Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2015

ELECTRONIC SUPPLEMENTARY INFORMATION

Raising of the effective energy barrier promoted by the change of counteranion in a Zn-Dy-Zn SMM: Slow relaxation via the second excited state

I. Oyarzabal, J. Ruiz, E. Ruiz, D. Aravena, E. Colacio and J. M. Seco

Synthetic procedures

All reagents were obtained from commercial sources and used as received. The ligand H₂L (N,N'-dimethyl-N,N'-bis(2-hidroxy-3-formyl-5-bromo-benzyl)ethylenediamine) was prepared following a reported procedure.¹

 M. Yonemura, Y. Matsumura, M. Ohba, H. Okawa and D. E. Fenton, *Chem. Lett.* 1996, 601.

Synthesis of 1

To a solution of ZnCl₂ (8.5 mg, 0.0625 mmol) in 5 mL of MeOH were subsequently added with continuous stirring 64 mg (0.125 mmol) of H₂L, 27.4 mg (0.0625 mmol) of Dy(NO₃)₃·5H₂O and 23 mg (0.125 mmol) of KPF₆. The resulting solution was filtered and allowed to stand at room temperature. After several days, well-formed prismatic yellow crystals of **1** were obtained, which were filtered off and dried in vacuum. Yield: 19%. Anal. Calcd. for $C_{40}H_{40}N_4O_8Br_4Cl_2PF_6DyZn_2$: C, 31.33; H, 2.63; N, 3.65. Found: C, 31.51; H, 2.67; N, 3.72.

Physical measurements

Elemental (C, H, and N) analyses were performed on a Leco CHNS-932 microanalyzer. IR spectra of powdered samples were recorded in the 400-4000 cm⁻¹ region on a Nicolet 6700 FTIR spectrophotometer using KBr pellets. Variable-temperature magnetic susceptibility (2-300 K) and magnetization measurements at 2 K and different magnetic fields (0-50 kOe) were carried out with a Quantum Design SQUID MPMS XL5 magnetometer. Diamagnetic corrections were estimated from the Pascal's constants. Alternating current magnetic measurements in a 3.5 G ac field were performed on a PPMS (Physical Property measurement System) - Quantum Design Model 6000.

Crystallographic data and Refinement

X-ray crystal data for **1** were collected with an Agilent Technologies Super-Nova diffractometer, which was equipped with monochromated Mo K α radiation ($\lambda = 0.71069$ Å) and Eos CCD detector. Data frames were processed (unit cell determinations, intensity data integrations, routine corrections for Lorentz and polarization effects and analytical absorption corrections) using the CrysAlis Pro software package.² The structures were solved by direct methods and refined by full-matrix least-squares with SHELXL-97.³

Final R(F), w $R(F^2)$ and goodness of fit agreement factors, details of the data collection and analysis can be found in Table S1. Selected bond lengths and angles are given in Table S2.

- (2) CrysAlisPro Software System, Agilent Technologies UK Ltd, Oxford, UK, 2012.
- (3) G. M. Sheldrick, Acta Crystallogr., Sect. A: Fundam. Crystallogr., 2008, 64, 112.

Compound	1
Formula	$C_{40}H_{40}Br_4Cl_2DyF_6N_4O_8PZn_2$
<i>M</i> _r	1533.51
Crystal system	Monoclinic
Space group (no.)	C2/c (15)
<i>a</i> (Å)	17.1014(2)
b (Å)	18.2552(3)
<i>c</i> (Å)	15.9346(2)
α (°)	90.00
β (°)	97.4595(12)
γ (°)	90.00
V (Å ³)	4932.51(11)
Ζ	4
<i>D_c</i> (g cm ⁻³)	2.065
μ(MoKα) (mm ⁻¹)	5.921
<i>Т (</i> К)	100(2)
Observed reflections	4336 (3679)
R _{int}	0.0393
Parameters	310
GOF	1.048
$R_1^{a,b}$	0.0412 (0.0307)
wR ₂ ^c	0.0653 (0.0613)
Largest difference in peak and hole (e Å-3)	0.891 and -0.540

Table S1.- Crystallographic data for 1.

^a $R_1 = \Sigma ||F_0| - |F_c|| / \Sigma |F_0|$.

^b Values in parentheses for reflections with $l > 2\sigma(l)$.

 ${}^{c}wR_{2} = \{\Sigma[w(F_{o}{}^{2}-F_{c}{}^{2})^{2}] \ / \ \Sigma[w(F_{o}{}^{2})^{2}]\}^{\frac{1}{2}}$

Compound	1
Dy(1)-Zn(1)	3.550(1)
Dy(1)-O(1)	2.393(3)
Dy(1)-O(2)	2.340(3)
Dy(1)-O(3)	2.275(3)
Dy(1)-O(4)	2.386(3)
Zn(1)-N(1)	2.153(3)
Zn(1)-N(2)	2.106(3)
Zn(1)-O(2)	2.066(3)
Zn(1)-O(3)	2.138(3)
Zn(1)-Cl(1)	2.217(1)
Dy(1)-O(2)-Zn(1)	107.2(1)
Dy(1)-O(3)-Zn(1)	107.1(1)
Zn(1)-Dy(1)-Zn(1)	109.48(1)
O(1)-Dy(1)-O(2)	71.8(1)
O(1)-Dy(1)-O(4)	77.6(1)
O(2)-Dy(1)-O(3)	68.1(1)
O(3)-Dy(1)-O(4)	73.0(1)
O(2)-Zn(1)-O(3)	75.9(1)
O(2)-Zn(1)-Cl(1)	107.62(9)
O(3)-Zn(1)-Cl(1)	101.78(8)

Table S2.- Selected bond lengths (Å) and angles (°) for 1.

The [ZnCl(L)Dy]²⁺ subunit with the labelling used in Table S2.

Computational details

Low-energy spectra and g factors of the eight lowest Kramers doublets of **1** were obtained by means of CASSCF+RASSI calculations, as implemented in the MOLCAS 7.8 software package.⁴ The method is divided in two steps: 1) CASSCF(9,7) calculations for three different multiplicities (sextet, quartet and doublet), 2) The effect of spin–orbit coupling on the basis of the converged wavefunctions obtained in the previous step is included by the restricted active space state interaction (RASSI) method. Spin Hamiltonian parameters (such as g factors) can be calculated from the wavefunctions resulting from the state interaction step employing the SINGLE ANISO program. We included 21, 128 and 98 roots for the sextet, quartet and doublet CASSCF calculations, while the employed basis set has the following contractions: Dy[9s8p6d4f3g2h]; Br [4s3p2d1f]; Zn [4s3p2d1f]; Cl [4s3p1d]; O [4s3p2d1f]; N [4s3p2d1f]; C [3s2p]; H [2s]. The structure of the model was extracted from the corresponding X-ray structure without any ligand truncation. Electrostatic potential maps were obtained by DFT calculations (functional: B3LYP, basis: TZVP, program: Gaussian09),⁵ employing the DyIII ion.

- (4) F. Aquilante, L. De Vico, N. Ferré, G. Ghigo, P.-Å. Malmqvist, P. Neogrády, T. B. Pedersen, M. Pitoňák, M. Reiher, B. O. Roos, L. Serrano-Andrés, M. Urban, V. Veryazov and R. J. Lindh, *Comput. Chem.* 2010, **31**, 224.
- (5) Gaussian 09, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian: Wallingford, CT, 2009.

Table S3.- Continuous Shape Measures Calculations for LnO_8 coordinationenvironment in compounds 1 and 1 a

Compound 1

OP-8	1	D8h	Octagon
HPY-8	2	C7v	Heptagonal pyramid
HBPY-8	3	D6h	Hexagonal bipyramid
CU-8	4	Oh	Cube
SAPR-8	5	D4d	Square antiprism
TDD-8	6	D2d	Triangular dodecahedron
JGBF-8	7	D2d	Johnson gyrobifastigium J26
JETBPY-8	8	D3h	Johnson elongated triangular bipyramid
J14			
JBTPR-8	9	C2v	Biaugmented trigonal prism J50
BTPR-8	10	C2v	Biaugmented trigonal prism
JSD-8	11	D2d	Snub diphenoid J84
TT-8	12	Τd	Triakis tetrahedron
ETBPY-8	13	D3h	Elongated trigonal bipyramid

Compound	1					
Structure	[ML8]		OP-8	HP	Y-8	HBPY-8
CU-8	SAPR-	8	TDD-8	JG	BF-8	JETBPY-8
JBTPR-8	BT	PR-8	JSD	-8	TT-8	ETBPY-8
Т14	,	3	0.192,	23.0	90,	16.569,
10.538,	0.	547 <mark>,</mark>	2.87	Ο,	15.239,	26.011,
3.365,	2.7	16,	5.868	, 1	1.334,	21.716
<u>Compound</u>	<u>1a</u>					
ETBPY-8	TT-8	JSD-8	BTPR-8	JBTPR-8	JETBPY-8	JGBF-8
24.742,	8.029,	5.750,	2.862,	3.321,	29.125,	15.237,
TDD-8	SAPR-8	CU-8	HBPY-8	HPY-8	OP-8	
2.173,	0.927,	7.165,	13.663,	21.555,	31.300	

Table S4.- Continuous Shape Measures Calculations for ZnN2O2Cl coordination environment in compound 1.

<u>Compound 1</u>			
PP-5	1	D5h	Pentagon
vOC-5	2	C4v	Vacant octahedron
TBPY-5	3	D3h	Trigonal bipyramid
SPY-5	4	C4v	Spherical square pyramid
JTBPY-5	5	D3h	Johnson trigonal bipyramid J12

Structure	[ML5]	PP-5	vOC-5	TBPY-5
SPY-5	JTBPY-5			
T14	,	32.506,	3.519,	4.070,
0.678,	7.170			

Figure S1.-Temperature dependence of the molar in-phase ac susceptibility (χ_M) for **1** under zero (up) and 1000 Oe (bottom) *dc* applied field at different frequencies.

Figure S2.- Cole-Cole plot for 1 under zero (left) and 1000 Oe (right) *dc* applied field at different temperatures.

Figure S3.-Frequency dependence of the molar out-of-phase ac susceptibility (χ_M ") for **1** under zero (up) and 1000 Oe (bottom) *dc* applied field at different temperatures.

Doublet	Energy (cm ⁻¹)	gz	gy	g _x	Angle wrt. Ground doublet (degrees)
1	0.0	19.636	0.000	0.000	-
2	144.2	16.561	0.045	0.041	2.4
3	243.3	11.630	4.457	1.959	47.5
4	264.7	8.895	3.944	2.703	61.9
5	323.3	6.866	2.722	0.859	14.8
6	347.4	2.488	8.210	11.024	22.7
7	369.2	19.499	0.737	0.428	89.9
8	491.8	19.581	0.002	0.001	53.1

Table **S5.-** Calculated energies (cm⁻¹) and g-factors for the eight lowest Kramers' doublets.

Figure S4.- Beta spin density of the Dy^{III} f electrons for the first 4 non-relativistic states.

Table **S6.-** First excitation energies (cm⁻¹) from the states stemming form the ground ⁶H term at CASSCF level.

State	Energy (cm ⁻¹)
1	0.0
2	0.6
3	200.6
4	236.2
5	305.5
6	346.1
7	394.5
8	418.3
9	424.7
10	562.1

FigureS5.- DyO_8 coordinationpolyhedrafor $[ZnCl(\mu-L)Dy(\mu-L)ClZn]PF_6$.L)ClZn][ZnCl₃(CH₃OH)] and [ZnCl(μ -L)Dy(μ -L)ClZn]PF₆.

Figure S6.- Eight lowest Kramers doublets (KDs) and *ab initio* computed relaxation mechanism in **1.** The thick black lines imply KDs as a function of their magnetic moment along the main anisotropy axis. The red lines correspond to ground state QTM and TA-QM via the first and second excited KDs, blue lines show possible Orbach relaxation processes. The values indicated close to the arrows indicate the matrix elements of the transition magnetic moments.

Figure S7. Experimental (top) and simulated (bottom) powder X-ray diffractograms for **1**.