, $128.1,128.0,127.4,127.3,127.2,127.0,126.6,126.5,126.3,126.0,125.0,124.9,124.8,68.3,68.2$, 53.3, 53.0, 51.8, 49.9, 10.2, 10.0.

Benzyl 4-(1-oxopropan-2-yl)quinoline-1(4H)-carboxylate (4cd-syn +anti)
From the above preparative TLC ($\mathrm{R}_{\mathrm{f}}=0.75$) was collected a colourless oil as mixture of $\mathbf{4 c d}$-syn and $\mathbf{4 c d}$-anti ($5 \mathrm{mg}, 7 \%$). Major diastereomer (I), minor diastereomer
(II).
${ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.69\left(\mathrm{~s}, 1 \mathrm{H}_{(I+I I)}\right), 8.05-7.96\left(\mathrm{~m}, 1 \mathrm{H}_{(I+I I)}\right), 7.46-7.02\left(\mathrm{~m}, 9 \mathrm{H}_{(I+I I)}\right)$, $5.41\left(\mathrm{dd}, 1 \mathrm{H}_{(I I}, J=7.6,6.1 \mathrm{~Hz}\right), 5.31\left(\mathrm{~s}, 2 \mathrm{H}_{(I+I I)}\right), 5.19\left(\mathrm{dd}, 1 \mathrm{H}_{(I)}, J=7.8,5.8 \mathrm{~Hz}\right), 4.01-3.94(\mathrm{~m}$, $\left.1 \mathrm{H}_{(I)}\right), 3.76\left(\mathrm{t}, 1 \mathrm{H}_{(I I)}, J=6.0 \mathrm{~Hz}\right), 2.72-2.55\left(\mathrm{~m}, 1 \mathrm{H}_{(I+I I)}\right), 1.01\left(\mathrm{~d}, 3 \mathrm{H}_{(I+I I)}, J=7.2 \mathrm{~Hz}\right)$.
${ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 203.9,203.8,152.4,137.2,135.9,129.0,128.8,128.7,128.6$, $128.5,128.3,128.3,128.3,128.1,127.9,127.2,127.0,125.4,125.2,121.8,111.4,109.2,68.3,68.3$, 53.7, 53.3, 39.4, 38.3, 31.1, 29.8, 10.9, 8.9.

(R)-Ethyl 6-bromo-2-((R)-1-oxohexan-2-yl)quinoline-1 $\mathbf{(2 H}$)-carboxylate and (S)-ethyl 6-bromo-2-((R)-1-oxohexan-2-yl)quinoline-

1(2H)-carboxylate (3da-syn + anti)

Following the general procedure A, N, O-acetal $\mathbf{1 d}(65 \mathrm{mg}, 0.20 \mathrm{mmol})$, L3b ($25 \mathrm{mg}, 0.04 \mathrm{mmol}$), freshly distilled hexanal ($60 \mathrm{mg}, 0.60 \mathrm{mmol}$), anhydrous p-toluensulfonic acid ($7 \mathrm{mg}, 0.04 \mathrm{mmol}$), toluene (0.80 mL) were allowed to react at room temperature for 3 days. Subsequent flash chromatography (8 hexanes $/ 2 \mathrm{Et}_{2} \mathrm{O}, \mathrm{R}_{\mathrm{f}}=0.21$) gave amorphous white solid ($61 \mathrm{mg}, 80 \%$) as a mixture of 3da-syn(I) and 3da-anti(II).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.56\left(\mathrm{~d}, 1 \mathrm{H}_{(I)}, J=2.7 \mathrm{~Hz}\right), 9.45\left(\mathrm{~d}, 1 \mathrm{H}_{(I I)}, J=4.6 \mathrm{~Hz}\right), 7.48-7.29$ $\left(\mathrm{m}, 2 \mathrm{H}_{(I+I I)}\right), 7.25-7.20\left(\mathrm{~m}, 1 \mathrm{H}_{(I+I I)}\right), 6.56-6.42\left(\mathrm{~m}, 1 \mathrm{H}_{(I+I I)}\right), 6.14\left(\mathrm{dd}, 1 \mathrm{H}_{(I I)}, J=9.5,6.0 \mathrm{~Hz}\right), 6.13$ $\left(\mathrm{dd}, 1 \mathrm{H}_{(I)}, J=9.5,6.0 \mathrm{~Hz}\right), 5.35-5.25\left(\mathrm{~m}, 1 \mathrm{H}_{(I+I I)}\right), 4.38-4.10\left(\mathrm{~m}, 2 \mathrm{H}_{(I+I I)}\right), 2.51-2.41\left(\mathrm{~m}, 1 \mathrm{H}_{(I)}\right)$, $2.36-2.22\left(\mathrm{~m}, 1 \mathrm{H}_{(I I}\right), 1.82-1.62\left(\mathrm{~m}, 1 \mathrm{H}_{(I+I I)}\right), 1.58-1.44\left(\mathrm{~m}, 1 \mathrm{H}_{(I+I I)}\right), 1.35-1.04\left(\mathrm{~m}_{(I+I I)}, 7 \mathrm{H}\right)$, $0.84\left(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}_{(I+I I)}\right)$.
${ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(202.5,154.0,133.4,130.8,130.7,129.1,129.0,128.9,128.6$, $127.8,126.8,126.4,125.7,125.3,117.73,117.68)_{(I+I I)}, 62_{1} .82_{(I)}, 62_{17} 7_{(I I}, 56.6_{(I I}, 56.0_{(I)}, 52.1_{(I I)}$, $52.0_{(I)}, 29.5_{(I+I I)}, 25.3_{(I+I I)}, 22.7_{(I+I I}, 14.51_{(I I)}, 14.46_{(I)}, 13.4_{(I+I I)}$.

HPLC analysis: Daicel Chiralcel AD-H column (hexane- i-PrOH, 97:3) flow rate $1.0 \mathrm{ml} / \mathrm{min} ; 220$ nm ; 3da-syn t_{R} (major) $=7.8 \mathrm{~min}, t \mathrm{R}$ (minor) $=8.8 \mathrm{~min}$; 99.2\%; 3da-anti t_{R} (major) $=7.0 \mathrm{~min}, t_{\mathrm{R}}$ $(\operatorname{minor})=8.2 \mathrm{~min} ; 91.0 \%$.

(R)-Ethyl yl)quinoline- $1(2 H)$-carboxylate and (S)-ethyl 6-nitro-2-((R)-1-oxopropan-2-yl)quinoline-1(2H)-

carboxylate (3ed-syn+anti)

Following the general procedure A, N,O-acetal $\mathbf{1 e}(59 \mathrm{mg}, 0.20 \mathrm{mmol})$, L3b ($25 \mathrm{mg}, 0.04 \mathrm{mmol}$), propionaldehyde ($35 \mathrm{mg}, 0.60 \mathrm{mmol}$), anhydrous p-toluensulfonic acid ($7 \mathrm{mg}, 0.04 \mathrm{mmol}$), toluene $(0.80 \mathrm{~mL}) \mathrm{r}$ were allowed to react at room temperature for 29 h . Subsequent flash chromatography (6 hexanes $/ 4 \mathrm{Et}_{2} \mathrm{O}, \mathrm{R}_{\mathrm{f}}=0.15$) gave a green oil as inseparable mixture of 3ed-syn(I) and 3ed-anti(II) (44 $\mathrm{mg}, 72 \%$).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.67\left(\mathrm{~d}, 1 \mathrm{H}_{(I I}, J=1.3 \mathrm{~Hz}\right), 9.55\left(\mathrm{~d}, 1 \mathrm{H}_{(I)}, J=2.7 \mathrm{~Hz}\right), 8.14-8.05$ $\left(\mathrm{m}, 1 \mathrm{H}_{(I+I I)}\right), 7.98\left(\mathrm{~d}, 1 \mathrm{H}_{(I+I I)}, J=2.6 \mathrm{~Hz}\right), 7.74\left(\mathrm{dd}, 1 \mathrm{H}_{(I+I I)}, J=9.0,7.0 \mathrm{~Hz},\right), 6.65\left(\mathrm{~m}, 1 \mathrm{H}_{(I+I I)}\right), 6.28$ $\left(\mathrm{dd}, 1 \mathrm{H}_{(I I}, J=9.6,6.0 \mathrm{~Hz}\right), 6.16\left(\mathrm{dd}, 1 \mathrm{H}_{(I)}, J=9.7,6.0 \mathrm{~Hz}\right), 5.47-5.36\left(\mathrm{~m}, 1 \mathrm{H}_{(I+I I}\right), 4.38-4.23$ $\left(\mathrm{m}, 2 \mathrm{H}_{(I+I I)}\right), 2.65-2.46\left(\mathrm{~m}, 1 \mathrm{H}_{(I+I I)}\right), 1.34\left(\mathrm{t}, 3 \mathrm{H}_{(I I}, J=7.1 \mathrm{~Hz}\right), 1.33\left(\mathrm{t}, 3 \mathrm{H}_{(I)}, J=7.1 \mathrm{~Hz}\right) 1.09(\mathrm{t}$, $\left.3 \mathrm{H}_{(I I}, J=6.3 \mathrm{~Hz}\right), 1.04\left(\mathrm{~d}, 3 \mathrm{H}_{(I)}, J=7.2 \mathrm{~Hz}\right)$.
${ }^{13} \mathrm{C}$ NMR (62.5 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 201.8_{(I)},{201.4_{(I I}},(154.0,153.7)_{(I+I I)},(144.0,143.9)_{(I+I I)},(140.9$, $140.8)_{(I+I I)}, 129^{7_{(I)}}, 128.0_{(I)}, 127.5_{(I I)}, 127_{(I)}, 125_{(I)}, 125.1_{(I I)}, 124_{(I)}, 124_{(I I)}, 123.3_{(I)}, 123_{1} 2_{(I I)}$, $121.8_{(I+I I)},\left(63.43,63.39_{(I+I I)}, 53.4_{(I)}, 53.3_{(I I)}, 52.3_{(I I)}, 50.8_{(I)}, 14_{(I+I I)}, 9.8_{(I)}, 9.7_{(I)}\right.$.

yl)quinoline-1 (2H)-carboxylate (3fa-syn+anti)
Following the general procedure A, N,O-acetal $\mathbf{1 e}(45 \mathrm{mg}, 0.20 \mathrm{mmol})$, L3b ($25 \mathrm{mg}, 0.04 \mathrm{mmol}$), hexanal ($60 \mathrm{mg}, 0.60 \mathrm{mmol}$), anhydrous p-toluensulfonic acid ($7 \mathrm{mg}, 0.04 \mathrm{mmol}$), toluene (0.80 mL) were allowed to react at room temperature for 2 d . Subsequent flash chromatography (7 hexanes $/ 3 \mathrm{Et}_{2} \mathrm{O}, \mathrm{R}_{\mathrm{f}}=0.18$) gave an oil as inseparable mixture of $\mathbf{3 f a}$-syn (I) and 3fa-anti(II) (35 mg , 56\%).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.53\left(\mathrm{~d}, 1 \mathrm{H}_{(I I)}, J=2.8 \mathrm{~Hz}\right), 9.40\left(\mathrm{~d}, 1 \mathrm{H}_{(I)}, J=4.5 \mathrm{~Hz}\right), 7.3(\mathrm{bs}$, $\left.1 \mathrm{H}_{(I+I I}\right), 6.79\left(\mathrm{dd}, 1 \mathrm{H}_{(I+I I)}, J=8.7,2.7 \mathrm{~Hz}\right.$), $6.62\left(\mathrm{~d}, 1 \mathrm{H}_{(I+I I)}, J=2.7 \mathrm{~Hz}\right), 6.57-6.46\left(\mathrm{~m}, 1 \mathrm{H}_{(I+I I)}\right)$, $6.11\left(\mathrm{dd}, 1 \mathrm{H}_{(I+I I)}, J=9.4,6.0 \mathrm{~Hz}\right), 5.29\left(\mathrm{bs}, 1 \mathrm{H}_{(I+I I)}\right), 4.36-4.07\left(\mathrm{~m}, 2 \mathrm{H}_{(I+I I)}\right), 3.79\left(\mathrm{~s}, 3 \mathrm{H}_{(I+I I)}\right), 2.55$ $-2.41\left(\mathrm{~m}, 1 \mathrm{H}_{(I I)}\right), 2.38-2.22\left(\mathrm{~m}, 1 \mathrm{H}_{(I)}\right), 1.81-1.47\left(\mathrm{~m}, 2 \mathrm{H}_{(I+I I)}\right), 1.40-1.07\left(\mathrm{~m}, 5 \mathrm{H}_{(I+I I)}\right), 0.84(\mathrm{t}, J$ $\left.=6.8 \mathrm{~Hz}, 3 \mathrm{H}_{(I+I I)}\right)$.
${ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 202.9,156.7,142.0,128.3,127.8,127.3,126.8,126.5,120.0$, $113.7,111.1,62.5,56.5,55.9,55.5,52.3,29.9,29.5,25.4,25.4,22.8,14.6,14.5,13.9$.

(R)-Ethyl

6-methyl-2-((R)-1-oxohexan-2-yl)quinoline-1(2H)-carboxylate and (R)-ethyl 6-methyl-2-((S)-1-oxohexan-2-yl)quinoline-1(2H)-

carboxylate (3ga-syn+anti)

Following the general procedure B, N,O-acetal $1 \mathbf{g}(52 \mathrm{mg}, 0.20 \mathrm{mmol})$, L4b ($25 \mathrm{mg}, 0.04 \mathrm{mmol}$), hexanal ($60 \mathrm{mg}, 0.60 \mathrm{mmol}$), anhydrous p-toluensulfonic acid ($7 \mathrm{mg}, 0.04 \mathrm{mmol}$), toluene (0.80 $\mathrm{mL}), \mathrm{MeOH}(0.40 \mathrm{~mL})$ and sodium borohydride ($45 \mathrm{mg}, 1.20 \mathrm{mmol}$) were allowed to react at room temperature for 17 h . Subsequent flash chromatography (8 hexanes $/ 2 \mathrm{Et}_{2} \mathrm{O}, \mathrm{R}_{\mathrm{f}}=0.20$) afforded an oil ($55 \mathrm{mg}, 87 \%$) as mixture of 3ga-syn(I) and 3ga-anti (II).
${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.53\left(\mathrm{~d}, 1 \mathrm{H}_{(I I}, J=2.9 \mathrm{~Hz}\right), 9.42\left(\mathrm{~d}, 1 \mathrm{H}_{(I)}, J=4.6 \mathrm{~Hz}\right), 7.43-7.27$ $\left(\mathrm{m}, 1 \mathrm{H}_{(I+I I)}\right), 7.04\left(\mathrm{dd}, 1 \mathrm{H}_{(I+I I)}, J=8.3,1.5 \mathrm{~Hz}\right), 6.90\left(\mathrm{~d}, 1 \mathrm{H}_{(I+I I)}, J=1.5 \mathrm{~Hz}\right), 6.59-6.47(\mathrm{~m}$, $\left.1 \mathrm{H}_{(I+I I)}\right), 6.06\left(\mathrm{dd}, 1 \mathrm{H}_{(I+I I)}, J=9.5,6.0 \mathrm{~Hz}\right), 5.29\left(\mathrm{dd}, 1 \mathrm{H}_{(I+I I}, J=7.8,6.0 \mathrm{~Hz}\right), 4.37-4.12(\mathrm{~m}$, $\left.2 \mathrm{H}_{(I+I I)}\right), 2.30\left(\mathrm{~s}, 3 \mathrm{H}_{(I+I I)}, J=9.1 \mathrm{~Hz}\right), 1.80-1.68\left(\mathrm{~m}, 1 \mathrm{H}_{(I+I I)}\right), 1.60-1.46\left(\mathrm{~m}, 1 \mathrm{H}_{(I+I I)}\right), 1.36-1.11$ $\left(\mathrm{m}, 9 \mathrm{H}_{(I+I I)}\right), 0.84\left(\mathrm{t}, 3 \mathrm{H}_{(I+I I)}, J=6.9 \mathrm{~Hz}\right)$.
${ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 202.8,154.6,134.5,128.8,127.1,126.9,126.8,126.5,125.0,62.5$, 56.7, 56.0, 52.2, 29.8, 29.5, 25.4, 22.8, 20.9, 14.5, 13.9.

HPLC analysis: Daicel Chiralcel AD-H column (hexane- i - $\operatorname{PrOH}, 98: 2$) flow rate $1.0 \mathrm{ml} / \mathrm{min} ; 220$ $\mathrm{nm} ; 3 \mathrm{ga}-$ syn $t_{\mathrm{R}}($ minor $)=10.3 \mathrm{~min}, t_{\mathrm{R}}($ major $)=11.0 \mathrm{~min} ; 99 \% \mathrm{ee} ; \mathbf{3 g a}$-anti $t_{\mathrm{R}}($ minor $)=9.4 \mathrm{~min}, t_{\mathrm{R}}$ (major) $=9.9 \mathrm{~min} ; 99 \%$ ee.

(S)-Methyl 2-(2-hydroxyethyl)quinoline-1(2H)-carboxylate (5ab-syn)

Following the general procedure B, N, O-acetal 1a ($47 \mathrm{mg}, 0.20 \mathrm{mmol}$), L3b (25 $\mathrm{mg}, 0.04 \mathrm{mmol}$), acetaldehyde ($26 \mathrm{mg}, 0.60 \mathrm{mmol}$), anhydrous p-toluensulfonic $\operatorname{acid}(7 \mathrm{mg}, 0.04 \mathrm{mmol})$, toluene $(0.80 \mathrm{~mL}), \mathrm{MeOH}(0.40 \mathrm{~mL})$ and sodium borohydride $(45 \mathrm{mg}$, 1.20 mmol) were allowed to react at $0{ }^{\circ} \mathrm{C}$ for 3 h . Subsequent flash chromatography (6 hexanes $/ 4$ AcOEt, $\mathrm{R}_{\mathrm{f}}=0.21$) gave a yellowish oil ($35 \mathrm{mg}, 75 \%$).
${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.39(\mathrm{~d}, 1 \mathrm{H}, J=6.5 \mathrm{~Hz}$), $7.24-7.16(\mathrm{~m}, 1 \mathrm{H}), 7.09(\mathrm{~d}, 2 \mathrm{H}, J=4.1$ $\mathrm{Hz}), 6.48(\mathrm{~d}, 1 \mathrm{H}, J=9.6 \mathrm{~Hz}), 6.05(\mathrm{dd}, 1 \mathrm{H}, J=9.6,5.9 \mathrm{~Hz}$), $5.20-5.09(\mathrm{~m}, 1 \mathrm{H}), 3.83$ (s, 3H), 3.66 -3.51 (m, 2H), $3.32(\mathrm{~s}, 1 \mathrm{H}), 1.80-1.63(\mathrm{~m}, 1 \mathrm{H}), 1.58-1.41(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.4,133.4,130.0,127.6,127.2,126.5,124.9,124.8,124.6,58.1$, 53.6, 50.0, 34.8.

HRMS (ESI) $\mathrm{m} / \mathrm{z}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$Calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}_{3} \mathrm{Na} 256.0950$, found 256.0954 .
HPLC analysis: Daicel Chiralcel AD-H column (hexane- i-PrOH, 92:8) flow rate $0.5 \mathrm{ml} / \mathrm{min} ; 220$ $\mathrm{nm} ; t_{\mathrm{R}}($ major $)=27.8 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=32.5 \mathrm{~min} ; 15.8 \%$ ee.
$[\alpha]^{20}{ }_{\mathrm{D}}+73.0\left(c 0.66, \mathrm{CHCl}_{3}\right)$.

(R)-Methyl (5ac-syn)

Following the general procedure B, N, O-acetal 1a ($47 \mathrm{mg}, 0.20 \mathrm{mmol}$), L3b (25 $\mathrm{mg}, 0.04 \mathrm{mmol}$), phenylacetaldehyde (90% purity, $80 \mathrm{mg}, 0.60 \mathrm{mmol}$), anhydrous p-toluensulfonic acid ($7 \mathrm{mg}, 0.04 \mathrm{mmol}$), toluene (0.80 mL), $\mathrm{MeOH}(0.40 \mathrm{~mL}$) and sodium borohydride (45 mg , 1.20 mmol) were allowed to react at $0^{\circ} \mathrm{C}$ for 1.5 h . Subsequent flash chromatography (7 hexanes $/ 3$ $\mathrm{AcOEt})$ gave an oil ($59 \mathrm{mg}, 95 \%$) as a mixture of all regio- and diastereomers. The separation of 5ac-syn from the mixture of the isomers was accomplished by means of a preparative TLC (7 hexanes $/ 3$ AcOEt, 4 runs, $\mathrm{R}_{\mathrm{f}}=0.52$) to afford a white semisolid ($36 \mathrm{mg}, 58 \%$).
${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.49-7.09(\mathrm{~m}, 9 \mathrm{H}), 6.41(\mathrm{~d}, 1 \mathrm{H}, J=9.6 \mathrm{~Hz}), 5.65(\mathrm{dd}, 1 \mathrm{H}, J=9.6$, $5.9 \mathrm{~Hz}), 5.38(\mathrm{dd}, 1 \mathrm{H}, J=11.9,5.9 \mathrm{~Hz}), 3.99(\mathrm{~d}, 1 \mathrm{H}, J=9.2 \mathrm{~Hz}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{t}, 1 \mathrm{H}, J=10.1$ Hz), $2.70(\mathrm{~d}, 1 \mathrm{H}, J=10.8 \mathrm{~Hz})$.
${ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.4,139.3,129.5,129.2,129.0,128.6,128.1,127.7,127.3$, 126.6, 125.1, 124.9, 124.7, 63.6, 53.7, 53.4, 49.9.

HRMS (ESI) m/z [M + Na $\left.{ }^{+}\right]$Calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}_{3} \mathrm{Na} 332.1263$, found 332.1258
HPLC analysis: Daicel Chiralcel AD-H column (hexane- i-PrOH, 95:5) flow rate $1.0 \mathrm{ml} / \mathrm{min} ; 220$ $\mathrm{nm} ; t_{\mathrm{R}}($ major $)=26.7 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=42.8 \mathrm{~min} ; 95.8 \%$ ee.
$[\alpha]^{20}{ }_{\mathrm{D}}+359.7\left(c 0.99, \mathrm{CHCl}_{3}\right)$

(S)-Methyl

2-((R)-2-hydroxy-1-phenylethyl)quinoline-1(2H)-carboxylate (5ac-anti)
From the above preparative $\operatorname{TLC}\left(\mathrm{R}_{\mathrm{f}}=0.47\right)$ was collected the title compound as a white semisolid ($14 \mathrm{mg}, 25 \%$).
${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.41-6.80(\mathrm{~m}, 9 \mathrm{H}), 6.48(\mathrm{~d}, 1 \mathrm{H}, J=9.7 \mathrm{~Hz}), 6.13(\mathrm{dd}, 1 \mathrm{H}, J=9.6$, 5.9 Hz), 5.39 (bs, 1H), $4.01-3.77$ (m, 2H), $3.65(\mathrm{~s}, 3 \mathrm{H}), 2.88(\mathrm{dd}, 1 \mathrm{H}, J=14.1,6.8 \mathrm{~Hz})$.
${ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \quad 153.3,138.0,135.0,134.8,129.0,128.2,127.9,127.5,127.2$, 126.2, 125.3, 124.5, 62.7, 53.8, 53.2, 52.3.

HRMS (ESI) $\mathrm{m} / \mathrm{z}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$Calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}_{3} \mathrm{Na} 332.1263$, found 332.1260
HPLC analysis: Daicel Chiralcel AD-H column (hexane- i-PrOH, 95:5) flow rate $1.0 \mathrm{ml} / \mathrm{min} ; 220$
$\mathrm{nm} ; t_{\mathrm{R}}($ minor $)=30.3 \mathrm{~min}, t_{\mathrm{R}}($ major $)=46.4 \mathrm{~min} ; 89.6 \%$ ee.
$[\alpha]^{20}{ }_{\mathrm{D}}-261.1\left(c 0.46, \mathrm{CHCl}_{3}\right)$

(R)-Methyl

2-((R)-1-hydroxypropan-2-yl)quinoline-1 $\mathbf{(2 H}$)-carboxylate and (R)-methyl 2-((S)-1-hydroxypropan-2-yl)quinoline-1(2H)carboxylate (Syn-5ad and Anti-5ad)

Following the general procedure $\mathrm{B}, \mathrm{N}, \mathrm{O}$-acetal $\mathbf{1 a}(47 \mathrm{mg}, 0.20 \mathrm{mmol})$, L3b ($25 \mathrm{mg}, 0.04 \mathrm{mmol}$), propionaldehyde ($35 \mathrm{mg}, 0.60 \mathrm{mmol}$), anhydrous p-toluensulfonic acid ($7 \mathrm{mg}, 0.04 \mathrm{mmol}$), toluene $(0.80 \mathrm{~mL}), \mathrm{MeOH}(0.40 \mathrm{~mL})$ and sodium borohydride $(45 \mathrm{mg}, 1.20 \mathrm{mmol})$ were allowed to react at $0{ }^{\circ} \mathrm{C}$ for 6 h . The reaction crude was subjected to flash chromatography (7 hexanes $/ 3 \mathrm{Et}_{2} \mathrm{O}, \mathrm{R}_{\mathrm{f}}=0.18$) to give a colourless oil ($46 \mathrm{mg}, 93 \%$) as a mixture of all isomers. Subsequent preparative TLC (2 hexanes $/ 1 \mathrm{AcOEt} / 2$ diisopropyl ether, 5 runs, $\mathrm{R}_{\mathrm{f}}=0.41$) allowed the separation of $\mathbf{5 a d}-\operatorname{syn}(I)$ and 5ad-anti(II) as inseparable mixture ($40 \mathrm{mg}, 81 \%$).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35\left(\mathrm{~d}, 1 \mathrm{H}_{(I+I I)}, J=7.0 \mathrm{~Hz}\right), 7.24-7.02\left(\mathrm{~m}, 3 \mathrm{H}_{(I+I I)}\right), 6.56\left(\mathrm{~d}, 1 \mathrm{H}_{(I I}\right)$, $J=10.0 \mathrm{~Hz}), 6.52\left(\mathrm{~d}, 1 \mathrm{H}_{(I)}, J=9.7 \mathrm{~Hz}\right), 6.16\left(\mathrm{dd}, 1 \mathrm{H}_{(I)}, J=9.6,6.0 \mathrm{~Hz}\right), 5.98\left(\mathrm{dd}, 1 \mathrm{H}_{(I I}, J=9.7\right.$, $5.8 \mathrm{~Hz}), 5.19\left(\mathrm{bs}, 1 \mathrm{H}_{(I I)}\right), 4.82\left(\mathrm{dd}, 1 \mathrm{H}_{(I)}, J=10.6,6.0 \mathrm{~Hz}\right), 3.82\left(\mathrm{~s}, 3 \mathrm{H}_{(I)}\right), 3.81\left(\mathrm{~s}, 3 \mathrm{H}_{(I I)}\right), 3.70(\mathrm{~d}$, $\left.1 \mathrm{H}_{(I)}, J=11.9 \mathrm{~Hz}\right), 3.51-3.41\left(\mathrm{~m}, 2 \mathrm{H}_{(I I}\right), 3.33\left(\mathrm{t}, 1 \mathrm{H}_{(I)}, J=9.7 \mathrm{~Hz}\right), 3.08(\mathrm{bs}, 1 \mathrm{H}), 1.90-1.78(\mathrm{~m}$, $\left.1 \mathrm{H}_{(I I)}\right), 1.67-1.53\left(\mathrm{~m}, 1 \mathrm{H}_{(I)}\right), 1.04\left(\mathrm{~d}, 3 \mathrm{H}_{(I)}, J=6.9 \mathrm{~Hz}\right), 0.55\left(\mathrm{~d}, 3 \mathrm{H}_{(I I}, J=6.5 \mathrm{~Hz}\right)$.
${ }^{13} \mathrm{C}^{\mathrm{NMR}}\left(62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(156.4,135.6,133.9)_{(I+I I)}, 129.2_{(I)}, 128.9_{(I I)},(127.6,127.6,126.4$, $126.3,125.77)_{(I+I I}, 125.1_{(I+I I},(124.7,124.8,124.6,124.5)_{(I+I I)}, 63.9_{(I+I I)}, 54.1_{(I)}, 53.7_{(I I)}, 53.6_{(I+I I)}$, $41.3_{(I I)}, 38_{(I)}, 13.2_{(I)}, 10.8_{(I I)}$.

HPLC analysis: Daicel Chiralcel AD-H column (hexane- i-PrOH, 95:5) flow rate $1.0 \mathrm{ml} / \mathrm{min} ; 220$ $\mathrm{nm} ; \mathbf{5 a d}-\operatorname{syn} t_{\mathrm{R}}($ major $)=16.9 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=20.1 \mathrm{~min}, 98.4 \%$ ee; 5ad-anti $t_{\mathrm{R}}(\operatorname{minor})=22.6 \mathrm{~min}$, $t \mathrm{R}$ (major) $=23.5 \mathrm{~min}, 89 \%$ ee.

Methyl 4-(1-hydroxypropan-2-yl)quinoline-1(4H)-carboxylate (Syn-6ad and Anti-6ad)

From the above preparative $\operatorname{TLC}\left(\mathrm{R}_{\mathrm{f}}=0.50\right)$ was recovered a colourless oil as inseparable mixture of 4ad-syn and 4ad-anti ($3 \mathrm{mg}, 6 \%$). Major diastereomer (I), minor diastereomer (II).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.06-7.87\left(\mathrm{~m}, 1 \mathrm{H}_{(I+I I)}\right), 7.24-6.99\left(\mathrm{~m}, 4 \mathrm{H}_{(I+I I)}\right), 5.38\left(\mathrm{dd}, 1 \mathrm{H}_{(I I)}, J=\right.$ $7.5,6.2 \mathrm{~Hz}), 5.29\left(\mathrm{dd}, 1 \mathrm{H}_{(I)}, J=7.7,6.0 \mathrm{~Hz}\right), 3.87\left(\mathrm{~s}, 3 \mathrm{H}_{(I+I I)}\right), 3.68-3.44\left(\mathrm{~m}, 3 \mathrm{H}_{(I+I I)}\right), 2.01-1.80$ $\left(\mathrm{m}, 1 \mathrm{H}_{(I+I I)}\right), 0.86-0.75\left(\mathrm{~m}, 3 \mathrm{H}_{(I+I I)}\right)$.
${ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.3,137.1,130.7,129.4,128.7,127.6,127.3,126.6,126.5$, $125.1,124.9,121.7,121.6,112.7,110.8,65.7,65.2,53.6,53.4,43.5,42.5,40.2,39.7,13.4,12.2$.

(S)-Benzyl 2-(2-hydroxyethyl)quinoline-1(2H)-carboxylate (5cb)

Following the general procedure B, N, O-acetal $\mathbf{1 c}(62 \mathrm{mg}, 0.20 \mathrm{mmol})$, L3b $(25 \mathrm{mg}, 0.04 \mathrm{mmol})$, acetaldehyde ($26 \mathrm{mg}, 0.60 \mathrm{mmol}$), anhydrous p-toluensulfonic acid (7 mg , $0.04 \mathrm{mmol})$, toluene $(0.80 \mathrm{~mL}), \mathrm{MeOH}(0.40 \mathrm{~mL})$ and sodium borohydride ($45 \mathrm{mg}, 1.20 \mathrm{mmol}$) reacted at $0{ }^{\circ} \mathrm{C}$ for 17 h . Subsequent flash chromatography (7 hexanes $/ 3 \mathrm{AcOEt}, \mathrm{R}_{\mathrm{f}}=0.13$) gave a sticky white oil ($48 \mathrm{mg}, 80 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.47-7.27(\mathrm{~m}, 6 \mathrm{H}), 7.22-7.11(\mathrm{~m}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 2 \mathrm{H})$, $6.48(\mathrm{~d}, 1 \mathrm{H}, J=9.6 \mathrm{~Hz}), 6.05(\mathrm{dd}, 1 \mathrm{H}, J=9.6,5.9 \mathrm{~Hz}), 5.43-5.27(\mathrm{~m}, 1 \mathrm{H}), 5.26-5.10(\mathrm{~m}, 2 \mathrm{H})$, $3.68-3.41(\mathrm{~m}, 2 \mathrm{H}), 1.82-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.50(\mathrm{t}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.1,155.9,135.8,133.4,129.9,128.8,128.5,128.2,127.5$, 127.3, 126.5, 124.9, 124.8, 124.7, 68.4, 58.1, 50.0, 34.8.

HRMS (ESI) m/z [M + Na $\left.{ }^{+}\right]$Calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}_{3} \mathrm{Na} 332.1263$, found 332.1260
HPLC analysis: Daicel Chiralcel AD-H column (hexane- i - PrOH, 95:5) flow rate $1.0 \mathrm{ml} / \mathrm{min} ; 220$ $\mathrm{nm} ; \mathbf{5 c b} t_{\mathrm{R}}($ minor $)=29.9 \mathrm{~min}, t_{\mathrm{R}}$ (major) $=41.4 \mathrm{~min}, 24.6 \%$ ee.
$[\alpha]^{20}{ }_{\mathrm{D}}+90.1\left(c 0.68, \mathrm{CHCl}_{3}\right)$

(R)-Benzyl 2-((R)-2-hydroxy-1-phenylethyl)quinoline-1(2H)-carboxylate (5cc-syn)

Following the general procedure B, N, O-acetal 1c ($62 \mathrm{mg}, 0.20 \mathrm{mmol}$), L3b (25 $\mathrm{mg}, 0.04 \mathrm{mmol})$, phenylacetaldehyde $(90 \%, 80 \mathrm{mg}, 0.60 \mathrm{mmol})$, anhydrous p-toluensulfonic acid (7 $\mathrm{mg}, 0.04 \mathrm{mmol})$, toluene $(0.80 \mathrm{~mL}), \mathrm{MeOH}(0.40 \mathrm{~mL})$ and sodium borohydride $(45 \mathrm{mg}, 1.20 \mathrm{mmol})$ were allowed to react at $0{ }^{\circ} \mathrm{C}$ for 1.5 h . Subsequent preparative TLC (5 hexanes $/ 5 \mathrm{Et}_{2} \mathrm{O}, 5$ runs, $\mathrm{R}_{\mathrm{f}}=0.55$) gave a colourless oil ($39 \mathrm{mg}, 50 \%$). We were unable to recover compound $\mathbf{5 c c}$-anti in an analytically pure state.
${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.52-7.04(\mathrm{~m}, 14 \mathrm{H}), 6.42(\mathrm{~d}, 1 \mathrm{H}, J=9.6 \mathrm{~Hz}), 5.66(\mathrm{dd}, 1 \mathrm{H}, J=9.6$, $5.9 \mathrm{~Hz}), 5.49-5.33(\mathrm{~m}, 2 \mathrm{H}), 5.24(\mathrm{~d}, 1 \mathrm{H}, J=12.3 \mathrm{~Hz}), 3.97(\mathrm{dd}, 1 \mathrm{H}, J=11.7,5.0 \mathrm{~Hz}), 3.78-3.55$ $(\mathrm{m}, 1 \mathrm{H}), 3.30(\mathrm{bs}, 1 \mathrm{H}), 2.71(\mathrm{~d}, 1 \mathrm{H}, J=11.2 \mathrm{~Hz})$.
${ }^{13}{ }^{3}$ NMR (63 MHz, CDCl_{3}) $\delta 155.8,139.3,135.8,133.4,129.5,129.2,128.8,128.6,128.5,128.2$, $127.8,127.6,127.3,126.5,125.1,125.0,124.8,68.6,63.6,53.5,50.0$.
HRMS (ESI) $\mathrm{m} / \mathrm{z}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$Calcd for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{NO}_{3} \mathrm{Na} 408.1576$, found 408.1571 .

HPLC analysis: Daicel Chiralcel AD-H column (hexane- $i-\mathrm{PrOH}, 88: 22$) flow rate $1.0 \mathrm{ml} / \mathrm{min} ; 254$ $\mathrm{nm} ; t_{\mathrm{R}}($ major $)=19.7 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=24.6 \mathrm{~min} ; 95.6 \%$ ee .
$[\alpha]^{20}{ }_{\mathrm{D}}+374.4\left(c 0.73, \mathrm{CHCl}_{3}\right)$

$-\mathbf{s y n}+$ anti)
In a 10 mL round-bottom flask, a mixture of 3cd-syn and 3cd-anti ($55 \mathrm{mg}, 0.17 \mathrm{mmol}$) was dissolved in $\mathrm{MeOH}(1.13 \mathrm{~mL})$ and sodium borohydride ($13 \mathrm{mg}, 0.34 \mathrm{mmol}$) was added at $0{ }^{\circ} \mathrm{C}$. The resulting mixture was allowed to react for 30 minutes when water was added $(2.0 \mathrm{~mL})$. The aqueous phase was extracted with ethyl ether $(4 \times 5 \mathrm{~mL})$ and the combined organic layers were dried over MgSO_{4}. Removal of the solvent afforded a colourless oil as a mixture of $\mathbf{5 c d} \mathbf{- s y n}(I)$ and $\mathbf{5 c d}$-anti(II) ($52 \mathrm{mg}, 94 \%$).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.42-6.99\left(\mathrm{~m}, 18 \mathrm{H}_{(I+I I)}\right), 6.606 .49\left(\mathrm{~m}, 1 \mathrm{H}_{(I+I I)}, J=8.2 \mathrm{~Hz}\right)$,
$6.15\left(\mathrm{dd}, 1 \mathrm{H}_{(I)}, J=9.5,5.9 \mathrm{~Hz}\right), 5.98\left(\mathrm{dd}, 1 \mathrm{H}_{(I I)}, J=9.6,5.8 \mathrm{~Hz}\right), 5.43-5.11\left(\mathrm{~m}_{(I+I I)}, 5 \mathrm{H}\right), 4.84(\mathrm{dd}$, $\left.1 \mathrm{H}_{(I)}, J=10.5,6.0 \mathrm{~Hz}\right), 3.69\left(\mathrm{~d}, 1 \mathrm{H}_{(I)}, J=11.2 \mathrm{~Hz}\right), 3.46\left(\mathrm{~d}, 2 \mathrm{H}_{(I I)}, J=6.7 \mathrm{~Hz}\right), 3.33\left(\mathrm{~d}, 1 \mathrm{H}_{(I)}, J=\right.$ $11.2 \mathrm{~Hz}), 1.93-1.77\left(\mathrm{~m}, 1 \mathrm{H}_{(I I)}\right), 1.75-1.55\left(\mathrm{~m}, 1 \mathrm{H}_{(I)}\right), 1.03\left(\mathrm{~d}, 3 \mathrm{H}_{(I)}, J=6.8 \mathrm{~Hz}\right), 0.56\left(\mathrm{bs}, 3 \mathrm{H}_{(I I)}\right)$ ${ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.5,135.9,135.8,135.5,128.7,128.7,128.5,128.4,128.2,128.1$, $127.6,127.5,126.4,126.3,125.8,124.8,124.7,124.6,68.4,63.9,54.1,53.7,41.3,38.3,13.2$.

HPLC analysis: Daicel Chiralcel AD-H column (hexane- i-PrOH, 95:5) flow rate $1.0 \mathrm{ml} / \mathrm{min} ; 220$ $\mathrm{nm} ; \boldsymbol{S y n - 5 c d} t_{\mathrm{R}}($ major $)=23.5 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=30.2 \mathrm{~min} ; 59.2 \%$ ee; $\boldsymbol{A n t i}-\mathbf{5 c d} t_{\mathrm{R}}($ major $)=34.1$ $\min , t_{\mathrm{R}}($ minor $)=43.4 \mathrm{~min} ; 62.0 \%$ ee.

Following the general procedure B, N,O-acetal 1d ($65 \mathrm{mg}, 0.20 \mathrm{mmol}$), L3b ($25 \mathrm{mg}, 0.04 \mathrm{mmol}$), phenylacetaldehyde (90% purity, $80 \mathrm{mg}, 0.60 \mathrm{mmol}$), anhydrous p toluensulfonic acid ($7 \mathrm{mg}, 0.04 \mathrm{mmol}$), toluene (0.80 mL), $\mathrm{MeOH}(0.40 \mathrm{~mL})$ and sodium borohydride ($45 \mathrm{mg}, 1.20 \mathrm{mmol}$) was allowed to react at $0^{\circ} \mathrm{C}$ for 1 h . Subsequent preparative TLC (5 hexanes $/ 5 \mathrm{Et}_{2} \mathrm{O}, \mathrm{R}_{\mathrm{f}}=0.51$) provided a white solid ($31 \mathrm{mg}, 36 \%$). M.p. $=137-139^{\circ} \mathrm{C}$
${ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.43-7.20(\mathrm{~m}, 8 \mathrm{H}), 6.34(\mathrm{~d}, 1 \mathrm{H}, J=9.6 \mathrm{~Hz}), 5.70(\mathrm{dd}, 1 \mathrm{H} J=9.6$, 5.9 Hz), $5.37(\mathrm{dd}, 1 \mathrm{H}, J=11.0,5.9 \mathrm{~Hz}), 4.46-4.20(\mathrm{~m}, 2 \mathrm{H}), 3.94(\mathrm{dd}, 1 \mathrm{H}, J=11.5,5.0 \mathrm{~Hz}), 3.73-$ $3.56(\mathrm{~m}, 1 \mathrm{H}), 3.20(\mathrm{bs}, 1 \mathrm{H}), 2.68(\mathrm{~d}, 1 \mathrm{H}, J=11.2 \mathrm{~Hz}), 1.34(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz})$.
${ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.8,139.0,131.0,130.4,129.4,129.1,128.7,127.4,126.5$, 123.7, 117.8, 63.5, 63.2, 53.3, 50.1, 14.5 .

HRMS (ESI) $\mathrm{m} / \mathrm{z}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$Calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{BrNO}_{3} \mathrm{Na} 424.0524$, found 424.0529.
HPLC analysis: Daicel Chiralcel AD-H column (hexane- $i-\mathrm{PrOH}, 88: 22$) flow rate $1.0 \mathrm{ml} / \mathrm{min} ; 220$ $\mathrm{nm} ; t_{\mathrm{R}}($ major $)=11.7 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=19.3 \mathrm{~min} ; 97.7 \%$ ee.
$[\alpha]^{20}{ }_{\mathrm{D}}+420.8(c 0.61, \mathrm{MeOH})$

(S)-Ethyl 6-bromo-2-((R)-2-hydroxy-1-phenylethyl)quinoline-1(2H)carboxylate (5dc-anti)
From the above preparative $\operatorname{TLC}\left(\mathrm{R}_{\mathrm{f}}=0.45\right)$ was collected $\mathbf{5 d c}$-anti as a white amorphous solid ($7 \mathrm{mg}, 8 \%$).
${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.25-6.97(\mathrm{~m}, 8 \mathrm{H}), 6.42(\mathrm{~d}, 1 \mathrm{H}, J=9.3 \mathrm{~Hz}), 6.19(\mathrm{dd}, 1 \mathrm{H}, J=9.3$, 5.9 Hz), $5.39(\mathrm{bs}, 1 \mathrm{H}), 4.22-3.98(\mathrm{~m}, 2 \mathrm{H}), 3.98-3.80(\mathrm{~m}, 2 \mathrm{H}), 2.86(\mathrm{dd}, 1 \mathrm{H}, J=14.1,6.7 \mathrm{~Hz}), 1.20$ $(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz})$.
${ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.7,137.7,134.1,130.2,129.6,129.4,129.0,128.7,128.0$, 127.3, 126.9, 126.2, 125.1, 117.2, 62.6, 53.6, 52.3, 14.4.

HRMS (ESI) $\mathrm{m} / \mathrm{z}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$Calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{BrNO}_{3} \mathrm{Na} 424.0524$, found 424.0530 .
HPLC analysis: Daicel Chiralcel AD-H column (hexane- i - $\mathrm{PrOH}, 88: 22$) flow rate $1.0 \mathrm{ml} / \mathrm{min} ; 220$ $\mathrm{nm} ; t_{\mathrm{R}}($ minor $)=12.1 \mathrm{~min}, t_{\mathrm{R}}($ major $)=23.9 \mathrm{~min} ; 94.4 \%$ ee.
$[\alpha]^{20}{ }_{\mathrm{D}}-125.7(c 0.77, \mathrm{MeOH})$

$R)$-Ethyl 2-((R)-1-hydroxypropan-2-yl)-6-nitroquinoline- $1(2 H)$-carboxylate and (S) ethyl 2-((R)-1-hydroxypropan-2-yl)-6-

nitroquinoline- $\mathbf{1 (2 H}$)-carboxylate (5ed-syn +anti)

Following the general procedure B, N, O-acetal $\mathbf{1 e}(59 \mathrm{mg}, 0.20 \mathrm{mmol})$, L3b ($25 \mathrm{mg}, 0.04 \mathrm{mmol}$), propionaldehyde ($35 \mathrm{mg}, 0.60 \mathrm{mmol}$), anhydrous p-toluensulfonic acid ($7 \mathrm{mg}, 0.04 \mathrm{mmol}$), toluene $(0.80 \mathrm{~mL})$, $\mathrm{MeOH}(0.40 \mathrm{~mL})$ and sodium borohydride $(45 \mathrm{mg}, 1.20 \mathrm{mmol})$ reacted at $0^{\circ} \mathrm{C}$ for 30 h . Subsequent flash chromatography (6 hexanes $/ 4 \mathrm{Et}_{2} \mathrm{O}, \mathrm{R}_{\mathrm{f}}=0.20$) gave a green oil ($42 \mathrm{mg}, 70 \%$) as an inseparable mixture of 5ed-syn(I) and 5ed-anti(II).

1 H NMR ($250 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 8.07\left(\mathrm{t}, 1 \mathrm{H}_{(I I}, J=2.9 \mathrm{~Hz}\right), 8.04\left(\mathrm{t}, 1 \mathrm{H}_{(I)}, J=2.9 \mathrm{~Hz}\right), 7.99\left(\mathrm{~d}, 1 \mathrm{H}_{(I I}\right.$, $J=2.6 \mathrm{~Hz}), 7.95\left(\mathrm{~d}, 1 \mathrm{H}_{(I)}, J=2.6 \mathrm{~Hz}\right), 7.59\left(\mathrm{~d}, 1 \mathrm{H}_{(I I)}, J=2.1 \mathrm{~Hz}\right), 7.56\left(\mathrm{~d}, 1 \mathrm{H}_{(I)}, J=2.1 \mathrm{~Hz}\right), 6.69-$ $6.55\left(\mathrm{~m}, 1 \mathrm{H}_{(I+I I}\right), 6.29\left(\mathrm{dd}, 1 \mathrm{H}_{(I)}, J=9.7,6.0 \mathrm{~Hz}\right), 6.14\left(\mathrm{dd}, 1 \mathrm{H}_{(I I)}, J=9.7,5.9 \mathrm{~Hz}\right), 5.27(a p p . \mathrm{t}$, $\left.1 \mathrm{H}_{(I I)}, J=4.8 \mathrm{~Hz}\right), 4.94\left(\mathrm{dd}, 1 \mathrm{H}_{(I)}, J=10.1,6.1 \mathrm{~Hz}\right.$, $), 4.44-4.21\left(\mathrm{~m}, 2 \mathrm{H}_{(I+I I)}\right), 3.64\left(\mathrm{dd}, 1 \mathrm{H}_{(I)}, J=\right.$ $11.9,3.2 \mathrm{~Hz}), 3.51-3.32\left(\mathrm{~m}, 2 \mathrm{H}_{(I I)}\right.$ and $\left.1 \mathrm{H}_{(I)}\right)$, $2.65(\mathrm{bs}, 1 \mathrm{H}), 1.94-1.77\left(\mathrm{~m}, 1 \mathrm{H}_{(I I)}\right), 1.64\left(\mathrm{~m}, 1 \mathrm{H}_{(I)}\right)$, $1.34\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}_{(I+I)}\right), 1.01\left(\mathrm{~d}, 3 \mathrm{H}_{(I)}, J=6.9 \mathrm{~Hz}\right), 0.58\left(\mathrm{~d}, 3 \mathrm{H}_{(I I)}, J=7.0 \mathrm{~Hz}\right)$.
${ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.6_{(I I}, 155.1_{(I)}, 143.9_{(I+I I)}, 141.7_{(I I)}, 140.3_{(I)}, 131.2_{(I+I I}, 128.3_{(I I)}$, $128.0_{(I)}, 124.8_{(I I)}, 124.7_{(I)}, 124.5_{(I I)}, 124.1_{(I)}, 122.7_{(I+I I)}, 121.6_{(I)}, 121.5_{(I I)},(63.7,63.6)_{(I+I I)}, 54.4_{(I)}$, $54.2_{(I I)}, 41.7_{(I I)}, 39_{(I)}, 14.4_{(I+I I)}, 12.9_{(I)}, 11.0_{(I I)}$.
HPLC analysis: Daicel Chiralcel AD-H column (hexane- $i-\operatorname{PrOH}, 88: 22$) flow rate $1.0 \mathrm{ml} / \mathrm{min} ; 220$ $\mathrm{nm} ; \boldsymbol{S y n} \boldsymbol{- 5 e d} t_{\mathrm{R}}($ major $)=17.4 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=19.2 \mathrm{~min}, 91.2 \%$ ee; $\boldsymbol{A} \boldsymbol{n t i}-5 \mathrm{ed} t_{\mathrm{R}}($ minor $)=22.7$ $\mathrm{min}, t_{\mathrm{R}}$ (major) $=44.8 \mathrm{~min}, 83.8 \%$ ee.

(R)-Ethyl 2-((R)-2-hydroxy-1-phenylethyl)-6-nitroquinoline- $1(2 H)$-carboxylate and (S) ethyl 2-((R)-2-hydroxy-1-phenylethyl)-6-
nitroquinoline- $\mathbf{1 (2 H)}$-carboxylate (5ec-syn +anti)
Following the general procedure A, N, O-acetal $\mathbf{1 e}(59 \mathrm{mg}, 0.20 \mathrm{mmol})$, L3b ($25 \mathrm{mg}, 0.04 \mathrm{mmol}$), phenylacetaldehyde ($90 \%, 80 \mathrm{mg}, 0.60 \mathrm{mmol}$), anhydrous p-toluensulfonic acid ($7 \mathrm{mg}, 0.04 \mathrm{mmol}$), toluene $(0.80 \mathrm{~mL}), \mathrm{MeOH}(0.40 \mathrm{~mL})$ and sodium borohydride $(45 \mathrm{mg}, 1.20 \mathrm{mmol})$ were allowed to react at $0{ }^{\circ} \mathrm{C}$ for 3 h . Subsequent flash chromatography (7 hexanes $/ 3 \mathrm{AcOEt}, \mathrm{R}_{\mathrm{f}}=0.13$) gave a green oil as mixture of $\mathbf{5 e c}-$ syn and $\mathbf{5 e c}$-anti ($57 \mathrm{mg}, 78 \%$ yield).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.10\left(\mathrm{dd}, 1 \mathrm{H}_{(I)}, J=9.0,2.6 \mathrm{~Hz}\right), 8.02-7.94\left(\mathrm{~m}, 2 \mathrm{H}_{(l+I I)}\right), 7.78(\mathrm{bs}$, $\left.1 \mathrm{H}_{(I I)}\right), 7.65\left(\mathrm{~d}, 1 \mathrm{H}_{(I)}, J=9.2 \mathrm{~Hz}\right), 7.46\left(\mathrm{~d}, 1 \mathrm{H}_{(I I)}, J=9.1 \mathrm{~Hz}\right), 7.37-7.20\left(\mathrm{~m}, 6 \mathrm{H}_{(I+I I)}\right), 7.19-6.96$ $\left(\mathrm{m}, 4 \mathrm{H}_{(I+I I)}\right), 6.54\left(\mathrm{~d}, 1 \mathrm{H}_{(I I)}, J=10.0 \mathrm{~Hz}\right), 6.49\left(\mathrm{~d}, 1 \mathrm{H}_{(I)}, J=9.6 \mathrm{~Hz}\right) 6.27\left(\mathrm{dd}, 1 \mathrm{H}_{(I I}, J=9.6,6.0 \mathrm{~Hz}\right)$, $5.82\left(\mathrm{dd}, 1 \mathrm{H}_{(I)}, J=9.6,6.0 \mathrm{~Hz}\right), 5.55-5.39\left(\mathrm{~m}, 2 \mathrm{H}_{(I+I I)}\right), 4.50-4.29\left(\mathrm{~m}, 2 \mathrm{H}_{(I+I I)}\right), 4.27-4.06(\mathrm{~m}$, $\left.2 \mathrm{H}_{(I+I I}\right), 4.04-3.86\left(\mathrm{~m}, 3 \mathrm{H}_{(I+I I)}\right), 3.79-3.63\left(\mathrm{~m}, 1 \mathrm{H}_{(I)}\right), 2.87\left(\mathrm{q}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}_{(I I)}\right), 2.79-2.65(\mathrm{~m}$, $1 \mathrm{H}_{(I)}, 2.57(\mathrm{bs}, 1 \mathrm{H}), 2.37(\mathrm{bs}, 1 \mathrm{H}), 1.38\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}_{(I I)}\right), 1.25\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}_{(I)}\right)$.
${ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.9,144.0,143.5,141.1,139.8,138.7,138.5,138.1,137.1$, $131.4,130.5,129.6,129.4,129.0,128.7,128.6,127.9,127.6,127.5,127.3,126.6,125.3,125.1$, $124.9,123.8,122.7,122.4,121.6,121.3,64.9,63.6,63.3,63.2,62.0,54.2,53.9,52.6,52.5,51.0$, 41.5, 14.4, 14.3 .

HPLC analysis: Daicel Chiralcel AD-H column (hexane- $i-\mathrm{PrOH}, 88: 22$) flow rate $1.0 \mathrm{ml} / \mathrm{min} ; 220$ $\mathrm{nm} ; \boldsymbol{S y n} \boldsymbol{- 5 e c} t_{\mathrm{R}}($ minor $)=20.1 \mathrm{~min}, t_{\mathrm{R}}($ major $)=25.9 \mathrm{~min}, 96.8 \%$ ee.

(R)-Ethyl 2-((R)-1-hydroxyhexan-2-yl)-4-methylquinoline-1(2H)-carboxylate and (R)-ethyl 2-((S)-1-hydroxyhexan-2-yl)-4-methylquinoline-1(2H)carboxylate (5ha-syn+anti)
Following the general procedure B, N,O-acetal $\mathbf{1 h}(52 \mathrm{mg}, 0.20 \mathrm{mmol})$, $\mathbf{L 4 b}(25 \mathrm{mg}, 0.04 \mathrm{mmol})$, hexanal ($60 \mathrm{mg}, 0.60 \mathrm{mmol}$), anhydrous p-toluensulfonic acid ($7 \mathrm{mg}, 0.04 \mathrm{mmol}$), toluene (0.80 $\mathrm{mL}), \mathrm{MeOH}(0.40 \mathrm{~mL})$ and sodium borohydride $(45 \mathrm{mg}, 1.20 \mathrm{mmol})$ were allowed to react at room temperature for 16 h. Subsequent flash chromatography (8 hexanes $/ 2 \mathrm{Et}_{2} \mathrm{O}, \mathrm{R}_{\mathrm{f}}=0.22$) afforded an oil ($56 \mathrm{mg}, 88 \%$) as mixture of 5ha-syn(I) and 5ha-anti (II).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.50-7.05\left(\mathrm{~m}, 4 \mathrm{H}_{(I+I I)}\right), 5.99\left(\mathrm{~d}, 1 \mathrm{H}_{(I)}, J=6.2 \mathrm{~Hz}\right), 5.81\left(\mathrm{~d}, 1 \mathrm{H}_{(I I}, J\right.$ $=5.9 \mathrm{~Hz}), 5.13\left(\mathrm{bs}, 1 \mathrm{H}_{(I I}\right), 4.74\left(\mathrm{dd}, 1 \mathrm{H}_{(I)}, J=10.5,6.2 \mathrm{~Hz}\right), 4.45-4.12\left(\mathrm{~m}, 2 \mathrm{H}_{(I+I I)}\right), 3.60(\mathrm{~d}$, $\left.1 \mathrm{H}_{(I+I I)}, J=11.2 \mathrm{~Hz}\right), 3.47\left(\mathrm{bs}, 1 \mathrm{H}_{(I+I I)}\right), 3.30(\mathrm{bs}, 1 \mathrm{H}), 2.10\left(\mathrm{~s}, 3 \mathrm{H}_{(I I)}\right), 2.09\left(\mathrm{~s}, 3 \mathrm{H}_{(I)}\right), 1.66-1.52(\mathrm{~m}$, $\left.1 \mathrm{H}_{(I+I I)}\right), 1.44-0.97\left(\mathrm{~m}, 9 \mathrm{H}_{(I+I I)}\right), 0.85\left(\mathrm{t}, 3 \mathrm{H}_{(I)} J=7.1 \mathrm{~Hz}\right), 0.73\left(\mathrm{~d}, 3 \mathrm{H}_{(I I)}, J=6.3 \mathrm{~Hz}\right)$.
${ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 135.5,133.9,130.9,130.2,129.6,129.4,127.3,127.3,125.8$, $124.9,124.6,124.6,124.5,123.5,123.1,62.8,62.7,61.9,59.9,53.2,53.0,45.9,43.3,29.8,29.6$, 26.1, 23.1, 22.8, 18.7, 18.5, 14.5, 14.1, 13.9.

HPLC analysis: Daicel Chiralcel AD-H column (hexane- i-PrOH, 92:8) flow rate $1.0 \mathrm{ml} / \mathrm{min} ; 220$ $\mathrm{nm} ; \mathbf{5 h a}-$ syn $t_{\mathrm{R}}($ minor $)=5.0 \mathrm{~min}, t_{\mathrm{R}}($ major $)=6.84 \mathrm{~min} ; 99 \% \mathrm{ee} ; \mathbf{5 h a}$-anti $t_{\mathrm{R}}($ minor $)=10.3 \mathrm{~min}, t_{\mathrm{R}}$ $($ major $)=11.8 \mathrm{~min} ; 91 \%$ ee.

General Procedure for the enantioselective alkylation of tetrahydropyridines with aldehydes

An oven-dried 10 mL pyrex vial was charged with $7(1.0 \mathrm{eq})$ in the specified solvent $(0.5 \mathrm{M})$ followed by the appropriate catalyst ($20 \mathrm{~mol} \%$) and aldehyde (3.0 eq). The resulting solution was cooled to the specified temperature and additioned with the specified Lewis acid ($20 \mathrm{~mol} \%$). The mixture was allowed to react until no 7 was detected by TLC. The solution was then cooled at $0{ }^{\circ} \mathrm{C}$, diluted with methanol $(0.20 \mathrm{~mL}$ per 0.20 mmol of 7) and additioned with sodium borohydride (2.0 eq). Upon disappearance of the corresponding aldehyde, the reaction mixture was quenched with water (4 mL per 0.20 mmol of 7) and the resulting aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$ four times. The combined organic layers were dried over MgSO_{4}, filtered and concentrated to afford a residue which was purified by flash chromatography or/and preparative TLC.

(R)-Benzyl 2-((R)-1-hydroxyhexan-2-yl)-5,6-dihydropyridine-1(2H)carboxylate (syn-8a)
Following the general procedure, $7(47 \mathrm{mg}, 0.20 \mathrm{mmol}), \mathbf{L} 1 * \mathrm{HCl}(10.2 \mathrm{mg}, 0.04$ $\mathrm{mmol})$, freshly distilled hexanal ($74 \mu \mathrm{~L}, 0.60 \mathrm{mmol}$), $\operatorname{In}(\mathrm{OTf})_{3}(22.5 \mathrm{mg}, 0.04 \mathrm{mmol})$, THF (0.40 $\mathrm{mL}), \mathrm{MeOH}(0.2 \mathrm{~mL})$ and sodium borohydride ($15 \mathrm{mg}, 0.4 \mathrm{mmol}$) were allowed to react 18 hours at $0{ }^{\circ} \mathrm{C}$. Subsequent preparative TLC (8 hexanes/ 2 AcOEt, 3 runs $\mathrm{R}_{\mathrm{f}}=0.49$) afforded the title compound as colourless sticky oil ($9 \mathrm{mg}, 19 \%$).
${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.53-7.30(\mathrm{~m}, 5 \mathrm{H}), 6.03-5.76(\mathrm{~m}, 2 \mathrm{H}), 5.22(\mathrm{~d}, 1 \mathrm{H}, J=12.2 \mathrm{~Hz})$, $5.14(\mathrm{~d}, 1 \mathrm{H}, J=12.2 \mathrm{~Hz}), 4.35(\mathrm{~d}, 1 \mathrm{H}, J=8.8 \mathrm{~Hz}), 4.12(\mathrm{dd}, 1 \mathrm{H}, J=13.3,5.6 \mathrm{~Hz}), 3.53(\mathrm{bs}, 3 \mathrm{H})$, $3.02-2.76(\mathrm{~m}, 1 \mathrm{H}), 2.39-2.16(\mathrm{~m}, 1 \mathrm{H}), 2.10-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.72-1.22(\mathrm{~m}, 7 \mathrm{H}), 0.90(\mathrm{t}, J=6.6$ $\mathrm{Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}_{\mathrm{NMR}}\left(62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 156.7,136.6,128.7,128.3,128.0,127.7,125.8,67.7,60.1,53.1$, 44.4, 37.9, 29.9, 27.0, 25.2, 23.2, 14.2.

HRMS (ESI) m/z [M + Na $\left.{ }^{+}\right]$Calcd for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{NO}_{3} \mathrm{Na} 340.1889$, found 340.1888
HPLC analysis: Daicel Chiralcel AD-H column (hexane- i - PrOH, 92:8) flow rate $1.0 \mathrm{ml} / \mathrm{min} ; 220$ $\mathrm{nm} ; t_{\mathrm{R}}($ minor $)=9.8 \mathrm{~min}, t_{\mathrm{R}}$ (major) $=11.5 \mathrm{~min}, 99 \%$ ee.

(R)-Benzyl 2-((R)-1-hydroxyhexan-2-yl)-5,6-dihydropyridine-1(2H)-

 carboxylate (anti-8a)From the above preparative TLC (8 hexane/ 2 AcOEt, 3 runs, $\mathrm{R}_{\mathrm{f}}=0.42$) was collected the title compound as colourless oil ($8 \mathrm{mg}, 16 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.42-7.28(\mathrm{~m}, 5 \mathrm{H}), 6.02-5.90(\mathrm{~m}, 1 \mathrm{H}), 5.64-5.51(\mathrm{~m}, 1 \mathrm{H}), 5.24$ $-5.07(\mathrm{~m}, 2 \mathrm{H}), 4.74(\mathrm{bs}, 1 \mathrm{H}), 4.28-4.11(\mathrm{~m}, 1 \mathrm{H}), 3.66(\mathrm{dd}, 1 \mathrm{H}, J=12.0,4.3 \mathrm{~Hz}), 3.37-3.19(\mathrm{~m}$, $1 \mathrm{H}), 3.01-2.80(\mathrm{~m}, 1 \mathrm{H}), 2.29-2.07(\mathrm{~m}, 1 \mathrm{H}), 2.03-1.87(\mathrm{~m}, 1 \mathrm{H}), 1.69-1.07(\mathrm{~m}, 7 \mathrm{H}), 0.86(\mathrm{t}$, $3 \mathrm{H}, J=6.3 \mathrm{~Hz}$).
${ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta 157.1,138.3,129.5,128.9,128.7,126.9,67.7,62.1,53.9,46.5$, 39.6, 30.9, 30.5, 30.4, 28.2, 25.4, 23.7, 14.3.

HRMS (ESI) $\mathrm{m} / \mathrm{z}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$Calcd for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{NO}_{3} \mathrm{Na} 340.1889$, found 340.1889
HPLC analysis: Daicel Chiralcel AD-H column (hexane- i - $\mathrm{PrOH}, 92: 8$) flow rate $1.0 \mathrm{ml} / \mathrm{min} ; 220$ $\mathrm{nm} ; t_{\mathrm{R}}($ minor $)=11.6 \mathrm{~min}, t_{\mathrm{R}}($ major $)=12.6 \mathrm{~min}, 97 \% \mathrm{ee}$.

(R)-Benzyl 2-((R)-2-hydroxy-1-phenylethyl)-5,6-dihydropyridine-1(2H)-carboxylate and (R)-benzyl 2-((S)-2-hydroxy-1-phenylethyl)-5,6-dihydropyridine-1(2H)carboxylate (syn-8b and anti-8b)

Following the general procedure, $7(47 \mathrm{mg}, 0.20 \mathrm{mmol})$, $\mathbf{L} 2(9.9 \mathrm{mg}, 0.04 \mathrm{mmol}$), phenyl acetaldehyde (90% purity, $80 \mathrm{mg}, 0.60 \mathrm{mmol}), \operatorname{Er}(\mathrm{OTf})_{3}(24.6 \mathrm{mg}, 0.04 \mathrm{mmol})$, toluene $(0.40 \mathrm{~mL})$, $\mathrm{MeOH}(0.2 \mathrm{~mL})$ and sodium borohydride ($15 \mathrm{mg}, 0.4 \mathrm{mmol}$) were allowed to react 1 hour at $0^{\circ} \mathrm{C}$. Subsequent flash chromatography (7 hexane/ $3 \mathrm{Et}_{2} \mathrm{O}, \mathrm{R}_{\mathrm{f}}=0.20$) afforded a mixture of $\boldsymbol{s y n} \mathbf{- 8 b}$ and anti-8b as an oil ($53 \mathrm{mg}, 78 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.51-7.09(\mathrm{~m}, 10 \mathrm{H}), 5.86-5.65(\mathrm{~m}, 1 \mathrm{H}), 5.37-5.15(\mathrm{~m}, 3 \mathrm{H}), 4.97$ - $4.73(\mathrm{~m}, 1 \mathrm{H}), 4.19(\mathrm{dd}, 1 \mathrm{H}, J=13.5,5.6 \mathrm{~Hz}), 3.98-3.51(\mathrm{~m}, 3 \mathrm{H}), 3.06-2.84(\mathrm{~m}, 1 \mathrm{H}), 2.77(\mathrm{~d}$, $1 \mathrm{H}, J=11.0 \mathrm{~Hz}), 2.35-2.11(\mathrm{~m}, 1 \mathrm{H}), 2.02-1.88(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.6,140.4,136.5,129.1,128.9,128.6,128.6,128.2,127.9$, $127.6,127.3,127.1,126.9,126.4,126.3,125.5,67.7,67.6,64.3,63.6,53.9,53.0,52.6,51.4,39.26$, 37.7, 37.4, 30.4, 29.7, 25.0, 24.4.

Benzyl 4-(2-hydroxy-1-phenylethyl)-3,4-dihydropyridine-1(2H)-carboxylate (9)

 The slower eluting fraction of the above flash chromatography $\left(\mathrm{R}_{\mathrm{f}}=0.16\right)$ afforded the title compound as an oil ($1 \mathrm{mg}, 2 \%$).${ }^{1} \mathrm{H} \operatorname{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.43-7.14(\mathrm{~m}, 10 \mathrm{H}), 6.96(\mathrm{~d}, 1 \mathrm{H}, J=8.9 \mathrm{~Hz}$, minor rotamer), $6.86(\mathrm{~d}, 1 \mathrm{H}, J=8.9 \mathrm{~Hz}$,major rotamer), 5.17 (s, 2H), 5.11 (dd, $1 \mathrm{H}, J=8.6,3.8 \mathrm{~Hz}$, minor rotamer), 4.99 (dd, $1 \mathrm{H}, J=8.6,3.5 \mathrm{~Hz}$, major rotamer), $4.07-3.79(\mathrm{~m}, 2 \mathrm{H}), 3.66-3.45(\mathrm{~m}, 2 \mathrm{H})$, $2.74-2.61(\mathrm{~m}, 1 \mathrm{H}), 2.59-2.42(\mathrm{~m}, 1 \mathrm{H}), 1.67-1.49(\mathrm{~m}, 1 \mathrm{H}), 1.47-1.34(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(153.5,153.1$, rotamers), 140.9, 136.3, 129.0, 128.7, 128.6, 128.4, $128.2,127.9,127.3,(125.8,125.4$, rotamers $),(108.3,107.9$, rotamers), ($67.75,67.6$, rotamers), 65.2, 53.6, 40.4, 33.6, 25.6.

(R)-Benzyl 2-((R)-2-acetoxy-1-phenylethyl)-5,6-dihydropyridine-1(2H)carboxylate (8b-Ac-syn)

Following the general procedure, $7(47 \mathrm{mg}, 0.20 \mathrm{mmol}), \mathbf{L} 2(9.9 \mathrm{mg}, 0.04 \mathrm{mmol})$, phenylacetaldehyde (90% purity, $80 \mathrm{mg}, 0.60 \mathrm{mmol}), \mathrm{Er}(\mathrm{OTf})_{3}(24.6 \mathrm{mg}, 0.04 \mathrm{mmol})$, toluene (0.40 $\mathrm{mL}), \mathrm{MeOH}(0.2 \mathrm{~mL})$ and sodium borohydride $(15 \mathrm{mg}, 0.4 \mathrm{mmol})$ were allowed to react 1 hour at 0 ${ }^{\circ} \mathrm{C}$. After the standard work-up, the resulting reaction crude was dissolved in pyridine $(0.4 \mathrm{~mL})$ followed by acetic anhydride $(0.20 \mathrm{~mL})$. The reaction was allowed to react overnight. Removal of solvent gave an oil which was purified by flash chromatography (85 hexane/ $15 \mathrm{Et}_{2} \mathrm{O}, \mathrm{R}_{\mathrm{f}}=0.16$) to provide the title compound as colourless oil ($52 \mathrm{mg}, 69 \%$).
${ }^{1} \mathrm{H}$ NMR (250 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.50-7.03(\mathrm{~m}, 10 \mathrm{H}), 5.89-5.71(\mathrm{~m}, 1 \mathrm{H}), 5.40(\mathrm{~d}, 1 \mathrm{H}, J=10.4 \mathrm{~Hz})$, $5.30-5.09(\mathrm{~m}, 2 \mathrm{H}), 4.88(\mathrm{~d}, 1 \mathrm{H}, J=8.9 \mathrm{~Hz}$, rotamer), $4.75(\mathrm{~d}, 1 \mathrm{H}, J=9.0 \mathrm{~Hz}$, rotamer), $4.51-$ $3.98(\mathrm{~m}, 3 \mathrm{H}), 3.38-3.17(\mathrm{~m}, 1 \mathrm{H}), 2.80-2.48(\mathrm{~m}, 1 \mathrm{H}), 2.29-2.05(\mathrm{~m}, 1 \mathrm{H}), 2.01-1.76(\mathrm{~m}, 4 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.1$, (155.7, 155.5, rotamers), (138.9, 138.5, rotamers), (137.0, 136.7, rotamers), $128.8,128.7,128.3,128.1,128.0,127.5,127.4,127.0,126.4,126.4,125.7$, (67.6, 67.3 , rotamers), ($66.0,65.8$, rotamers), $54.3,(48.9,48.7$, rotamers), (37.8, 37.3, rotamers), (25.0, 24.5 , rotamers), (21.0, 20.9, rotamers).

HRMS (ESI) $\mathrm{m} / \mathrm{z}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$Calcd for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{NO}_{4} \mathrm{Na} 402.1681$, found 402.1682 .
HPLC analysis: Phenomenex ${ }^{\circledR}$ Lux 5 u-Cellulose-1 column (hexane- i-PrOH, 99:1) flow rate 1.0 $\mathrm{ml} / \mathrm{min} ; 254 \mathrm{~nm} ; t_{\mathrm{R}}($ minor $)=17.2 \mathrm{~min}, t_{\mathrm{R}}($ major $)=18.4 \mathrm{~min}, 93 \%$ ee.

(R)-Benzyl 2-((S)-2-acetoxy-1-phenylethyl)-5,6-dihydropyridine-1(2H)carboxylate (8b-Ac-anti)

The slower eluting fraction of the above flash chromatography ($\mathrm{R}_{\mathrm{f}}=0.14$) afforded the title compound as an oil ($6 \mathrm{mg}, 8 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.47-6.94(\mathrm{~m}, 10 \mathrm{H}), 5.89(\mathrm{bs}, 1 \mathrm{H}), 5.79-5.60(\mathrm{~m}, 1 \mathrm{H}), 5.17-5.00$ $(\mathrm{m}, 1 \mathrm{H}+$ minor rotamer), $4.88(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.68(\mathrm{bs}, 1 \mathrm{H}$ major rotamer with respect to $5.17-$ $5.00), 4.54-4.33(\mathrm{~m}, 2 \mathrm{H}), 4.22-4.09(\mathrm{~m}, 1 \mathrm{H}$, minor rotamer), $4.07-3.89(\mathrm{~m}, 1 \mathrm{H}$, major rotamer), 3.30 (bs, 1H), $2.68-2.52(\mathrm{~m}, 1 \mathrm{H}), 2.20-1.82(\mathrm{~m}, 4 \mathrm{H})$.
${ }^{13}{ }^{3}$ NMR ($63 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.2$, 155.6, 138.6, (136.9, 136.6, rotamers), 129.9, 129.5, 128.6, $128.4,127.8,127.6,127.1,126.4,125.6,(67.6,67.1$, rotamers), (64.8, 64.5 , rotamers), (54.7, 54.4, rotamers), 49.1, (38.4, 38.0, rotamers), 24.5, 21.0.

HRMS (ESI) $\mathrm{m} / \mathrm{z}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$Calcd for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{NO}_{4} \mathrm{Na} 402,1681$, found 402.1684 .
HPLC analysis: Phenomenex ${ }^{\circledR}$ Lux 5 u-Cellulose-1 column (hexane- i-PrOH, 99:1) flow rate 1.0 $\mathrm{ml} / \mathrm{min} ; 254 \mathrm{~nm} t_{\mathrm{R}}($ major $)=22.9 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=28.0 \mathrm{~min}, 70 \%$ ee.

(1R)-1-[(2R)-N-tert-Butyloxycarbonyl)piperidin-2-yl]-1-phenyl-2-
hydroxyethane (10). ${ }^{9}$
To a solution of $\mathbf{8 b}-\mathbf{A c}$-syn ($95 \mathrm{mg}, 0.25 \mathrm{mmol}, 93 \%$ ee) in methanol (2.2 mL) was added 10% $\mathrm{Pd} / \mathrm{C}(5 \mathrm{mg})$. The reaction mixture was flushed three times with hydrogen (1 atm) and allowed to react 8 hours under hydrogen atmosphere. The suspension was filtered over a short pad of Celite, washed several times with dichloromethane/AcOEt and concentrated to give 65 mg of crude (R)-2-phenyl-2-[(R)-piperidin-2-yl)ethanol acetate which directly dissolved in THF $(2.0 \mathrm{~mL})$, treated with $\mathrm{Boc}_{2} \mathrm{O}(98 \mathrm{mg}, 0.45 \mathrm{mmol})$ and $\mathrm{NEt}_{3}(38 \mu \mathrm{~L}, 0.27 \mathrm{mmol})$ and allowed to stir overnight. After concentration in vacuo, the residue was diluted in methanol (4.5 mL) followed by $\mathrm{NaOH} / \mathrm{MeOH}$ $(2 \mathrm{~N})$ solution $(0.17 \mathrm{~mL})$. The reaction mixture was stirred at rt for 1 h and then poured into saturated
aqueous $\mathrm{NH}_{4} \mathrm{OH}(5 \mathrm{~mL})$. Extraction with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and evaporation of the organic solvent afforded a residue that was subjected to chromatographic purification on SiO_{2} (AcOEt : hexanes=20/80) to give the title compound ($48 \mathrm{mg}, 64 \%$ yield). Spectroscopic and analytical data were in agreement with those previously reported. ${ }^{9}$ Optical rotatory power for this compound was $[\alpha]_{\mathrm{D}}{ }^{20}=+11.2$ ($\mathrm{c}=$ $1.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}$) with respect to $[\mathrm{a}]_{\mathrm{D}}{ }^{20}=+12.4\left(\mathrm{c}=2.20, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. ${ }^{9}$

References

1. P. Bergthaller, DE Patent 2,502,201 Jan. 21, 1976.
2. J. D. Shields, D. T. Ahneman, T. J. A. Graham, and A. G. Doyle, Org. Lett., 2014, 16, 142.
3. T. Kodama, P. N. Moquist, and S. E. Schaus, Org. Lett., 2011, 13, 6316.
4. S. Knapp, C. Yang, S. Pabbaraja, B. Rempel, S. Reid, and S. Withers, S. G. J. Org. Chem., 2005, 70, 7715-7720.
5. T. Shono, J. Terauchi, Y. Ohki, and Y. Matsumura, Tetrahedron Lett., 1990, 31, 6385-6386
6. O. Okitsu, R. Suzuki, and S. Kobayashi, J. Org. Chem., 2001, 66, 809-823.
7. A. Schmidt, D. Michalik, S. Rotzoll, E. Ullah, C. Fischer, H. Reinke, H. Görls, and P. Langer, Org. Biomol. Chem., 2008, 6, 2804.
8. R. Yamaguchi, B. Hatano, T. Nakayasu, and S. Kozima, Tetrahedron Lett., 1997, 38, 403.
9. D. L. Thai, M. T. Sapko, C. T. Reiter, D. E. Bierer, and J. M. Perel, J. Med. Chem., 1998, 41, 591.
