A facile solvent free Synthesis Route for the Assembly of Highly CO₂ Selective and H₂S tolerant NiSIFSIX Metal-Organic Framework.

Osama Shekhah, Youssef Belmabkhout, Karim Adil, Prashant Bhatt, Amy J. Cairns, and Mohamed Eddaoudi *

Supplementary Information

Table of contents

I. Structure refinement	2
II. SIFSIX-3- Ni stability after H ₂ S or H ₂ O treatment	4
III. Low-Pressure Gas Adsorption Measurements	5
III.1 Isosteric heats of adsorption for SIFSIX-3-Ni	5
III.2 H ₂ S sorption isotherm for SIFSIX-3-Ni	6
III.3 CO ₂ sorption isotherm for SIFSIX- 3-Ni after H ₂ S exposure	7
IV. References	8

I. Structure refinement

Powder X-ray diffraction (PXRD) measurements were carried out at room temperature on a PANalyticalX'Pert PRO diffractometer 45kV, 40mA for CuK α ($\lambda = 1.5418$ Å), from 8 to 80° with a scan speed of 1.0° min⁻¹ and a step size of 0.02° in 20.

The indexation of the PXRD diagram, carried out using the McMaille software,¹ yielded a primitive tetragonal cell (M(20)= 42.4 and F(20)= 64.2 (0.0139, 36)). The cell parameters, a=b=7.015(1) Å, c=7.669(1) Å, were refined by a whole powder pattern fit using the Le Bail method,² implemented in the FULLPROF software,³ and were consistent with those of the previously described **SIFSIX**-3-Cu. Hence, atomic positions of the latter were used as structure solution. The final Rietveld refinement permitted access to satisfactory results: $R_{Bragg} = 0.010$ and $R_{Factor} = 0.096$ (Figure S1). The crystallographic data and refinement parameters of **SIFSIX**-3-Ni are summarized in the Table S1.

Figure S1: Rietveld refinement of SIFSIX-3-Ni

Compound	SIFSIX-3-Ni
Formula	C8N4H8NiSiF6
Formula weight (g.mol ⁻¹)	360.96
Crystal system	Tetragonal
Space group	P 4/mmm (nº 123)
a (Å)	7.0147(1)
c (Å)	7.669(1)
V (Å ³)	372.34
Ζ	1
Wavelength λ (Cu K α)	1.5406
Temperature (K)	298
2-theta range (°)	8-80
Number of independent reflections	247
Number of intensity-dependent parameters	17
R_p, R_{wp}, R_B, R_F	0.337, 0.344, 0.104, 0.096

Table S1: Crystallographic data of SIFSIX-3-Ni

II. SIFSIX-3-Ni stability after H₂S or H₂O treatment

Figure S2: PXRD for SIFSIX-3-Ni after H₂S treatment (top) and H₂O exposure (bottom).

III. Low-Pressure Gas Adsorption Measurements

Homogenous microcrystalline sample of **SIFSIX-3-Ni** was activated by washing assynthesized powder with 3 x 20 mL of methanol. In a typical experiment, approximately 30 mg of sample was transferred with solvent in to a 9-mm large bulb glass sample cell and dried under the dry N_2 flow. The sample was first evacuated at room temperature using a turbo vacuum pump for 8 h and then gradually heated to 105 °C, held for 8 h and cooled to room temperature.

The determination of the isosteric heats of adsorption (Qst) for CO₂ was estimated by applying the Clausius-Clapeyron expression using the CO₂ adsorption isotherms measured at 258, 273, 288 and 298 K.

III.1 Isosteric heats of adsorption for SIFSIX-3-Ni

Figure S3: Isosteric heats of adsorption at low coverage for SIFSIX-Ni-3 prepared using solvent free route.

III.2 H₂S sorption isotherm for SIFSIX-3-Ni

Figure S4: H₂S sorption isotherms for **SIFSIX**-3-Ni which remains same after two cycles of H₂S sorption.

Figure S5: CO₂ sorption isotherms for **SIFSIX-3**-Ni which remains the same after H₂S sorption.

IV. References

- 1. Le Bail, A. Monte Carlo indexing with McMaille. Powder Diffraction 19, 249-254 (2004).
- Le Bail, A., Duroy, H. & Fourquet, J. L. *Ab-initio* structure determination of LiSbWO₆ by X-ray powder diffraction. Materials Research Bulletin 23, 447-452 (1988).
- 3. Rodriguez-Carvajal, J. Abstracts of the Satellite Meeting on Powder Diffraction of the XV Congress of the IUCr, 127 (1990).