1	Supporting Information			
2	For			
3	Genetic PEGylation of different lengths on one			
4	polypeptide backbone			
5				
6	Qingmin Zang ^{1,2#} , Seiichi Tada ^{1#} , Takanori Uzawa ^{1,3} , Daisuke Kiga ^{1,2} , Masayuki			
7	Yamamura ^{1,2} , and Yoshihiro Ito ^{1,2,3*}			
8				
9	¹ Nano Medical Engineering Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-			
10	0198, Japan			
11	² Department of Computational Intelligence and Systems Science, Interdisciplinary			
12	Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259			
13	Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan			
14	³ Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent			
15	Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan			
16				
17	# Equal contribution			
18				
19	* E-mail: y-ito@riken.jp			
20				
21				

22	22 Contents							
23	1. Materials and Methods							
24	1.1 Prepared DNA templates							
25	1.2 Primer sequence							
26	1.3 In vitro translation							
27	1.4 Mass spectra measurements							
28	2. Table S1							
29	3. Figure S1							
30	4. Figure S2							
31	5. Figure S3							
32	6. References							
33								
34								
35	1. Materials and Methods							
36	1.1 Prepared DNA templates							
37	The DNA templates for the cell-free translation encoding peptides were prepar	ed.						
38	The plasmid DNA was prepared by pROX-FL92.1amber as a template, and the prime	rs						
39	are shown below. The PCR products were purified using the QIA-quick PC	'R						
40	Purification Kit (Qiagen) and used as the templates for cell-free translation reactions.							
41								
42	1.2 Primer sequences							
43	Primer fp-(FL92-T7prom): 5'- CGCGAAATTAATACGAGTCAC-3'							
44	Primer rp-(Prox)FLAG-TGA: 5'-							
45	TCACTTGTCATCGTCATCCTTGTAGTCCTCATTAGACTAGTTTACTTCGATT	Г						
46	G-3'							
47	<pre>/ Primer rp(ProX)4bFLAG-TGA: 5'-</pre>							
48	TCACTTGTCATCGTCATCCTTGTAGTCCCCGCTCATTAGACTAGTTTACTTCG							
49	ATTTG-3'							
50	Primer rp-(Prox)FLAG-CGGG:							
51	5'-							
52	TCACTTGTCATCGTCATCCTTGTAATCCTCATTAGACCCGGTTTACTTCGATT							
53	TG-3'							

54 Primer rp(Prox-4b)-amb-FLAG-TGA:

55 5'-

56 TCACTTGTCATCGTCATCCTTGTAGTCCTACTCATTAGACCCGGTTTACTTCG

- 57 ATTTG-3'
- 58

59 1.3 In vitro translation

The *in vitro* translation assays were performed using a RYTS kit (Proteins Express, Chiba, Japan) according to the manufacture's protocol. The translation reaction was performed in the presence of 200 pmol of each PEG-AF-tRNA, unless otherwise stated. The reaction mixture was incubated at 30 °C for 2 h.

64

65 1.4 Mass spectra measurements

66 The samples were prepared for mass spectrometry as previously reported.¹ The translated peptides were purified from 25-µL reactions using prewashed Anti-DDDDK-67 tag mAb-Magnetci Agarose (MBL). After two washes with buffer (50 mM Tris-HCl, 68 150 mM NaCl, pH 7.6), the peptides were eluted from the matrix with 0.2% TFA. 69 Before freeze drying, 3xFlag Peptide (Sigma) (1 nmol or 10 fmol) was added to each 70 sample as the internal standard. For the mass analysis, the peptides were desalted using 71 ZipTip µ-C18 (Millipore) and mixed with 2,5-dihydroxybenzoic acid or 3-hydroxy-2-72 pyridinecarboxylic acid as the matrix. The samples were subjected to MALDI-TOF-73 MS analysis on an Ultraflex spectrometer (Bruker Daltonics) in linear or reflector mode. 74 Each sample was analyzed three times and the amount of each peptide was estimated by 75 76 the area intensity comparing to 3xFlag peptide.

position	sequence	M.W.Calc	MW.
		ulated	found
		[M+H]+	
	fMQKIEVNXSNEDYKDDDDK	2681.178	2681.437
PEG4-amber	QKIEVNXSNEDYKDDDDK	2522.142	2522.389
	XSNEDYKDDDDK	1723.719	1723.021
	fMQKIEVNBSNEDYKDDDDK	2857.282	2857.416
PEG8-amber	QKIEVN <mark>B</mark> SNEDYKDDDDK	2698.247	2698.390
	B SNEDYKDDDDK	1899.824	1899.948
	fMQKIEVNXSNEDYKDDDDK	2681.178	2861.451
PEG4-CGGG	QKIEVN <mark>X</mark> SNEDYKDDDDK	2522.142	2522.428
	XSNEDYKDDDDK	1723.719	1723.977
	fMQKIEVNBSNEDYKDDDDK	2857.282	2857.623
PEG8-CGGG	QKIEVN <mark>B</mark> SNEDYKDDDDK	2698.247	2698.562
	B SNEDYKDDDDK	1899.824	1900.075
	fMQKIEVNXSNEDYKDDDDK	3033.387	3033.970
PEG12-amber	QKIEVN <mark>X</mark> SNEDYKDDDDK	2874.352	2874.890
	XSNEDYKDDDDK	2075.928	2076.311
	fMQKIEVNXSNEDYKDDDDK	3561.702	3562.222
PEG24-amber	QKIEVN <mark>X</mark> SNEDYKDDDDK	3402.667	3403.168
	XSNEDYKDDDDK	2604.243	2604.622
PEG4(amber)	fMQKIEVN <mark>X</mark> SNE <mark>X</mark> DYKDDDDK	3061.372	n.d.
PEG4(CGGG)	QKIEVN <mark>X</mark> SNE <mark>X</mark> DYKDDDDK	2902.337	2903.113
PEG4(CGGG)	fMQKIEVN <mark>X</mark> SNE <mark>X</mark> DYKDDDDK	3061.372	3062.304
PEG4(amber)	QKIEVN <mark>X</mark> SNE <mark>X</mark> DYKDDDDK	2902.337	2903.271
PEG4(amber)	fMQKIEVNXSNEBDYKDDDDK	3237.477	n.d.
PEG8(CGGG)	QKIEVN <mark>X</mark> SNE <mark>B</mark> DYKDDDDK	3078.442	n.d.
PEG8(amber)	fMQKIEVN <mark>B</mark> SNE <mark>X</mark> DYKDDDDK	3237.477	3239.239
PEG4(CGGG)	QKIEVN <mark>B</mark> SNE <mark>X</mark> DYKDDDDK	3078.442	3079.390
PEG4(CGGG)	fMQKIEVN <mark>X</mark> SNE <mark>B</mark> DYKDDDDK	3237.477	n.d.

78 2. Table S1: MS data of PEGylation product. X and B indicate AF-PEG (4, 8, 12, 24)

PEG8(amber)	 QKIEVN <mark>X</mark> SNE <mark>B</mark> DYKDDDDK	3078.442	3079.491
PEG8(CGGG)	 fMQKIEVN <mark>B</mark> SNE <mark>X</mark> DYKDDDDK	3237.477	3239.195
PEG4(amber)	QKIEVN <mark>B</mark> SNE <mark>X</mark> DYKDDDDK	3078.442	3080.503

83 4. Fig. S1. Mass spectra of the peptide containing PEG4 via the amber codon.

Fig. S2. Mass spectra of the peptide containing PEG4 via the frameshift codon.

95 Fig. S3. The mass spectra of PEG8 (amber)—PEG4 (CGGG).

97 7. References

[1] K. Josephson, M. C. Hartman, J. W. Szostak, J. Am. Chem. Soc., 2005, 127,
11727-11735.