Engineering polypeptide folding through *trans* double bonds: Transformation of miniature β -meanders to hybrid helices

Mothukuri Ganesh Kumar,^a Sushil N. Benke,^a K. Muruga Poopathi Raja^{*b} and Hosahudya N. Gopi^{*a}

^a Department of Chemistry, Indain Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune-411 008, India

^b Department of Physical Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai-625 021, India

*Corresponding authors: hn.gopi@iiserpune.ac.in; murugapoopathiraja@gmail.com

List of Contents

1.	ORTE	EP diagrams of peptides P1, P3 and P4	S2			
2.	Hydro	gen bonding parameters for peptidesP1, P3 and P4	S6			
	i)	Intra-molecular hydrogen bonding parameters				
	ii)	Intermolecular hydrogen bonding parameters				
3.	Torsio	on angle tables for peptides P1, P3 and P4	S10			
4.	Crystallographic information of peptides P1,P3 and P4					
5.	Gener	al experimental details	S13			
6.	2D NN	MR data of peptides P1 and P2	S14			
	i)	List of NOE's of peptides				
	ii)	ROESY and TOCSY spectra of peptides				
	iii)	Schematic representation of observed NOEs				
7.	Synthe	esis and characterization of Boc-dyF-OEt,Boc-dyA-OEtand peptides	S22			
8.	CD sp	bectra of peptides	S26			
9.	9. HPLC traces of peptides					
10	Variat	ble Temperature ¹ H NMR experiments of peptides P1 and P2	S 31			
11	11. References					
12	¹ H NN	AR and MALDI-TOF/TOF spectra of peptides	S35			

1. ORTEP diagrams of peptides

Figure S1: A) ORTEP diagram of hybrid peptide Boc-(LUd γ F)₂-OEt (**P1**) containing α , β unsaturated γ -phenylalanine residues (represented by green color atoms) where ellipsoids are drawn to 70% probability. Hydrogen bonds are represented in dotted lines. Only polar H-atoms were shown for clarity. (CCDC number 1063358). B) View of Crystal packing for**P1**along baxis.

Figure S2: ORTEP diagram of hybrid peptide Boc- $(LU\gamma F)_2$ -OEt(**P3**)containing γ^4 -phenylalanine residues (represented by green color atoms) where ellipsoids are drawn to 70% probability. Two molecules of **P3** present in an asymmetric unit.Hydrogen bonds are represented in dotted lines. Only polar H-atoms were shown for clarity. (CCDC number 1060827).

Figure S3: ORTEP diagram of peptide Boc- $(LU\gamma F)_2$ -OEt(**P3**)(showing one molecule) where ellipsoids are drawn to 70% probability. Hydrogen bonds are represented in dotted lines. Only polar H-atoms were shown for clarity.

Figure S4: ORTEP diagram of peptide Boc- $(LU\gamma A)_2$ -OEt(**P4**)containing γ^4 -alanine residues (represented by green color atoms) where ellipsoids are drawn to 69% probability. One ethanol solvent molecule present in the asymmetric unit. Hydrogen bonds are represented in dotted lines. Only polar H-atoms are shown for clarity. (CCDC number 1060826).

2. H-bond Parameters

Table S1: Peptide P1 [Boc-LUdyFLUdyF-OEt]

Donor	Acceptor	DA	DHA	∠NHO
(D)	(A)	(Å)	(Å)	(deg)
N4	O2	2.944	2.235	139.70
N6	05	2.853	2.055	153.98

i) Intramolecular H-bond parameters

ii) Intermolecular H-bond parameters

Donor	Acceptor	DA	DHA	∠NHO
(D)	(A)	(Å)	(Å)	(deg)
N1	O4 [§]	2.931	2.160	148.05
N2	O3 [§]	3.063	2.238	160.90
N5	$\mathbf{O7}^{\dagger}$	2.934	2.075	176.72
O3	$N2^{\ddagger}$	3.063	2.238	160.90
O4	$N1^{\ddagger}$	2.931	2.160	148.05
07	N5 [*]	2.934	2.075	176.72

Symmetry transformations used to generate equivalent atoms:

§ 1.5-x, 1/2+y, 2-z;† 1.5-x, 1/2+y, 1-z; ‡ 1.5-x, 1/2+y, 2-z;* 1.5-x, 1/2+y, 1-z

Acceptor	Donor	DA	DHA	∠NHO
(A)	(D)	(Å)	(Å)	(deg)
O2 (A)	N19 (A)	3.08	2.35	142.8
O3 (A)	N16 (A)	2.95	2.12	163.5
O4 (A)	N18 (A)	2.99	2.14	169.5
O5 (A)	N17 (A)	2.84	2.04	153
O11 (B)	N26 (B)	2.99	2.25	143.9
O12 (B)	N23 (B)	2.92	2.07	164.8
O13 (B)	N24(B)	3.04	2.20	165
O14 (B)	N25 (B)	2.84	2.03	157.4

Table S2: Peptide P3[Boc-LU_γFLU_γF-OEt]

i) Intramolecular H-bond parameters for two molecules A and B in the asymmetric unit

Donor	Acceptor	DA	DHA	∠NHO
(D)	(A)	(Å)	(Å)	(deg)
Molecule A				
N14	016*	2.90	2.153	161
N15	O19 [*]	3.00	2.068	169
O00B	O21 [#]	2.70	-	-
$\mathbf{O8}^\dagger$	O21 [#]	2.97	-	-
O7	O20	2.84	-	-
O7	N20 (B)	2.87	2.04	161
Mologulo B				
Molecule D	-	• • •		
N20	O7 (A)	2.87	2.04	161
N21	O20	2.99	2.14	167
O16	O19	2.84	-	-
N14 (A) [‡]	O16	2.90	2.07	161

ii) Intermolecular H-bond parameters for two molecules A and B in the asymmetric unit

Symmetry transformations used to generate equivalent atoms:

*x, y, -1+z; # -1+x, y, z; † 1+x, y, z; ‡ x, y, 1+z

Table S3: Peptide P4 [Boc-LUγALUγA-OEt]

Acceptor	Donor	DA	DHA	∠NHO
(A)	(D)	(Å)	(Å)	(deg)
09	N3	2.92	2.162	146.95
08	N4	2.94	2.0841	171.6
07	N5	2.93	2.102	160.68
O6	N6	3.00	2.209	153.93

i) Intramolecular Hydrogen bond parameters

ii) Intermolecular Hydrogen bond parameters

Acceptor	Donor	DA	DHA	∠NH0
(A)	(D)	(Å)	(Å)	(deg)
N1	O4 *	2.80	1.95	168
O4	N1 [†]	2.80	1.95	168
O4 [‡]	O10 [#]	2.88	2.14	165

Symmetry transformations used to generate equivalent atoms:

* 1+x, 1+y, 1+z; [†]-1+x, -1+y, -1+z; [#]x, -1+y, z; [‡]x, 1+y, z

3. Torsion angles of hybrid peptides

Table S4: Tors	sion angles	of peptides	P1,	P4	and	P6 .
----------------	-------------	-------------	-----	-----------	-----	-------------

Pept.	Resd.	ϕ	θ_1	θ_2	Ψ	ω
	Leu1	-95	-	-	-46	-163
	Aib2	-60	-	-	-45	-174
D1	dyF3	-129	18	-178	178	-178
P1	Leu4	-48	-	-	128	177
	Aib5	68	-	-	11	173
	dyF6	-122	118	-178	-10	-
	Leu1	-53	-	-	-40±2	-175±2
	Aib2	-57	-	-	-34	-174
D4	γF3	-127±1	52	61	-114	-175±1
Г4	Leu4	-55±2	-	-	-39	178
	Aib5	-59	-	-	-25	-173±1
	γF6	-104	172±4	176/-161	98±15	-
	Leu1	-46	-	-	-41	-177
	Aib2	-54	-	-	-37	-173
D6	γA3	-132	55	59	-122	-169
10	Leu4	-62	-	-	-37	-178
	Aib5	-67	-	-	-12	-177
	γΑ6	-121	74	82	172	-

4. Crystallographic Information

Crystal structure analysis of Boc-L-U-dγF-L-U-dγF-OEt (P1): Crystals of peptide were grown by slow evaporation from a solution of methanol/toluene (1:1). A single crystal (0.21 × 0.08 × 0.1 mm) was mounted on loop with a small amount of the paraffin oil. The X-ray data were collected at 100K temperature on a Bruker APEX(II) DUO CCD diffractometer using Mo K_a radiation ($\lambda = 0.71073$ Å), ω -scans (2 $\theta = 52.52$), for a total of 14074 independent reflections. Space group C2, a = 35.352(11), b = 10.430(3), c = 17.876(5), $\beta = 107.549(5)$, V = 6285 (3) Å³, Monoclinic C, Z = 4 for chemical formula C₄₉H₇₂N₆O₉ (C₇H₈), with one molecule in asymmetric unit; ρ calcd = 1.037 gcm⁻³, $\mu = 0.070$ mm⁻¹, F(000) = 2120, R_{int} = 0.0506. The structure was obtained by direct methods using SHELXS-97.¹ The final R value was 0.0542 (wR2 = 0.1280) 14074 observed reflections ($F_0 \ge 4\sigma$ (|F₀|)) and 589 variables, S = 0.832. The largest difference peak and hole were 0.228 and -0.256 eÅ³, respectively.

There is some partially occupied solvent molecule also present in the asymmetric unit. A significant amount of time was invested in identifying and refining the disordered molecule. Option SQUEEZE of program PLATON² was used to correct the diffraction data for diffuse scattering effects and to identify the solvent molecule. PLATON calculated the upper limit of volume that can be occupied by the solvent to be 1740 Å³, or 27.7% of the unit cell volume. The program calculated 118 electrons in the unit cell for the diffuse species. No data are given for the diffusely scattering species. Outputs of SQUEEZE report are appended in cif file **P1**.

Crystal structure analysis of Boc-L-U- γ **F-L-U-** γ **F-OEt (P3):** Crystals of peptide were grown by slow evaporation from a solution of methanol. A single crystal (0.12 × 0.09 × 0.1 mm) was mounted on loop with a small amount of the paraffin oil. The X-ray data were collected at 100K temperature on a Bruker APEX(II) DUO CCD diffractometer using Mo K_{α} radiation (λ = 0.71073 Å), ω -scans (2 θ = 56.7), for a total of 90866 independent reflections. Space group P 21, a = 9.286 (3), b = 20.892 (7), c = 27.661 (9), β = 98.639(6), V = 5305 (3) Å³, Monoclinic C, Z = 2 for chemical formula C₄₉ H₇₆ N₆ O₉(CH₄ O, 3 O), with two molecule in asymmetric unit; ρ calcd = 1.168 gcm⁻³, μ = 0.082 mm⁻¹, F(000) = 1936, R_{int} = 0.1470. The structure was obtained by direct methods using SHELXS-97.¹ The final R value was 0.1509 (wR2 = 0.3727) 26002 observed reflections ($F_0 \ge 4\sigma(|F_0|)$) and 1224 variables, S = 1.642.

There are partially occupied solvent molecules along with peptide molecules.Option SQUEEZE of program PLATON² was used to correct the diffraction data for diffuse scattering effects and to identify the solvent molecule. PLATON calculated the upper limit of volume that can be occupied by the solvent to be 470 Å³, or 8.8% of the unit cell volume. Outputs of SQUEEZE report are appended in CIF file **P4**.This structure contains ethyl ester groups. Even though this structure was collected at 100K the thermal parameters for one of the ethyl ester group was very high. This was attempted to be modeled as disorder but this was not successful. The conclusion is that this group is not well defined and thus was refined isotropically.

Crystal structure analysis of Boc-L-U- γ **A-L-U-** γ **A-OEt (P4):** Crystals of peptide were grown by slow evaporation from a solution of ethanol. A single crystal (0.15 × 0.04 × 0.07 mm) was mounted on loop with a small amount of the paraffin oil. The X-ray data were collected at 100K temperature on a Bruker APEX(II) DUO CCD diffractometer using Mo K_a radiation ($\lambda =$ 0.71073 Å), ω -scans (2 θ = 56.9), for a total of 7174 independent reflections. Space group P1, a = 9.7972 (4), b = 10.4809 (5), c = 12.3285 (6), $\beta = 102.4740$ (10), V = 1132 (9) Å³, Triclinic, Z = 1 for chemical formula C₃₇ H₆₈ N₆ O₉ (C₂ H₆ O), with one molecule in asymmetric unit; ρ calcd = 1.129 gcm⁻³, $\mu = 0.081$ mm⁻¹, F (000) = 419, R_{int} = 0.0401. The structure was obtained by direct methods using SHELXS-97.¹ The final R value was 0.035 (wR2 = 0.1052) 7363 observed reflections ($F_0 \ge 4\sigma$ (IF₀I)) and 514 variables, S = 0.908.

5. General experimental details

All amino acids, triphenylphosphine, TFA, Ethyl bromoacetate, DCC, HOBt and LAH were commercially available. DCM, DMF, ethyl acetate and petether(60-80 °C) have used after distillation. THF was dried over sodium and distilled immediately prior to use. Column chromatography was performed on silica gel (120-200 mesh). Final peptides were purified on reverse phase HPLC (C18 column, MeOH/H₂O 60:40-95:5 as gradient with flow rate 1.00 mL/min). ¹H spectra were recorded on 500 MHz (or ¹³C on 125 MHz) and 400 MHz (or ¹³C on 100 MHz) using residual solvents as internal standards (CDCl₃ δ_H 7.26 *ppm*, δ_C 77.3 *ppm*). Chemical shifts (δ) reported in *ppm* and coupling constants (*J*) reported in Hz.

NMR spectroscopy: All NMR studies were carried out by using a Bruker AVANCE^{III}-500 MHz spectrometer. Resonance assignments were obtained by TOCSY and ROESY analysis. All two-dimensional data were collected in phase-sensitive mode, by using the time-proportional phase incrementation (TPPI) method. Sets of 1024 and 512 data points were used in the t_2 and t_1 dimensions, respectively. For TOCSY and ROESY analysis, 32 and 72 transients were collected, respectively. A spectral width of 6007 Hz was used in both dimensions. A spin-lock time of 256 ms was used to obtain ROESY spectra. Zero-filling was carried out to finally yield a data set of 2 K × 1 K. A shifted square-sine-bell window was used before processing.

Circular dichroism (CD) spectroscopy:CD analysis was performed using cylindrical, jacketed quartz cell (1 mm path length). Spectra were recorded with a spectral resolution of 0.05 nm, band width 1 nm at a scan speed of 50nm/min and a response time 1 sec. All the spectra were corrected for water solvent and are typically averaged over 3 scans.

6. 2D NMR data of Peptides P1 and P2

Residue	H-atom	Residue	H-atom	NOE observed
Leu (1)	α CH	Aib (2)	NH	Strong
Leu (1)	NH	Aib (2)	NH	Strong
Leu (1)	NH	Leu (1)	αCH	Medium
Leu (1)	NH	Leu (1)	β CH	Strong
Leu (1)	NH	Leu (1)	у СН	Strong
Leu (1)	NH	Leu (1)	$\delta \mathrm{CH}$	Strong
Leu (1)	αCH	Aib (2)	(CH ₃) ₂	Strong
Aib (2)	NH	dγF (3)	NH	Strong
Aib (2)	NH	Aib (2)	(CH ₃) ₂	Strong
dγF (3)	NH	Aib (2)	(CH ₃) ₂	Medium
dγF (3)	αCH	Leu (4)	NH	Strong
dγF (3)	NH	dγF (3)	ω CH ₂	Strong
dγF (3)	β CH	dγF (3)	ω CH ₂	Strong
dγF (3)	у СН	dγF (3)	Aromatic	Strong
dγF (3)	aСН	dγF (3)	у СН	Weak
Leu (4)	NH	Leu (4)	β CH	Medium
Leu (4)	NH	Leu (4)	у СН	Weak
Aib (5)	NH	Leu (4)	β CH	Weak
Aib (5)	NH	Leu (4)	αCH	Strong
Aib (5)	NH	dγF (6)	NH	Strong
Aib (5)	NH	Aib (5)	(CH ₃) ₂	Strong
dγF (6)	NH	Aib (5)	(CH ₃) ₂	Medium
dγF (6)	NH	dγF (6)	ω CH ₂	Strong
dγF (6)	NH	dγF (6)	αCH	Strong
dγF (6)	αCH	dγF (6)	$\omega \operatorname{CH}_2$	Weak
dγF (6)	αCH	dγF (6)	γСН	Weak
dγF (6)	αCH	Aib (5)	(CH ₃) ₂	Weak
dγF (6)	β CH	dγF (6)	ω CH ₂	Strong

 Table S5: List of NOE's observed in ROESY spectrum of P1

Figure S5: Partial ROESY spectrum of Peptide P1.

Figure S6: Partial ROESY spectrum of Peptide P1.

Figure S7: Partial ROESY spectrum of Peptide P1.

Figure S8: Partial ROESY spectrum of Peptide P1.

Residue	H-atom	Residue	H-atom	NOE observed
Leu (1)	NH	Aib (2)	NH	Strong
Leu (1)	α CH	Aib (2)	NH	Strong
Leu (1)	NH	Aib (2)	(CH ₃) ₂	Medium
Leu (1)	NH	Leu (1)	β CH	Strong
Leu (1)	NH	Leu (1)	у СН	Weak
Aib(2)	NH	dγA (3)	NH	Weak
Aib(2)	NH	Aib (2)	(CH ₃) ₂	Strong
Aib(2)	(CH ₃) ₂	dγA (3)	NH	Strong
Aib(2)	(CH ₃) ₂	dγA (3)	α CH	Weak
Aib(2)	(CH ₃) ₂	dγA (3)	у СН	Weak
dγA (3)	NH	dγA (3)	CH ₃	Strong
dγA (3)	β CH	dγA (3)	CH ₃	Strong
dγA (3)	β CH	dγA (6)	CH ₃	Strong
dγA (3)	α CH	Leu (4)	NH	Strong
dγA (3)	α CH	dγA (3)	NH	Strong
dγA (3)	α CH	dγA (3)	CH ₃	Medium
Leu (4)	NH	Leu (4)	β CH	Medium
Leu (4)	NH	Leu (4)	у СН	Medium
Leu (4)	α CH	Aib (5)	NH	Strong
Leu (4)	α CH	Leu (4)	$\delta \mathrm{CH}$	Strong
Aib (5)	NH	dγA (6)	NH	Medium
Aib (5)	NH	Aib (5)	(CH ₃) ₂	Strong
Aib (5)	(CH ₃) ₂	dγA (6)	NH	Strong
Aib (5)	(CH ₃) ₂	dγA (6)	α CH	Weak
Aib (5)	(CH ₃) ₂	dγA (6)	у СН	Strong
dγA (6)	α CH	dγA (6)	NH	medium
dgA (6)	α CH	dgA (6)	CH ₃	Weak
dgA (6)	NH	dgA (6)	CH ₃	Strong
dgA (6)	β CH	dgAs(67)	CH ₃	Strong

Table S6: List of NOE's observed in ROESY spectrum of P2

Figure S9: Partial ROESY spectrum of Peptide P2.

Figure S10: Partial ROESY spectrum of Peptide P2.

Figure S11: Partial TOCSY spectrum of Peptide P2.

Figure S12: Partial TOCSY spectrum of Peptide P2.

Figure S13: Partial TOCSY spectrum of Peptide P2.

Figure S14: Partial TOCSY spectrum of Peptide P2.

Figure S15: A) Observed NOEs of the peptide **P1** in the ROESY are schematically represented by double headed arrows.

Figure S15: B) Observed NOEs of the peptide **P2** in the ROESY are schematically represented by double headed arrows.

iii)

Molecular Dynamics (MD): Model building and molecular dynamics simulation of **P1** and **P2** was carried out using Insight II (97.0) / Discover program on a Silicon Graphics Octane workstation. The cvff force field with default parameters was used throughout the simulations. Minimization's were done first with steepest decent, followed by conjugate gradient methods for a maximum of 1000 iterations each or RMS deviation of 0.001 kcal/mol, whichever was earlier. The energy-minimized structures were then subjected to MD simulations. A number of inter atomic distance constraints obtained from NMR data were used as restraints in the minimization as well as MD runs. For MD runs, a temperature of 300 K was used. The molecules were initially equilibrated for 50 ps and subsequently subjected to a 1 ns dynamics with a step size of 1 fs, sampling the trajectory at equal intervals of 10 ps. In trajectory 50 samples were generated and the best structures were again energy minimized with above protocol and superimposed these structures.

7. Synthesis and Characterization of Boc-dyF-OEt, Boc-dyA-OEt and Peptides P1-P4

Synthesis of Boc- $d\gamma X$ -OEt:³N-Boc-Amino aldehyde (10 mmol) was dissolved in 30 mL of dry THF followed by Wittig ylide (11 mmol) was added at RT. Reaction mixture was stirred for about 5 hrs at RT. Completion of the reaction was monitored by TLC. After completion, solvent was evaporated and the crude product was purified by column chromatography using EtOAc/pet ether to get (88%) of pure product.

(*S*,*E*)-*ethyl* 4-((*tert-butoxycarbonyl*)*amino*)-5-*phenylpent*-2-*enoate*:³White powder solid;Yield 88%; ¹H NMR (400 MHz, CDCl₃) δ 7.30-7.14 (m, 5H), 6.89 (dd, *J*=16 Hz, *J*=4 Hz, 1H), 5.84 (dd, *J*=16 Hz, *J*=2 Hz, 1H), 4.59 (b, 1H), 4.16 (q, *J*=7 Hz, 2H), 2.88 (m, 2H), 1.37 (s, 9H), 1.25 (t, *J*=7.1 Hz, 3H); ¹³CNMR (100 MHz, CDCl₃) δ166.3, 155.2, 147.6, 136.4, 129.4, 128.6, 126.9,

121.1, 79.9, 60.5, 52.3, 40.9, 28.3, 14.2; MALDI TOF/TOF *m*/*z* calculated value for C₁₈H₂₅NO₄ [M+Na⁺] 342.1676 and observed 342.1657.

(S,E)-ethyl 4-((tert-butoxycarbonyl)amino)pent-2-enoate:³Colourless Oil; Yield 93%; ¹H NMR(400 MHz, CDCl3) δ 6.87-6.82 (dd, J = 16 Hz, J = 4 Hz, 1H), 5.89-5.85 (d, J = 16 Hz, 1H), 4.5 (br, 1H), 4.38 (br, 1H), 4.19-4.14(q, J=8 Hz, 2H), 1.43 (s, 9H), 1.26-1.24 (m, 6H); ¹³C 166.4, 154.9, 120.2, 79.8, 60.5, 47.0, NMR(100 MHz, CDCl3) 28.4, 20.4, $C_{12}H_{21}NO_{4}[M+Na]^{+}$ 14.3:MALDI.TOF/TOF*m*/z Calculated value for 266.1368 and Observed266.1365.

Procedure for the synthesis of Boc-L-U- $d\gamma X$ -L-U- $d\gamma X$ -OEt: Tripeptide and hexapeptide were prepared by conventional solution-phase fragment condensation strategy. Deprotections were performed with trifloroacetic acid and saponification for *N*- and *C*-termini respectively. Couplings were carried out using dicyclohexcarbodimide (DCC) and 1-hydroxybenzotriazole (HOBt). Tripeptide was synthesised using 1+2 condensation strategy involving Boc-Leu-OH and NH₂-U-dgF-OEt. Hexapeptide was synthesized by 3+3 condensation strategy involving Boc-L-U-dgX-COOH and NH₂-L-U-dgX-OEt. All peptides were purified by RP-HPLC using MeOH/H₂O system.

Boc-LUdγF-OEt: White solid; yield 88%;¹H NMR (400 MHz, CDCl₃) δ 7.30 (bs, 1H), 7.29-7.17 (m, 5H), 7.06 (d, *J*=7.8 Hz, 1H), 6.92 (dd, *J* = 15.8 Hz, *J* = 4.8 Hz, 1H), 6.47 (bs, 1H) 5.90 (d, *J* = 15.57 Hz, 1H), 4.90 (m, 2H), 4.16(q, 2H, *J* = 8 Hz), 2.91 (m, 2H) , 1.65 (m, 2H), 1.50-1.40 (m, 16H), 1.26 (t, *J*= 7.1, 3H), 0.94(m, 6H);¹³C NMR (100 MHz, CDCl₃) δ 173.53, 172.38, 147.05, 136.92, 129.35, 128.56, 126.83, 121.21, 80.82, 60.44, 57.54, 54.05, 53.53, 51.26, 40.62, 40.17, 34.03, 28.35, 25.61, 25.46, 25.03, 24.86, 23.03, 21.92, 14.33;HR-MS*m*/*z* calculated for $C_{28}H_{43}N_3O_6$ [M+Na]⁺ 540.3050, observed 540.3057.

Boc-LUdγA-OEt:¹H NMR (400 MHz, CDCl₃) δ 7.08 (d, J = 8 Hz, 1H), 6.88 (dd, J = 16 Hz, J = 4 Hz, 1H), 6.48 (s, 1H), 5.92 (d, J = 16 Hz, 1H), 4.99 (bs, 1H), 4.65 (m, 1H), 4.16 (q, J = 8 Hz, 2H), 3.90 (m, 1H), 1.65 (m, 2H), 1.52 (s, 3H), 1.51 (s, 3H), 1.42 (s, 9H), 1.26 (m, 6H), 0.93 (m, 6H); ¹³CNMR (100 MHz, CDCl₃) δ 173.5, 172.2, 166.7, 156.3, 149.1, 120.4, 80.8, 60.5, 57.5, 54.4, 46.1, 40.3, 28.4, 25.8, 24.9, 23.0, 22.0, 20.0, 14.4; HR-MS *m/z* value calculated for C₂₂H₃₉N₃O₆ [M+Na⁺] 464.2736, observed 464.2740.

Boc-L-U-dyF-L-U-dyF-OEt (*P1*): White color solid; Yield 50%; ¹H NMR (500 MHz, CDCl₃) δ 7.12-7.02 (m, 11H), 6.66 (dd, *J*=15.6 Hz, *J*=5 Hz, 1H), 6.77 (m, 2H), 6.43 (b, 1H), 6.40 (s, 1H), 6.35 (s, 1H), 6.13 (d, *J*=15 Hz, 1H), 5.88 (dd, *J*=16 Hz, *J*=1 Hz, 1H), 4.88 (d, *J*=5 Hz, 1H), 4.83 (m, 1H), 4.76 (m, 1H), 4.07 (m, 2H), 3.78 (m, 1H), 2.91-2.73 (m, 4H), 1.66-1.42 (m, 6H), 1.40-1.16 (m, 25H), 0.86 (m, 12H);HR-MS*m*/*z* calculated value for C₄₉H₇₂N₆O₉ [M+Na⁺] 911.5253, observed 912.5266.

Boc-L-U-dγA-L-U-dγA-OEt (*P2*): White color solid; Yield 72%; ¹H NMR (400 MHz, CDCl₃) δ 7.09 (d, J = 8 Hz, 1H), 7.01 (d, J = 8 Hz, 1H), 6.93 (d, J = 4 Hz, 1H), 6.89 (d, J = 4 Hz, 1H), 6.80 (d, J = 4 Hz, 1H), 6.76 (d, J = 4 Hz, 1H), 6.72 (d, J = 8 Hz, 1H), 6.58 (s, 1H), 6.57 (s, 1H), 6.14 (d, J = 16 Hz, 1H), 5.93 (d, J = 16 Hz, 1H), 5.08 (d, J = 4 Hz, 1H), 4.70-4.60 (m, 2H), 4.20-4.12 (m, 4H), 3.92-3.87 (m, 1H), 1.74-1.47 (m, 22H), 1.44 (s, 9H), 1.29-1.21 (m, 11H), 0.98-0.91 (m, 15H); HR-MS*m*/z calculated value for C₃₇H₆₄N₆O₉ [M+Na⁺] 759.4632, observed 759.4623.

Transformation of β -miniature peptides into their saturated analogs of 10/12helices through catalytic hydrogenation:Boc-L-U-d γ X-L-U-d γ X-OEt (0.10 mmol, 100

mg) was dissolved in EtOH (4 mL), and was treated with 20 mg of 20% Pd/C. The hydrogen gas was supplied through balloon. The reaction mixture was stirred under hydrogen atmosphere for about 5 h. The completion of the reaction was monitored by MALDI-TOF/TOF and RP-HPLC. After the completion of reaction, the reaction mixture was diluted with EtOH (10 mL) and it was filtered through sintered funnel using celite bed and celite bed was washed with EtOH (3×15 mL). The filtrate was evaporated under *vacuum* to get white crystalline pure product.

Boc-L-U- γ *F-L-U-* γ *F-OEt* (*P3*): White color solid; Yield 90%; ¹H NMR (500 MHz, CDCl₃) δ 7.92 (bs, 1H), 7.62 (bs, 1H), 7.40 (d, *J* = 15 Hz), 7.29-7.10 (m, 11H), 6.92-6.90 (m, 2H), 6.74-6.63 (m, 2H), 5.53 (bs, 1H), 4.36-4.27 (m, 1H), 4.12-4.04 (m, 3H), 3.89-3.80 (m, 2H), 2.96-2.64 (m, 4H), 2.53-2.35 (m, 5H), 2.23-2.17 (m, 3H), 1.94-1.85 (m, 3H), 1.72-1.67 (m, 2H), 1.57 (s, 3H), 1.49 (s, 9H), 1.42 (s, 3H), 1.30 (s, 3H), 1.22 (t, *J* = 5 Hz, 3H), 1.02 (s, 3H), 0.98-0.88 (m, 12H); HR-MS*m*/*z* calculated value for C₄₉H₇₆N₆O₉ [M+Na⁺] 915.5571, observed 915.5574.

Boc-L-U- γ *A-L-U-* γ *A-OEt* (*P4*): White color solid; Yield 95%; ¹H NMR (400 MHz, CDCl₃) $\delta 8.03$ (s, 1H), 7.15 (s, 1H), 7.08 (s, 1H), 6.83 (d, *J* = 10 Hz, 1H), 6.63 (s, 1H), 5.10 (d, *J* = 5 Hz, 1H), 4.13-4.06 (m, 2H), 4.03-3.86 (m, 5H), 2.55-2.34 (m, 4H), 2.16-2.13 (m, 1H), 2.03-1.97 (m, 1H), 1.86-1.73 (m, 10H), 1.60 (s, 3H), 1.53 (s, 3H), 1.48 (s, 9H), 1.44 (s, 3H), 1.37 (s, 3H), 1.23 (t, *J* = 5 Hz), 1.14 (d, *J* = 5 Hz, 3H), 1.04 (d, *J* = 5 Hz, 3H), 1.00-0.90 (m, 14H); HR-MS *m/z* calculated value for C₃₇H₆₈N₆O₉ [M+Na⁺] 763.4945, observed 763.4940.

9. CD spectra of peptides

Figure S16: CD spectrum of peptide P1 in methanol (*c* 0.2 mM).

Figure S17: CD spectrum of peptide P2 in methanol (*c* 0.2 mM).

Figure S18: CD spectrum of peptide P3 in methanol (*c* 0.2 mM).

Figure S19: CD spectrum of peptide P4 in methanol (*c* 0.2 mM).

10. HPLC traces of peptides

Figure S20: HPLC trace of peptide P1.

Figure S21: HPLC trace of peptide P2.

Figure S22:HPLC trace of peptide P3.

Figure S23: HPLC trace of peptide P4.

11. Variable Temperature Study of Beta-meanders

Peptide P1:

Figure S24: Temperature dependent ¹H NMR spectra of amide NH region of P1.

 Table S7: Chemical shifts of amide NHs of peptide P1

Temperature	Leu1	Aib2	dγF3	Leu4	Aib5	dyF6
(0 °C)						
-40	5.34	6.73	6.99	7.59	6.44	7.47
-30	5.24	6.69	7.03	7.60	6.48	7.42
-20	5.15	6.62	7.06	7.47	6.47	7.38
-10	5.08	6.57	7.02	7.29	6.46	7.33
0	5.03	6.53	6.95	n.d	6.45	n.d

10	4.98	6.50	6.90	n.d	6.45	n.d
20	4.96	6.47	6.85	6.71	6.44	n.d
30	4.93	6.46	6.82	6.56	6.44	n.d
40	4.89	6.43	6.78	6.43	6.43	7.08
d∂/dT	-5.4	-3.8	-3.4	-16.0	-0.4	-4.9
(ppb K ⁻¹⁾	(± 0.49)	(± 0.29)	(± 0.56)	(± 0.99)	(± 0.17)	(± 0.75)

Figure S25:Plot of amides chemical shift and the temperature. The slope $d\delta/dt$ for all NHs is given in the Table S5.

Peptide P2:

Figure S26: Temperature dependent ¹H NMR spectra of amide NH region of P3

Temperature (0 °C)	Leu1	Aib2	dyA3	Leu4	Aib5	dyA6
-40	5.46	6.68	7.36	7.58	6.84	7.36
-30	5.36	6.66	7.29	7.55	6.67	7.35
-20	5.31	6.71	7.25	7.68	6.75	7.30
-10	5.22	6.69	7.19	7.54	6.69	7.25
0	5.15	6.63	7.13	7.38	6.67	7.19
10	5.09	6.58	7.06	7.11	6.62	7.13

Table S8: Chemical shifts of amide NHs of peptide P3

dδ/dT (ppb K ⁻¹)	-6.2 (±0.4)	-2.8 (±0.46)	-5.9 (±0.09)	-14.9 (±2.0)	-3.7 (±0.5)	-4.9 (±0.18)
40	4.98	6.49	6.89	6.54	6.51	7.00
30	5.00	6.51	6.95	6.64	6.53	7.04
20	5.02	6.53	7.00	6.86	6.56	7.08

Figure S27: Plot of amides chemical shift and the temperature. The slope $d\delta/dt$ for all NHs is given in the Table **S7**.

12. References:

- (a) SHELXS-97: G. M. Sheldrick, Acta Crystallogr. Sect A, 1990, 46, 467;(b) G. M. Sheldrick, SHELXL-97, Universität G□ttingen (Germany) 1997.
- 2. Spek, A. L. (1990) Acta. Cryst., A46, C34.
- (*a*) S. M. Mali, A.Bandyopadhyay, S. V. Jadhav, M. GaneshKumar and H. N. Gopi, *Org. Biomol. Chem.*, 2011, 9, 6566;(*b*) A. Bandyopadhyay and H. N. Gopi, *Org. Lett.*, 2012, 14, 2770.

Boc-LUdyF-OEt

Peptide P1

Peptide P2

Peptide

Peptide P4

