Supporting Information

Gold-catalyzed Formal $[4\pi+2\pi]$ -Cycloadditions of *tert*-Butyl

Propiolates with Aldehydes and Ketones

Somnath Narayan Karad, Wei-Kang Chung and Rai-Shung Liu*

Department of Chemistry, National Tsing-Hua University, Hsinchu Taiwan, ROC E-mail: <u>rsliu@mx.nthu.edu.tw</u>

Contents:

(1) Figure S1: Natural products containing 1,3-dioxin-6-one cores -	2
(2) Representative synthetic procedures	3
(3) Spectral data for key compounds (1a-1k, 3a-3v, 5a-5h, 6a-6c) -	б
(4) NOE effects for compounds 5 f	21
(5) X-ray crystallographic structure and data for compound 3a	22
(6) ¹ H and ¹³ C spectra of key compounds (1a-1k, 3a-3v, 5a-5h, 6a-	- 6c)29

(1) Natural products containing 1,3-dioxin-6-one cores (Figure S1):

Figure S1: Representataive natural products containing 1,3-dioxin-4-one skeleton

[S1] M. O. Adeboya, R. L. Edwards, T. Lassøe, D. J. Maitland, L. Shields and A. J. S. Whalley, J. Chem. Soc., Perkin Trans., 1 1996, 1419–1425.

[S2] L. Liu, T. Bruhn, L. Guo, D. C. Gotz, R. Brun, A. Stich, Y.Che and G. Bringmann, *Chem. Eur. J.*, 2011, **17**, 2604–2613.

[S3] L. Liu, S. B. Niu, X. H. Lu, X. L. Chen, H. Zhang, L. D. Guo and Y. S. Che, *Chem. Commun.*, 2010, 46, 460–462.

[S4] X.-L. Yang, J.-Z. Zhang and D.-Q. Luo, Nat. Prod. Rep., 2012, 29, 622-641.

[S5] L. Liu, Y. Li, L. Li, Y. Cao, L. Guo, G. Liu and Y. Che, J. Org. Chem., 2013, 8, 2992–3000;

[S6] a) Y. Yasuhara, T. Nishimura and T. Hayashi, *Chem. Commun.*, 2010, 46, 2130-2132; b)
D. H. Wadsworth, S. M. Geer and M. R. Detty, *J. Org. Chem.*, 1987, 52, 3662-3668; c) S.
Vercruysse, L. Cornelissen, F. Nahra, L. Collard and O. Riant, *Chem. Eur. J.*, 2014, 20, 1834-1838; d) H. Gao and J. Zhang, *Chem. Eur. J.*, 2012, 18, 2777–2782.

(2) Representative Synthetic procedures:

(a) General procedure:

Unless otherwise noted, all reactions were carried out under a nitrogen atmosphere in oven-dried glassware using standard syringe, cannula and septa apparatus. Tetrahydrofuran and hexanes were dried with sodium, benzophenone and distilled before use. Dichloromethane and DCE were dried over CaH₂ and distilled before use. Methanol and triethylamine (Et₃N) were stored over $4^{\text{Å}}$ molecular sieves prior to use. Reagents were purchased from commercial sources and used without purification, unless otherwise stated. Reactions were magnetically stirred and monitored by thin layer chromatography carried out on 0.25 mm E. Merck silica gel plate (60f- 254) using UV light as visualizing agents and ethanolic solution of phosphomolybdic acid, and heat as deveoling agents. ¹H NMR and ¹³C

NMR spectra were recorded on a Bruker 400, Varian 500 MHz and a Bruker 600 MHz spectrometers using chloroform-d (CDCl₃) as the internal standard.

(b) Preparation of *tert*-butyl 3-phenylpropiolate (1h). [S6]

To a solution of 1-hexyne (1.0 g, 12.19 mmol) in dry THF (25 mL) at -78 °C was added *n*-BuLi (4.95 mL, 2.5 M in hexanes, 12.19 mmol), and reaction mixture was stirred for 30 min at -78 °C. Ethyl chloroformate (1.16 mL, 12.19 mmol) was then added, and the reaction mixture was warmed room temperature for additional stirring for 1.5 h. The reaction was quenched with ice cold water (100 mL) and extracted with Et_2O (3 x 100 mL). The organic layers were then combined and washed with brine (100 mL), and then dried over MgSO₄. The resulting organic layer was concentrated under reduced pressure, and the crude product was purified by flash chromatography on silica column (Hexanes/Ethyl acetate as a mobile phase) to afford 1.72g of ethyl hept-2-ynoate (**1a**) (92% yield, 11.21 mmol) as a colorless oil.

To a solution of ethyl hept-2-ynoate (1.0 g, 6.49 mmol) in 45 mL of ethanol was added slowly with stirring an aqueous sodium hydroxide solution (25 mL, 1 N). After 2.5 h, the reaction mixture was diluted with water (50 mL) and was washed with dichloromethane (2 X 25 mL). The aqueous phase was acidified with 20% HCl solution and was extracted with dichloromethane (3 X 50 mL). The combined extracts were dried over MgSO₄ and concentrated under reduced pressure to give 686 mg of hept-2-ynoic acid (85% yield, 5.44 mmol).

To a solution of hept-2-ynoic acid (1.0 g, 7.93 mmol) in 75 ml of DCM at 0 °C was added *tert*-butyl acetate (10.6 ml, 79.36 mmol) and TfOH (0.070 ml, 0.79 mmol) dropwise; the resulting solution was warmed room temperature with stirring for 2 hours before saturated NaHCO₃ was slowly introduced. The aqueous layer was extracted with DCM

(3x100 ml); the combined extracts were washed with saturated NaCl, then dried over MgSO₄, filtered, and concentrated under reduced pressure to give crude product. The crude product was purified by column chromatography on silica using ethyl acetate/hexanes = 1/10 as a mobile phase to give *tert*-butyl hept-2-ynoate (**1h**) (1.04 g, 2.63 mmol, 72%) as a colourless oil.

Other *tert*-butyl 3-propiolates (1a - 1k) were prepared by using the same procedure as that of *tert*-butyl hept-2-ynoate (1h).

(c) Typical procedure for standard catalytic operations:

(i) Typical procedure for the synthesis of 2,6-diphenyl-4*H*-1,3-dioxin-4-one (3a).

A two-neck flask was charged with chloro[(1,1'-biphenyl-2-yl)di-tert-butylphosphine] AuCl (13.1 mg, 0.0247 mmol) and silver hexafluoride (8.5 mg, 0.0247 mmol), and to this mixture was added dry DCE (1.0 mL). The resulting mixture was stirred at room temperature for 10 min. To this mixture was added a dry DCE solution (2 mL) of *tert*-butyl 3-phenylpropiolate (**1a**) (100 mg, 0.495 mmol) and benzaldehyde (209 mg, 1.98 mmol) dropwise. After stirring at 50 °C for 3.5 h, the reaction mixture was filtered over a short celite bed, concentrated, and eluted through a silica column to give the desired 2,6-diphenyl-4*H*-1,3-dioxin-4-one (**3a**) (108 mg, 0.396 mmol, 87 %) as white solid.

(ii) Typical procedure for the synthesis of 2-butoxy-6-phenyl-2*H*-pyran-4(3*H*)-one (5a).

A sealed tube was charged with chloro[(1,1'-biphenyl-2-yl)di-*tert*-butylphosphine] AuCl (13.1 mg, 0.0247 mmol) and silver hexafluoride (8.5 mg, 0.0247 mmol), and to this mixture was added dry toluene (1.0 mL); the resulting mixture was stirred at room temperature for 10 min. To this mixture was added a dry toluene solution (4 mL) of *tert*-butyl 3-phenylpropiolate (**1a**) (100 mg, 0.495 mmol) and acetone (114 mg, 1.98 mmol) dropwise. After stirring at 50 °C for 5 hour, the reaction mixture was added pyridine (7.8 mg, 0.99 mmol) and *n*-butyl vinyl ether (247 mg, 2.47 mmol) followed by stirring at 120 °C for 4 h. After completion of reaction, the resulting mixture was filtered over a short celite bed, concentrated, and eluted through a silica column to give the desired 2-butoxy-6phenyl-2*H*-pyran-4(3*H*)-one (**5a**) (85 mg, 0.346 mmol, 70 %) as white solid.

(iii) Typical procedure for the synthesis of 2,3,6-triphenyl-2H-1,3-oxazin-4(3H)-one

(6a):

A mixture of 2,2-dimethyl-6-phenyl-4*H*-1,3-dioxin-4-one (3v) (100 mg, 0.490 mmol) and (*E*)-N-benzylideneaniline (88.7 mg, 0.490 mmol) was heated at 120 °C without any solvent for 25 min. The white solid obtained was recrystallized from a mixture of ether-hexane (1:1) to afford desired product 2,3,6-triphenyl-2*H*-1,3-oxazin-4(3*H*)-one (**6a**) (104 mg, 0.524 mmol, 65 %) as white crystals.

(4) Spectral data:

Spectral data for tert-butyl 3-phenylpropiolate (1a).

Colorless oil; ¹H NMR (600 MHz, CDCl₃): δ 7.55 ~ 7.53 (m, 2 H), 7.41 ~ 7.38 (m, 1 H), 7.34 ~ 7.31 (m, 2 H), 1.52 (s, 9 H); ¹³C NMR (150 MHz, CDCl₃): δ 153.1, 132.8, 130.3,

128.5, 120.0, 83.8, 83.4, 82.0, 28.0; HRMS calcd. for $C_{13}H_{14}O_2$: 202.0994; found: 202.0984.

Spectral data for *tert*-butyl 3-(4-methoxyphenyl)propiolate (1b).

White solid; ¹H NMR (400 MHz, CDCl₃): δ 7.50 (d, *J* = 8.8 Hz, 2 H), 6.84 (d, *J* = 8.8 Hz, 2 H), 3.80 (s, 3 H), 1.52 (s, 9 H); ¹³C NMR (100 MHz, CDCl₃): δ 161.2, 153.3, 134.6, 114.1, 111.6, 84.5, 83.1, 81.3, 55.2, 28.0; HRMS calcd. for C₁₄H₁₆O₃: 232.1099; found: 232.1096. **Spectral data for** *tert*-butyl 3-(4-chlorophenyl)propiolate (1c).

White solid; ¹H NMR (600 MHz, CDCl₃): δ 7.47 (d, *J* = 8.4 Hz, 2 H), 7.31 (d, *J* = 8.4 Hz, 2 H), 1.51 (s, 9 H); ¹³C NMR (150 MHz, CDCl₃): δ 152.9, 136.6, 134.0, 128.9, 118.5, 83.7, 82.8, 82.4, 28.0; HRMS calcd. for C₁₃H₁₃ClO₂: 236.0604; found: 236.0601.

Spectral data for tert-butyl 3-(thiophen-2-yl)propiolate (1d).

Colorless oil; ¹H NMR (600 MHz, CDCl₃): δ 7.67 (dd, J = 3.0, 1.2 Hz, 1 H), 7.26 (d, J = 5.1, 3.0 Hz, 1 H), 7.17 (d, J = 5.1, 1.2 Hz, 1 H), 1.50 (s, 9 H); ¹³C NMR (150 MHz, CDCl₃): δ 153.1, 133.1, 130.1, 125.9, 119.1, 83.4, 81.9, 79.2, 28.0; HRMS calcd. for C₁₁H₁₂O₂S: 208.0558; found: 208.0559.

Spectral data for *tert*-butyl 3-(thiophen-3-yl)propiolate (1e).

Colorless oil; ¹H NMR (600 MHz, CDCl₃): δ 7.39 ~ 7.37 (m, 2 H), 6.99 ~ 6.96 (m, 1 H), 1.49 (s, 9 H); ¹³C NMR (150 MHz, CDCl₃): δ 152.9, 136.0, 130.6, 127.3, 119.6, 86.0, 83.5, 77.6, 27.9; HRMS calcd. for C₁₁H₁₂O₂S: 208.0558; found: 208.0550.

Spectral data for tert-butyl 4-methylpent-4-en-2-ynoate (1f).

Colorless oil; ¹H NMR (600 MHz, CDCl₃): δ 5.53 ~ 5.52 (m, 1 H), 5.44 ~ 5.43 (m, 1 H), 1.89 (m, 3 H), 1.47 (s, 9 H); ¹³C NMR (150 MHz, CDCl₃): δ 153.0, 126.9, 124.5, 84.7, 83.3, 80.8, 28.0, 22.4; HRMS calcd. for C₁₀H₁₄O₂: 166.0994; found: 166.0996.

Spectral data for *tert*-butyl propiolate (1g).

Colorless oil; ¹H NMR (600 MHz, CDCl₃): δ 2.74 (s, 1 H), 1.45 (s, 9 H); ¹³C NMR (150 MHz, CDCl₃): δ 151.6, 84.0, 75.9, 72.2, 27.8; HRMS calcd. for C₇H₁₀O₂: 126.0681; found: 126.0681.

Spectral data for tert-butyl hept-2-ynoate (1h).

Colorless oil; ¹H NMR (600 MHz, CDCl₃): δ 2.27 (t, J = 7.2, 2 H), 1.54 ~ 1.49 (m, 2 H), 1.46 (s, 9 H), 1.43 ~ 1.35 (m, 2 H), 0.88 (t, J = 7.3 Hz, 3 H); ¹³C NMR (150 MHz, CDCl₃): δ 153.0, 87.0, 82.8, 74.4, 29.6, 28.0, 21.9, 18.3, 13.4; HRMS calcd. for C₁₁H₁₈O₂: 182.1307; found: 182.1306.

Spectral data for tert-butyl 4-methylpent-2-ynoate (1i).

Colorless oil; ¹H NMR (600 MHz, CDCl₃): δ 2.66 ~ 2.59 (m, 1 H), 1.46 (s, 9 H), 1.19 (d, J = 6.6 Hz, 6 H); ¹³C NMR (150 MHz, CDCl₃): δ 153.1, 91.5, 82.8, 73.7, 28.0, 21.8, 20.4; HRMS calcd. for C₁₀H₁₆O₂: 168.1150; found: 168.1155.

Spectral data for tert-butyl 3-cyclohexylpropiolate (1j).

Colorless oil; ¹H NMR (600 MHz, CDCl₃): δ 2.43 ~ 2.39 (m, 1 H), 1.78 ~ 1.75 (m, 2 H), 1.66 ~ 1.64 (m, 2 H), 1.46 ~ 1.40 (m, 12 H), 1.27 ~ 1.22 (m, 3 H); ¹³C NMR (150 MHz, CDCl₃): δ 153.1, 90.2, 82.6, 74.3, 31.4, 28.7, 27.9, 25.5, 24.6; HRMS calcd. for C₁₃H₂₀O₂: 208.1463; found: 208.1463.

Spectral data for tert-butyl 3-cyclopropylpropiolate (1k).

Colorless oil; ¹H NMR (600 MHz, CDCl₃): δ 1.40 (s, 9 H), 1.29 ~ 1.25 (m, 1 H), 0.83 ~ 0.80 (m, 4 H); ¹³C NMR (150 MHz, CDCl₃): δ 152.7, 90.3, 82.6, 69.7, 27.9, 8.8, -0.81; HRMS calcd. for C₁₀H₁₄O₂: 166.0994; found: 166.1000.

Spectral data for 2,6-diphenyl-4*H*-1,3-dioxin-4-one (3a).

White solid; ¹H NMR (600 MHz, CDCl₃): δ 7.75 ~ 7.73 (m, 2 H), 7.67 ~ 7.65 (m, 2 H), 7.53 ~ 7.43 (m, 6 H), 6.55 (s, 1 H), 6.06 (s, 1 H); ¹³C NMR (150 MHz, CDCl₃): δ 168.1, 162.9,

133.7, 132.5, 130.4, 130.1, 128.9, 128.6, 126.6, 126.5, 100.3, 93.2; HRMS calcd. for $C_{16}H_{12}O_3$: 252.0786; found: 252.0786.

Spectral data for 6-(4-methoxyphenyl)-2-phenyl-4H-1,3-dioxin-4-one (3b).

White solid; ¹H NMR (600 MHz, CDCl₃): δ 7.69 ~ 7.64 (m, 4 H), 7.48 ~ 7.45 (m, 3 H), 6.93 (d, *J* = 9.0 Hz, 2 H), 6.52 (s, 1 H), 5.94 (s, 1 H), 3.84 (s, 3 H); ¹³C NMR (150 MHz, CDCl₃): δ 168.1, 163.3, 163.1, 133.8, 130.3, 128.6, 128.5, 126.7, 122.3, 114.3, 100.0, 91.2, 55.5; HRMS calcd. for C₁₇H₁₄O₄: 282.0892; found: 282.0887.

Spectral data for 6-(4-chlorophenyl)-2-phenyl-4H-1,3-dioxin-4-one (3c).

White solid; ¹H NMR (600 MHz, CDCl₃): δ 7.67 ~ 7.63 (m, 4 H), 7.49 ~ 7.46 (m, 3 H), 7.41 (d, *J* = 8.4 Hz, 2 H), 6.54 (s, 1 H), 6.03 (s, 1 H); ¹³C NMR (150 MHz, CDCl₃): δ 167.0, 162.6, 138.8, 133.5, 130.5, 129.2, 128.7, 128.5, 127.8, 126.7, 100.4, 93.5; HRMS calcd. for C₁₆H₁₁ClO₃: 286.0397; found: 286.0392.

Spectral data for 2-phenyl-6-(thiophen-2-yl)-4H-1,3-dioxin-4-one (3d).

White solid; ¹H NMR (600 MHz, CDCl₃): δ 7.62 ~ 7.61 (m, 2 H), 7.56 (dd, J = 3.9, 0.9 Hz, 1

H), 7.54 (dd, J = 5.1, 0.9 Hz, 1 H), 7.45 ~ 7.43 (m, 3 H), 7.09 (dd, J = 5.1, 3.9 Hz, 1 H), 6.52 (s, 1 H), 5.87 (s, 1 H); ¹³C NMR (150 MHz, CDCl₃): δ 163.1, 162.5, 133.4, 133.3, 131.4, 130.3, 129.8, 128.5, 128.4, 126.5, 100.0, 91.6; HRMS calcd. for C₁₄H₁₀O₃S: 258.0351; found: 258.0352.

Spectral data for 2-phenyl-6-(thiophen-3-yl)-4H-1,3-dioxin-4-one (3e).

White solid; ¹H NMR (600 MHz, CDCl₃): δ 7.84 (dd, J = 3.0, 1.2 Hz, 1 H), 7.63 ~ 7.62 (m, 2 H), 7.47 ~ 7.44 (m, 3 H), 7.37 (dd, J = 4.8, 3.0 Hz, 1 H), 7.32 (dd, J = 4.8, 1.2 Hz, 1 H), 6.51 (s, 1 H), 5.87 (s, 1 H); ¹³C NMR (150 MHz, CDCl₃): δ 163.8, 163.0, 133.6, 132.6, 130.3, 128.5, 128.5, 127.4, 126.5, 124.9, 100.0, 92.7; HRMS calcd. for C₁₄H₁₀O₃S: 258.0351; found: 258.0351.

Spectral data for 2-phenyl-6-(prop-1-en-2-yl)-4H-1,3-dioxin-4-one (3f).

White solid; ¹H NMR (600 MHz, CDCl₃): δ 7.59 ~ 7.57 (m, 2 H), 7.44 ~ 7.43 (m, 3 H), 6.39 (s, 1 H), 5.89 (s, 1 H), 5.61 (s, 1 H), 5.43 (s, 1 H), 1.95 (s, 3 H); ¹³C NMR (150 MHz, CDCl₃): δ 167.6, 162.9, 134.4, 133.7, 130.3, 128.5, 126.5, 122.1, 99.9, 94.9, 18.1; HRMS calcd. for C₁₃H₁₂O₃: 216.0786; found: 216.0791.

Spectral data for 2-phenyl-4H-1,3-dioxin-4-one (3g).

White solid; ¹H NMR (600 MHz, CDCl₃): δ 7.56 ~ 7.55 (m, 2 H), 7.45 ~ 7.42 (m, 4 H), 6.41 (s, 1 H), 5.60 (d, J = 5.4 Hz, 1 H); ¹³C NMR (150 MHz, CDCl₃): δ 161.2, 160.6, 133.3, 130.5, 128.6, 126.5, 100.5, 100.1; HRMS calcd. for C₁₀H₈O₃: 176.0473; found: 176.474.

Spectral data for 6-butyl-2-phenyl-4*H*-1,3-dioxin-4-one (3h).

Colorless liquid; ¹H NMR (600 MHz, CDCl₃): δ 7.53 ~ 7.51 (m, 2 H), 7.40 ~ 7.37 (m, 3 H), 6.30 (s, 1 H), 5.36 (s, 1 H), 2.30 ~ 2.27 (m, 2 H), 1.54 ~ 1.49 (m, 2 H), 1.35 ~ 1.28 (m, 2 H), 0.87 (t, *J* = 7.5 Hz, 3 H); ¹³C NMR (150 MHz, CDCl₃): δ 175.3, 162.1, 133.5, 130.0, 128.3, 126.3, 99.6, 95.3, 32.6, 27.6, 21.8, 13.4; HRMS calcd. for C₁₄H₁₆O₃: 232.1099; found: 232.1091.

Spectral data for 6-isopropyl-2-phenyl-4H-1,3-dioxin-4-one (3i).

White solid; ¹H NMR (600 MHz, CDCl₃): δ 7.55 ~ 7.52 (m, 2 H), 7.41 ~ 7.38 (m, 3 H), 6.30 (s, 1 H), 5.38 (s, 1 H), 2.55 ~ 2.50 (m, 1 H), 1.16 ~ 1.13 (m, 6 H); ¹³C NMR (150 MHz, CDCl₃): δ 179.7, 162.4, 133.6, 130.1, 128.4, 126.3, 99.7, 93.4, 32.1, 19.1, 19.0; HRMS calcd. for C₁₃H₁₄O₃: 218.0943; found: 218.0942.

Spectral data for 6-cyclohexyl-2-phenyl-4H-1,3-dioxin-4-one (3j).

White solid; ¹H NMR (600 MHz, CDCl₃): δ 7.56 ~ 7.55 (m, 2 H), 7.44 ~ 7.43 (m, 3 H), 6.30

(s, 1 H), 5.38 (d, J = 0.6 Hz, 1 H), 2.26 ~ 2.22 (m, 1 H), 1.93 ~ 1.88 (m, 2 H), 1.80 ~ 1.78 (m, 2 H), 1.70 ~ 1.67 (m, 1 H), 1.34 ~ 1.17 (m, 5 H); ¹³C NMR (150 MHz, CDCl₃): δ 179.0, 162.8, 133.8, 130.3, 128.6, 126.5, 99.9, 93.8, 41.7, 29.7, 29.5, 25.6, 25.5 (one carbon merged with others); HRMS calcd. for C₁₆H₁₈O₃: 258.1256; found: 258.1258.

Spectral data for 2-(4-methoxyphenyl)-6-phenyl-4H-1,3-dioxin-4-one (3k).

White solid; ¹H NMR (600 MHz, CDCl₃): δ 7.72 (d, *J* = 8.1 Hz, 2 H), 7.57 (d, *J* = 8.4 Hz, 2 H), 7.52 ~ 7.49 (m, 1 H), 7.42 (t, *J* = 7.8 Hz, 2 H), 6.97 (d, *J* = 8.4 Hz, 2 H), 6.48 (s, 1 H), 6.03 (s, 1 H), 3.82 (s, 3 H); ¹³C NMR (150 MHz, CDCl₃): δ 168.2, 163.2, 161.1, 132.4, 130.0, 128.8, 128.2, 126.5, 125.9, 113.9, 100.3, 93.0, 55.3; HRMS calcd. for C₁₇H₁₄O₄: 282.0892; found: 282.0886.

Spectral data for 2-(4-chlorophenyl)-6-phenyl-4H-1,3-dioxin-4-one (3l).

White solid; ¹H NMR (600 MHz, CDCl₃): δ 7.71 (d, *J* = 8.4 Hz, 2 H), 7.58 (d, *J* = 8.4 Hz, 2 H), 7.52 ~ 7.49 (m, 1 H), 7.44 ~ 7.41 (m, 4 H), 6.50 (s, 1 H), 6.03 (s, 1 H); ¹³C NMR (150 MHz, CDCl₃): δ 168.0, 162.4, 136.3, 132.5, 132.1, 129.7, 128.8, 128.0, 126.5, 99.4, 93.1 (one carbon merged with others); HRMS calcd. for C₁₆H₁₁ClO₃: 286.0397; found: 286.0399.

Spectral data for 6-phenyl-2-(thiophen-2-yl)-4*H*-1,3-dioxin-4-one (3m).

White solid; ¹H NMR (400 MHz, CDCl₃): δ 7.72 (d, *J* = 7.8 Hz, 2 H), 7.52 (t, *J* = 7.4 Hz, 1 H), 7.46 ~ 7.43 (m, 3 H), 7.39 (d, *J* = 3.6 Hz, 1 H), 7.09 ~ 7.06 (m, 1 H), 6.78 (s, 1 H), 6.03 (s, 1 H); ¹³C NMR (100 MHz, CDCl₃): δ 167.8, 162.2, 135.9, 132.5, 129.8, 128.8, 127.9, 127.8, 126.8, 126.6, 97.0, 93.2; HRMS calcd. for C₁₄H₁₀O₃S: 258.0351; found: 258.0355.

Spectral data for 2-(furan-2-yl)-6-phenyl-4*H*-1,3-dioxin-4-one (3n).

White solid; ¹H NMR (400 MHz, CDCl₃): δ 7.69 (d, J = 8.0 Hz, 2 H), 7.49 ~ 7.46 (m, 2 H), 7.40 (t, J = 7.6 Hz, 2 H), 6.72 (d, J = 3.2 Hz, 1 H), 6.56 (s, 1 H), 6.44 ~ 6.43 (m, 1 H), 5.98 (s, 1 H); ¹³C NMR (100 MHz, CDCl₃): δ 167.7, 161.9, 146.3, 144.0, 132.4, 129.7, 128.7, 126.5, 110.9, 110.5, 94.1, 93.0; HRMS calcd. for C₁₄H₁₀O₄: 242.0579; found: 242.0576.

Spectral data for 6-phenyl-2-(prop-1-en-2-yl)-4H-1,3-dioxin-4-one (30).

White solid; ¹H NMR (400 MHz, CDCl₃): δ 7.70 (d, *J* = 7.8 Hz, 2 H), 7.51 (t, *J* = 7.4 Hz, 1 H), 7.44 (t, *J* = 7.6 Hz, 2 H), 5.95 (s, 1 H), 5.89 (s, 1 H), 5.43 (s, 1 H), 5.28 (s, 1 H), 1.95 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ 168.1, 163.0, 137.9, 132.4, 130.1, 128.9, 126.5, 118.2, 101.8, 92.9, 16.5; HRMS calcd. for C₁₃H₁₂O₃: 216.0786; found: 216.0785.

Spectral data for (E)-6-phenyl-2-styryl-4H-1,3-dioxin-4-one (3p).

White solid; ¹H NMR (400 MHz, CDCl₃): δ 7.74 (d, *J* = 8.6 Hz, 2 H), 7.54 ~ 7.43 (m, 5 H), 7.39 ~ 7.30 (m, 3 H), 7.05 (d, *J* = 16.4 Hz, 1 H), 6.44 (dd, *J* = 16.4, 5.6 Hz, 1 H), 6.18 (d, *J* = 5.6 Hz, 1 H), 6.00 (s, 1 H); ¹³C NMR (100 MHz, CDCl₃): δ 168.1, 162.8, 137.0, 134.7, 132.4, 130.1, 129.1, 128.8, 128.7, 127.1, 126.5, 120.4, 100.0, 93.1; HRMS calcd. for C₁₈H₁₄O₃: 278.0943; found: 278.0913.

Spectral data for 2-methyl-6-phenyl-4H-1,3-dioxin-4-one (3q).

White solid; ¹H NMR (400 MHz, CDCl₃): δ 7.68 ~ 7.66 (m, 2 H), 7.51 ~ 7.47 (m, 1 H), 7.43 ~ 7.39 (m, 2 H), 5.90 (s, 1 H), 5.73 (q, *J* = 5.2 Hz, 1 H), 1.75 (d, *J* = 5.2 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ 168.2, 163.3, 132.3, 130.0, 128.8, 126.4, 98.6, 92.7, 19.4; HRMS calcd. for C₁₁H₁₀O₃: 190.0630; found: 190.0633.

Spectral data for 6-phenyl-2-propyl-4*H*-1,3-dioxin-4-one (3r).

White solid; ¹H NMR (400 MHz, CDCl₃): δ 7.67 ~ 7.65 (m, 2 H), 7.50 ~ 7.46 (m, 1 H), 7.43 ~ 7.39 (m, 2 H), 5.89 (s, 1 H), 5.59 (t, *J* = 5.2 Hz, 1 H), 2.09 ~ 1.96 (m, 2 H), 1.69 ~ 1.56 (m, 2 H), 1.01 (t, *J* = 7.4 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ 168.1, 163.4, 132.2, 130.1, 128.7, 126.3, 101.1, 92.7, 34.9, 16.4, 13.6; HRMS calcd. for C₁₃H₁₄O₃: 218.0943; found:

218.0946.

Spectral data for 2-isobutyl-6-phenyl-4H-1,3-dioxin-4-one (3s).

White solid; ¹H NMR (400 MHz, CDCl₃): δ 7.68 (d, J = 8.0 Hz, 2 H), 7.52 ~ 7.49 (m, 1 H), 7.44 (t, J = 7.4 Hz, 2 H), 5.92 (s, 1 H), 5.65 (t, J = 5.6 Hz, 1 H), 2.14 ~ 2.02 (m, 1 H), 2.01 ~ 1.89 (m, 2 H), 1.04 ~ 1.02 (m, 6 H); ¹³C NMR (100 MHz, CDCl₃): δ 168.3, 163.5, 132.3, 130.2, 128.9, 126.4, 100.6, 92.9, 41.6, 23.5, 22.7, 22.6; HRMS calcd. for C₁₄H₁₆O₃: 232.1099; found: 232.1098.

Spectral data for 2-methyl-2,6-diphenyl-4*H*-1,3-dioxin-4-one (3t).

White solid; ¹H NMR (600 MHz, CDCl₃): δ 7.75 (d, J = 7.2 Hz, 2 H), 7.51 ~ 7.48 (m, 3 H), 7.43 (t, J = 7.5 Hz, 2 H), 7.30 ~ 7.29 (m, 3 H), 5.80 (s, 1 H), 1.99 (s, 3 H); ¹³C NMR (150 MHz, CDCl₃): δ 165.0, 162.0, 139.9, 132.1, 130.5, 129.0, 128.8, 128.5, 126.1, 124.7, 106.7, 93.3, 29.4; HRMS calcd. for C₁₇H₁₄O₃: 266.0943; found: 266.0944.

Spectral data for 2-ethyl-2,6-diphenyl-4H-1,3-dioxin-4-one (3u).

White solid; ¹H NMR (600 MHz, CDCl₃): δ 7.76 ~ 7.74 (m, 2 H), 7.51 ~ 7.43 (m, 5 H), 7.31 ~ 7.28 (m, 3 H), 5.78 (s, 1 H), 2.28 ~ 2.17 (m, 2 H), 1.05 (t, *J* = 7.5 Hz, 3 H); ¹³C NMR (150 MHz, CDCl₃): δ 165.1, 162.2, 139.0, 132.1, 130.7, 129.0, 128.8, 128.4, 126.2, 125.3, 108.6,

93.4, 35.3, 7.3; HRMS calcd. for C₁₈H₁₆O₃: 280.1099; found: 280.1099.

Spectral data for 2,2-dimethyl-6-phenyl-4*H*-1,3-dioxin-4-one (3v).

White solid; ¹H NMR (600 MHz, CDCl₃): δ 7.61 ~ 7.60 (m, 2 H), 7.44 ~ 7.41 (m, 1 H), 7.37 ~ 7.35 (m, 2 H), 5.81 (s, 1 H), 1.72 (s, 6 H); ¹³C NMR (150 MHz, CDCl₃): δ 164.7, 161.5, 131.8, 130.7, 128.5, 126.0, 106.3, 90.9, 24.7; HRMS calcd. for C₁₂H₁₂O₃: 204.0786; found: 204.0787.

Spectral data for 4-phenyl-1,5-dioxaspiro[5.5]undec-3-en-2-one (3w).

White solid; ¹H NMR (600 MHz, CDCl₃): δ 7.64 ~ 7.62 (m, 2 H), 7.44 ~ 7.41 (m, 1 H), 7.38 ~ 7.35 (m, 2 H), 5.80 (s, 1 H), 2.13 ~ 2.10 (m, 2 H), 1.93 ~ 1.89 (m, 2 H), 1.69 ~ 1.50 (m, 5 H), 1.42 ~ 1.36 (m, 1 H); ¹³C NMR (150 MHz, CDCl₃): δ 164.2, 161.5, 131.8, 130.8, 128.6, 126.0, 106.9, 91.1, 33.4, 24.4, 21.2; HRMS calcd. for C₁₅H₁₆O₃: 244.1099; found: 244.1097. **Spectral data for 6-butyl-2,2-dimethyl-4***H***-1,3-dioxin-4-one (3x).**

Colorless oil; ¹H NMR (600 MHz, CDCl₃): δ 5.18 (m, 1 H), 2.17 (t, *J* = 7.8 Hz, 2 H), 1.63 (s, 6 H), 1.50 ~ 1.45 (m, 2 H), 1.35 ~ 1.29 (m, 2 H), 0.88 (t, *J* = 7.2 Hz, 3 H); ¹³C NMR (150 MHz, CDCl₃): δ 172.1, 161.4, 106.1, 93.0, 33.2, 27.7, 24.9, 22.0, 13.6; HRMS calcd. for C₁₀H₁₆O₃: 184.1099; found: 184.1100.

Spectral data for 6-cyclopropyl-2,2-dimethyl-4*H*-1,3-dioxin-4-one (3y).

Colorless liquid; ¹H NMR (400 MHz, CDCl₃): δ 5.28 (s, 1 H), 1.61 (s, 6 H), 1.58 ~ 1.52 (m, 1 H), 0.94 ~ 0.87 (m, 4 H); ¹³C NMR (100 MHz, CDCl₃): δ 172.3, 161.0, 106.0, 91.0, 24.6, 13.7, 7.0; HRMS calcd. for C₉H₁₂O₃: 168.0786; found: 168.0788.

Spectral data for 2-butoxy-6-phenyl-2H-pyran-4(3H)-one (5a).

White solid; ¹H NMR (400 MHz, CDCl₃): δ 7.71 (d, *J* = 8.0 Hz, 2 H), 7.46 ~7.36 (m, 3 H), 6.02 (s, 1 H), 5.55 ~ 5.53 (m, 1 H), 3.94 ~ 3.88 (m, 1 H), 3.67 ~ 3.62 (m, 1 H), 2.82 ~ 2.66 (m, 2 H), 1.59 ~ 1.52 (m, 2 H), 1.37 ~ 1.28 (m, 2 H), 0.85 (t, *J* = 7.4 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ 191.4, 166.3, 132.6, 131.5, 128.6, 126.2,, 102.4, 101.8, 69.5, 42.0, 31.3, 19.0, 13.6; HRMS calcd. for C₁₅H₁₈O₃: 246.1256; found: 246.1259.

Spectral data for 2-butoxy-6-(4-chlorophenyl)-2H-pyran-4(3H)-one (5b).

White solid; ¹H NMR (400 MHz, CDCl₃): δ 7.62 (d, *J* = 8.4 Hz, 2 H), 7.34 (d, *J* = 8.4 Hz, 2 H), 5.96 (s, 1 H), 5.54 ~ 5.52 (m, 1 H), 3.89 ~ 3.83 (m, 1 H), 3.65 ~ 3.59 (m, 1 H), 2.81 ~ 2.63 (m, 2 H), 1.56 ~ 1.49 (m, 2 H), 1.34 ~ 1.25 (m, 2 H), 0.82 (t, *J* = 7.4 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ 191.1, 164.9, 137.5, 131.1, 128.8, 127.4, 102.5, 101.9, 69.5, 41.9, 31.3, 19.0, 13.6; HRMS calcd. for C₁₅H₁₇ClO₃: 280.0866; found: 280.0865.

Spectral data for 2-butoxy-6-butyl-2*H*-pyran-4(3*H*)-one (5c).

Colorless liquid; ¹H NMR (600 MHz, CDCl₃): δ 5.32 ~ 5.30 (m, 2 H), 3.81 ~ 3.77 (m, 1 H), 3.54 ~ 3.51 (m, 1 H), 2.65 (dd, *J* = 16.5, 3.9 Hz, 1 H), 2.54 (dd, *J* = 16.5, 6.0 Hz, 1 H), 2.22 ~ 2.19 (m, 2 H), 1.54 ~ 1.50 (m, 4 H), 1.34 ~ 1.30 (m, 4 H), 0.89 ~ 0.86 (m, 6 H); ¹³C NMR (150 MHz, CDCl₃): δ 191.3, 174.0, 104.5, 101.5, 69.4, 41.7, 34.5, 31.4, 28.4, 22.0, 19.1, 13.7, 13.6; HRMS calcd. for C₁₃H₂₂O₃: 226.1569; found: 226.1568.

Spectral data for 2-butoxy-6-cyclopropyl-2*H*-pyran-4(3*H*)-one (5d).

Colorless liquid; ¹H NMR (400 MHz, CDCl₃): δ 5.42 (s, 1 H), 5.25 ~ 5.23 (m, 1 H), 3.74 ~ 3.68 (m, 1 H), 3.50 ~ 3.45 (m, 1 H), 2.64 ~ 2.48 (m, 2 H), 1.57 ~ 1.46 (m, 3 H), 1.35 ~ 1.25 (m, 2 H), 0.94 ~ 0.92 (m, 2 H), 0.87 ~ 0.83 (m, 5 H); ¹³C NMR (100 MHz, CDCl₃): δ 190.2, 174.5, 103.1, 101.7, 69.3, 41.8, 31.3, 19.0, 15.0, 13.6, 7.9; HRMS calcd. for C₁₂H₁₈O₃: 210.1256; found: 210.1252.

Spectral data for 2,2-diethoxy-6-phenyl-2*H*-pyran-4(3*H*)-one (5e).

Colorless liquid; ¹H NMR (600 MHz, CDCl₃): δ 7.76 ~ 7.74 (m, 2 H), 7.47 ~ 7.39 (m, 3 H), 6.04 (s, 1 H), 3.82 ~ 3.77 (m, 2 H), 3.70 ~ 3.63 (m, 2 H), 2.89 (s, 2 H), 1.21 ~ 1.17 (m, 6 H); ¹³C NMR (150 MHz, CDCl₃): δ 192.4, 166.2, 132.2, 131.6, 128.7, 126.3, 116.4, 102.0, 58.7, 43.7, 15.0; HRMS calcd. for C₁₅H₁₈O₄: 262.1205; found: 262.1204.

Spectral data for 2-ethoxy-3-methyl-6-phenyl-2H-pyran-4(3H)-one (5f).

Colorless liquid; ¹H NMR for **cis**-2-ethoxy-3-methyl-6-phenyl-2H-pyran-4(*3H*)-one (**5f**) (600 MHz, CDCl₃): δ 7.74 ~ 7.71 (m, 2 H), 7.47 ~ 7.39 (m, 3 H), 6.00 (s, 1 H), 5.46 (d, *J* = 3.6 Hz, 1 H), 3.96 ~ 3.91 (m, 1 H), 3.72 ~ 3.66 (m, 1 H), 2.83 ~ 2.79 (m, 1 H), 1.28 ~ 1.18 (m, 6 H); ¹³C NMR for **cis**-2-ethoxy-3-methyl-6-phenyl-2H-pyran-4(*3H*)-one (**5f**) (150 MHz, CDCl₃): δ 195.5, 165.9, 132.9, 131.5, 128.7, 126.3, 106.5, 101.8, 65.6, 45.2, 15.0, 11.3; ¹H NMR for **trans**-2-ethoxy-3-methyl-6-phenyl-2H-pyran-4(*3H*)-one (**5f**') (600 MHz, CDCl₃): δ 7.74 ~ 7.71 (m, 2 H), 7.47 ~ 7.39 (m, 3 H), 6.00 (s, 1 H), 5.16 (d, *J* = 7.2 Hz, 1 H), 4.07 ~ 4.02 (m, 1 H), 3.77 ~ 3.72 (m, 1 H), 2.64 ~ 2.59 (m, 1 H), 1.27 ~ 1.18 (m, 6 H); ¹³C NMR for **trans** -2-ethoxy-3-methyl-6-phenyl-2H-pyran-4(*3H*)-one (**5f'**) (150 MHz, CDCl₃): δ 194.9, 165.4, 132.6, 131.3, 128.6, 126.2, 104.4, 101.4, 65.5, 44.4, 14.9, 8.9; HRMS calcd. for C₁₄H₁₆O₃: 232.1099; found: 232.1098.

Spectral data for 2-methoxy-2-methyl-6-phenyl-2*H*-pyran-4(3*H*)-one (5g).

Colorless liquid; ¹H NMR (600 MHz, CDCl₃): δ 7.75 ~ 7.74 (m, 2 H), 7.47 ~ 7.39 (m, 3 H), 6.04 (s, 1 H), 3.33 (s, 3 H), 2.75 (s, 1 H), 2.74 (s, 1 H), 1.69 (s, 3 H); ¹³C NMR (150 MHz, CDCl₃): δ 192.4, 165.6, 132.7, 131.4, 128.7, 126.2, 105.0, 102.0, 50.2, 46.8, 22.3; HRMS calcd. for C₁₃H₁₄O₃: 218.0943; found: 218.0941.

Spectral data for 6-cyclopropyl-2-methoxy-2-methyl-2*H*-pyran-4(3*H*)-one (5h).

Colorless liquid; ¹H NMR (600 MHz, CDCl₃): δ 5.43 (s, 1 H), 3.24 (s, 3 H), 2.61 ~ 2.53 (m, 2 H), 1.57 ~ 1.53 (m, 1 H), 1.49 (s, 3 H), 0.99 ~ 0.84 (m, 4 H); ¹³C NMR (150 MHz, CDCl₃): δ 191.1, 173.8, 104.7, 102.3, 49.9, 46.4, 22.2, 14.9, 8.2, 7.6; HRMS calcd. for C₁₀H₁₄O₃: 182.0943; found: 182.0935.

Spectral data for 2,3,6-triphenyl-2H-1,3-oxazin-4(3H)-one (6a).

White solid; ¹H NMR (600 MHz, CDCl₃): δ 7.69 (d, J = 8.1 Hz, 2 H), 7.57 (d, J = 7.5 Hz, 2 H), 7.45 ~ 7.30 (m, 10 H), 7.20 (t, J = 7.2 Hz, 1 H), 6.83 (s, 1 H), 6.04 (s, 1 H); ¹³C NMR (150 MHz, CDCl₃): δ 162.9, 161.3, 139.6, 136.4, 131.6, 131.3, 129.4, 129.0, 128.6, 128.5, 127.1, 126.3, 126.2, 124.9, 98.9, 90.0; HRMS calcd. for C₂₂H₁₇NO₂: 327.1259; found: 327.1262.

Spectral data for 2-(4-methoxyphenyl)-3,6-diphenyl-2H-1,3-oxazin-4(3H)-one (6b).

White solid; ¹H NMR (400 MHz, CDCl₃): δ 7.67 (d, J = 7.2 Hz, 2 H), 7.48 ~ 7.17 (m, 10 H), 6.86 (d, J = 8.8 Hz, 2 H), 6.77 (s, 1 H), 6.03 (s, 1 H), 3.75 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ 163.1, 161.2, 160.4, 139.5, 131.7, 131.3, 129.0, 128.6, 128.5, 128.3, 126.3, 126.2, 125.0, 113.9, 98.7, 89.9, 55.2; HRMS calcd. for C₂₃H₁₉NO₃: 357.1365; found: 357.1363.

Spectral data for 2-(4-chlorophenyl)-3,6-diphenyl-2H-1,3-oxazin-4(3H)-one (6c).

White solid; ¹H NMR (400 MHz, CDCl₃): δ 7.68 ~ 7.65 (m, 2 H), 7.50 ~ 7.19 (m, 12 H), 6.78 (s, 1 H), 6.03 (s, 1 H); ¹³C NMR (100 MHz, CDCl₃): δ 162.7, 161.3, 139.4, 135.5, 135.0, 131.5, 131.4, 129.1, 128.9, 128.7, 128.5, 126.4, 126.3, 125.0, 98.8, 89.4; HRMS calcd. for C₂₂H₁₆CINO₂: 361.0870; found: 361.0869.

(4) NOE of 2-ethoxy-3-methyl-6-phenyl-2H-pyran-4(3H)-one (5f).

Sr. no.	Irradiation	Intensity increase % (Key peaks)
1)	H ₁ (δ 2.83 ~ 2.79)	H_2 (δ 5.46, 1.44%), H_5 (δ ~1.19, 2.43%)
2)	Η ₂ (δ 5.46)	H ₁ (δ 2.83 ~ 2.79, 1.57%), H ₃ (δ 3.92, 3.69 0.45% and 1.26%)

Sr. no.	Irradiation	Intensity increase % (Key peaks)		
1)	$H_1 (\delta 2.63 \sim 2.60)$	H ₂ (δ 5.16, 0.70%), H ₅ (δ ~1.26, 2.23%)		
2)	Η ₂ (δ 5.16)	H ₁ (δ 2.63 ~ 2.60, 0.80%), H ₃ (δ 4.04, 3.75 0.55% and 1.23%), H ₅ (δ ~1.26, 1.30%)		

(7) X-Ray crystallographic structure and data for compound (3a):

Table 1. Crystal data and structure re	finement for 141246_0m.	
Identification code	141246_0m	
Empirical formula	C16 H12 O3	
Formula weight	252.26	
Temperature	296(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P 21/n	
Unit cell dimensions	a = 6.0914(7) Å	$\alpha = 90^{\circ}$.
	b = 8.5177(11) Å	$\beta = 90.598(7)^{\circ}$.
	c = 23.947(3) Å	$\gamma = 90^{\circ}$.
Volume	1242.4(3) Å ³	
Z	4	
Density (calculated)	1.349 Mg/m^3	
Absorption coefficient	0.093 mm ⁻¹	
F(000)	528	

Crystal size	0.30 x 0.05 x 0.05 mm ³
Theta range for data collection	0.850 to 26.424°.
Index ranges	-7<=h<=7, -10<=k<=10, -29<=l<=29
Reflections collected	8860
Independent reflections	2531 [R(int) = 0.0528]
Completeness to theta = 25.242°	99.6 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9485 and 0.7225
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	2531 / 0 / 174
Goodness-of-fit on F ²	1.388
Final R indices [I>2sigma(I)]	R1 = 0.1269, wR2 = 0.3426
R indices (all data)	R1 = 0.1690, wR2 = 0.3920
Extinction coefficient	0.27(5)
Largest diff. peak and hole	0.866 and -1.044 e.Å ⁻³

Table 2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å ^{2}x 10³) for 141246_0m. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	х	У	Z	U(eq)
C(1)	4946(8)	6899(5)	3242(2)	49(1)
C(2)	6341(10)	6736(6)	2793(2)	62(1)
C(3)	5650(11)	5880(7)	2330(2)	71(2)
C(4)	3641(10)	5194(7)	2310(2)	68(2)
C(5)	2253(10)	5353(7)	2758(2)	72(2)
C(6)	2902(9)	6213(7)	3224(2)	60(1)
C(7)	5653(8)	7843(5)	3747(2)	48(1)
C(8)	5804(8)	7754(5)	4710(2)	48(1)
C(9)	7512(8)	8750(6)	4687(2)	53(1)
C(10)	8836(9)	8857(6)	4185(2)	54(1)
C(11)	4600(8)	7309(6)	5217(2)	50(1)
C(12)	2561(9)	6618(7)	5180(2)	63(1)
C(13)	1380(11)	6245(8)	5650(2)	75(2)
C(14)	2294(12)	6548(7)	6168(2)	75(2)
C(15)	4333(12)	7224(7)	6216(2)	72(2)
C(16)	5517(10)	7601(7)	5748(2)	60(1)
O(1)	5066(6)	7014(4)	4240(1)	51(1)

O(2)	7928(6)	8103(4)	3728(1)	57(1)
O(3)	10624(6)	9401(5)	4147(1)	71(1)

C(1)-C(6)	1.375(7)
C(1)-C(2)	1.384(7)
C(1)-C(7)	1.511(6)
C(2)-C(3)	1.389(7)
C(2)-H(2)	0.9300
C(3)-C(4)	1.357(8)
C(3)-H(3)	0.9300
C(4)-C(5)	1.379(9)
C(4)-H(4)	0.9300
C(5)-C(6)	1.387(7)
C(5)-H(5)	0.9300
C(6)-H(6)	0.9300
C(7) $O(2)$	1 404(6)

Table 3. Bond lengths $[\text{\AA}]$ and angles $[^{\circ}]$ for 141246_0m.

C(4) - C(3)	1.379(9)
C(4)-H(4)	0.9300
C(5)-C(6)	1.387(7)
C(5)-H(5)	0.9300
C(6)-H(6)	0.9300
C(7)-O(2)	1.404(6)
C(7)-O(1)	1.423(5)
C(7)-H(7)	0.9800
C(8)-C(9)	1.344(7)
C(8)-O(1)	1.364(5)
C(8)-C(11)	1.473(7)
C(9)-C(10)	1.458(7)
C(9)-H(9)	0.9300
C(10)-O(3)	1.188(6)
C(10)-O(2)	1.380(5)
C(11)-C(12)	1.377(8)
C(11)-C(16)	1.407(7)
C(12)-C(13)	1.380(8)
C(12)-H(12)	0.9300
C(13)-C(14)	1.379(8)
C(13)-H(13)	0.9300
C(14)-C(15)	1.373(10)
C(14)-H(14)	0.9300
C(15)-C(16)	1.377(8)

C(15)-H(15)	0.9300
C(16)-H(16)	0.9300
C(6)-C(1)-C(2)	119.7(4)
C(6)-C(1)-C(7)	120.2(4)
C(2)-C(1)-C(7)	120.2(4)
C(1)-C(2)-C(3)	119.3(5)
C(1)-C(2)-H(2)	120.3
C(3)-C(2)-H(2)	120.3
C(4)-C(3)-C(2)	121.3(5)
C(4)-C(3)-H(3)	119.3
C(2)-C(3)-H(3)	119.3
C(3)-C(4)-C(5)	119.4(5)
C(3)-C(4)-H(4)	120.3
C(5)-C(4)-H(4)	120.3
C(4)-C(5)-C(6)	120.3(5)
C(4)-C(5)-H(5)	119.8
C(6)-C(5)-H(5)	119.8
C(1)-C(6)-C(5)	120.0(5)
C(1)-C(6)-H(6)	120.0
C(5)-C(6)-H(6)	120.0
O(2)-C(7)-O(1)	111.3(4)
O(2)-C(7)-C(1)	109.3(4)
O(1)-C(7)-C(1)	109.1(4)
O(2)-C(7)-H(7)	109.1
O(1)-C(7)-H(7)	109.1
C(1)-C(7)-H(7)	109.1
C(9)-C(8)-O(1)	120.4(4)
C(9)-C(8)-C(11)	126.0(4)
O(1)-C(8)-C(11)	113.5(4)
C(8)-C(9)-C(10)	120.5(4)
C(8)-C(9)-H(9)	119.7
C(10)-C(9)-H(9)	119.7
O(3)-C(10)-O(2)	118.7(4)
O(3)-C(10)-C(9)	127.1(4)
O(2)-C(10)-C(9)	113.9(4)
C(12)-C(11)-C(16)	118.9(5)
C(12)-C(11)-C(8)	120.9(4)

C(16)-C(11)-C(8)	120.2(5)
C(11)-C(12)-C(13)	121.6(5)
C(11)-C(12)-H(12)	119.2
C(13)-C(12)-H(12)	119.2
C(14)-C(13)-C(12)	118.8(6)
C(14)-C(13)-H(13)	120.6
C(12)-C(13)-H(13)	120.6
C(15)-C(14)-C(13)	120.7(5)
C(15)-C(14)-H(14)	119.7
C(13)-C(14)-H(14)	119.7
C(14)-C(15)-C(16)	120.7(5)
C(14)-C(15)-H(15)	119.6
C(16)-C(15)-H(15)	119.6
C(15)-C(16)-C(11)	119.3(6)
C(15)-C(16)-H(16)	120.4
C(11)-C(16)-H(16)	120.4
C(8)-O(1)-C(7)	111.8(3)
C(10)-O(2)-C(7)	115.8(4)

Symmetry transformations used to generate equivalent atoms:

Table 4.Anisotropic displacement parameters $(Å ^2x 10^3)$ for 141246_0m. The anisotropicdisplacement factor exponent takes the form: $-2\pi^2 [h^2 a^{*2} U^{11} + ... + 2 h k a^* b^* U^{12}]$

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
C(1)	65(3)	47(2)	34(2)	0(2)	-4(2)	1(2)
C(2)	71(3)	68(3)	46(3)	-8(2)	6(2)	-10(3)
C(3)	93(4)	81(4)	41(3)	-12(3)	11(3)	-13(3)
C(4)	92(4)	69(3)	43(3)	-11(2)	-5(3)	-12(3)
C(5)	75(4)	84(4)	59(3)	-10(3)	-5(3)	-15(3)
C(6)	64(3)	72(3)	45(3)	-7(2)	-1(2)	-5(3)
C(7)	62(3)	47(2)	37(2)	-1(2)	-2(2)	3(2)
C(8)	62(3)	47(2)	35(2)	-4(2)	-2(2)	6(2)
C(9)	65(3)	58(3)	37(2)	-5(2)	-1(2)	-6(2)
C(10)	68(3)	60(3)	35(2)	-5(2)	-6(2)	-5(2)
C(11)	64(3)	48(3)	38(2)	-1(2)	-2(2)	10(2)

C(12)	72(4)	66(3)	51(3)	-2(2)	0(2)	-1(3)
C(13)	83(4)	72(4)	71(4)	0(3)	14(3)	-12(3)
C(14)	101(5)	74(4)	49(3)	9(3)	20(3)	-4(4)
C(15)	100(5)	78(4)	38(3)	1(2)	3(3)	10(3)
C(16)	76(3)	67(3)	37(2)	-3(2)	0(2)	3(3)
O(1)	67(2)	51(2)	34(2)	-2(1)	-1(1)	-5(2)
O(2)	66(2)	69(2)	35(2)	-7(1)	2(1)	-10(2)
O(3)	72(3)	90(3)	50(2)	-5(2)	1(2)	-26(2)

Table 5. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å 2 x 10^3) for 141246_0m.

	Х	у	Z	U(eq)
H(2)	7726	7195	2802	74
H(3)	6584	5774	2028	86
H(4)	3203	4622	1998	81
H(5)	876	4882	2748	87
H(6)	1955	6325	3523	73
H(7)	4893	8857	3741	58
H(9)	7852	9377	4994	64
H(12)	1965	6397	4829	76
H(13)	-8	5798	5618	90
H(14)	1521	6292	6489	90
H(15)	4922	7429	6569	86
H(16)	6908	8043	5783	72

Current Data Parameters NAME SNK-4222 EXPNO 2 PROCNO 1 F2 - Acquisition Parameters 20140918 Time 5.44 INSTRUM spect PROBHD 32768 SOLVENT CDC13 NS 100 DS 0 SWH 45045.047 FIDERS 1.374666 AQ 0.3637748 Sec RG M 11.100				
DE 6.50 Usec TE 3.5000000 sec D1 3.5000000 sec D2LTA 3.4000000 sec MCREST 0 sec MCWRK 0.0150000 sec NUC1 13C P1 4.80 usec PL1 0 dB SF01 150.5597948 MHz CPDPRG2 HAL216 NUC2 1H PCPD2 92.00 usec				
PCPDZ 92.00 usec PL2 120.00 dB PL13 14.00 dB SPO2 598.7029935 MHz FZ - Processing parameters SI 65536 SF 150.5432369 MHz WW EM SSB 0 EM CB 0 1.00			چەر ئۆچەت بىر مەنىۋە تىغۇرىغى ئىلىنىدىغى تەرىپىرىلىكى تىلىنى بىرىكى تىلىنى تىلىنى تىلىنى تەرىپىرىلىكى تىلىنى ت	 ur)

-134.65

-161.16

1114.10 11

	152.86	136.64 134.01 128.93	118.47	83.69 82.79 777.21 76.78		
Current Data Parameters NAME SNK-5007A EXPNO 2 PROCNO 1 F2 - Acquisition Parameters Date_ 20141130 Time 11.48 INSTRUM spect PROBHD 5 mm QNP 1H/1 PUDEROG zgpg TD 32768 SOLVENT CDC13 NS 100 DS 0 SWH 45045.047 Hz FIDRES 1.374666 Hz AQ 0.3637748 sec RG 2048 DW 11.100 usec DE 6.50 usec TE 298.2 K						
D1 3.5000000 sec d11 0.0300000 sec DELTA 3.4000010 sec MCREST 0 sec MCWRK 0.01500000 sec TOUCI 13C P1 4.80 usec PL1 0 dB SF01 150.5346470 MHz TOUC2 1H PCPD2 92.00 usec PL12 120.00 dB PL13 14.00 dB SF02 598.602930 MHz F2 - Processing parameters ST 6553			CI			
SF 150.5180952 MHz WDW EM SSB 0 LB 3.00 Hz GB 0 PC 1.00					16-10-10-10-10-10-10-10-10-10-10-10-10-10-	19-20-19-1-19-10-10-10-10-10-10-10-10-10-10-10-10-10-
	60 150	140 130	120 11(D 100 90 80 70 6	0 50 40 30 20	ppm

	 	83.39 81.93 77.19 77.12 76.79	27.98
Current Data Parameters NAME SNK-5055 EXPNO 2 PROCNO 1 F2 - Acquisition Parameters Date_201050107 Time 23.33 INSTRUM spect PROBHD 5 mm QNP 1H/1 PULPROS PULPROS 10 DS 10 DS 10 DS 10 DS 100 DS 1374666 DI 3.5000000 sec DE 6.50 DI 3.50000000 sec DELTA 3.40000010 sec DELTA 3.4000000 sec PLI 4.80 usec PL1 4.80 usec		$\overrightarrow{[s]} = \overbrace{0}^{0}$	
ST 100000 g 65536 SF 150.5181040 MHz WDW EM SSB 0 LB 3.00 Hz GB 0 PC 0.50			

	152.86		119.63	86.03 83.52 77.65 77.21 77.21 77.21 77.20	27.95
Current Data Parameters NAME SNK-5057 EXPNO 2 PROCNO 1					
F2 - Acquisition Parameters Date				$ \begin{array}{c} S \\ S \\ O \\ O \\ 1e \end{array} $	
GB 0 PC 0.50					
190 180 170 160) 150	140 130	120	110 100 90 80 70 60	50 40 30 20 ppm

Current Data Parameters NAME SNK-5031 EXENO 2 PROCNO 1		126.91	84.73 83.32 83.32 77.21 76.79		27.97	9C. 77
F2 - Acquisition Parameters Date_ 20141215 Time 11.04 INSTRUM spect PROBHD 5 mm QNP 1H/1 PULPROS 2029 TD 32768 SOLVENT DMSO NS 100 DS 1.374666 Hz PTDRES 1.374666 Hz AC 0.3637748 sec AC 0.3637748 sec DW 11.100 usec DE 6.50 usec TE 296.6 K DI 3.50000000 sec DELTA 3.4000010 sec MCREST 0 sec MCWERK 0.01500000 sec MUCLI 13C P1 4.80 usec PL1 0 dB SF01 150.5346470 MHz			$ \underbrace{ \begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $			
CPDPRG2 waltz16 NUC2 1H PCPD2 9.00 usec PL12 120.00 dB PL12 9.00 dB PL13 14.00 dB SF02 598.602930 MHz F2 Processing parameters SI SF 150.5180961 MHz WDW EM SSB LB 3.00 Hz GB 0 1.00						
20 1.00				rugstlantine-management of the floor three starts		
190 180 170 1	60 150 1	40 130 120			30	20 ppm

				$ \begin{array}{c} $		27.83	
Current Data Parameters NAME SNK-5037 EXPNO 2 PROCNO 1							
F2 - Acquisition Parameters Date20141216 Time13.03 INSTRUM							
SF02 598.6029930 MHz F2 - Processing parameters 65536 SF 150.5180985 MHz SSB 0 EM SSB 0 LB 3.00 LB 3.00 Hz GB 0 1.00							
	0 150 140	130 120 11	10 100 90	80 70	60 50	40 30	20 ppm

										21.94 18.30	
Cu NJ PI F2	urrent Data Parameters ME SNK-5022 XPNO 2 ROCNO 1 2 2 - Acquisition Parameters	I				¥/					ļ
Da Ti PH PU TI SC SC SC SC SC C DS C DS C DS C DS C D	ate20141205 ime					0					
== NU P1 P1 SH	CHANNEL f1				1h						
CH NU PI PI PI	CHANNEL 12 DPDFRG2 waltz16 JC2 1H CPD2 2.00 usec L2 120.00 dB L12 9.00 dB L13 14.00 dB CPC2 EDE 600020 MHz								r.		
F1 SI SI SI GH PC	02 536.002550 bHz 1 65536 5 65536 F 150.5180950 MHz DW EM SB 0 3 .00 Hz C 1.00					ī					1
مر المراجع الم	ne se din sen na dina se dina se dina se dina se dina serie di disense di ante di se di di	In control property and a local section of the	d de methode han skonskie an of de se skille, stille sook an die de skille sook ander	where the latest back in the standard standards	elle aldel skil gaal, staar oo heefde heefde saad beske soorde skil		17 June 34 Julies, Mary and Print California, an Aldrey de	. 16		und die versteller und	hilling and the state of the second
	190 180 170 1	60 150 [·]	140 130	120 110	100 90	80 70) 60	50	40 30	20	ppm

			91.51	77.21		27.97	21.79	
Current Data Parameters NAME SNK-5027 EXPNO 1 F2 - Acquisition Parameters Date. 20141211 Time 8.24 INSTRUM spect PROBHD 5 mm QNP 1H/1 PULPROG 2007 TD 32768 SOLVENT CDC13 NS 100 DS 0 SWH 45045.047 Hz FIDRES 1.374666 Hz AQ 0.3637748 sec RG 22048 DW 11.100 usec DE 6.50 usec TE 296.2 K D1 3.5000000 sec d11 0.03000000 sec d11 0.03000000 sec MCWRK 0.01500000 sec TE 296.2 K D1 3.5000000 sec d11 0.03000000 sec MCWRK 0.01500000 sec MCWRK 0.01500000 sec TE 296.2 K NUC1 13C P1 4.80 usec PL1 0 dB SF01 150.5346470 MHz TH CHANNEL f1 CPDPRG2 Waltz16 NUC2 1H PCPD2 92.00 usec PL2 120.00 dB SF02 598.6029930 MHz F2 - Processing parameters SI 65536 SF 150.5180955 MHz NUCK 1.00 SF0 3.00 Hz GB 0 PC 1.00		 1i		¥ /				
	 ·······	······	ll		 ••••••••••••••••••••••••••••••••••••••			

	153.06			90.21 82.61 77.21 77.21	74.30		31.44 28.75 27.90 25.53 25.53 24.61	
Current Data Parameters NAME SNK-5023 EXPNO 2 PROCNO 1 F2 - Acquisition Parameters Date20141206 Time 12.25 INSTRUM spect PROBHD 5 mm QNP 1H/1 PULPROG z2768 SOLVENT CDC13 NS 100 DS 0 SWH 45045.047					τ.			
Swin 900307112 FIDRES 1.374666 AQ 0.3637748 RG 2048 DW 11.100 DW 11.100 DW 11.100 DE 6.50 DE 296.5 K D1 3.5000000 DELTA 3.4000010 DELTA 3.4000010 MCWRK 0.01500000 sec MCWRK 0.01500000 sec PI 4.80 PL1 0 dB SF01 150 S4.6420 MHz		<		o ((
SFO1 105.536870 HHZ								
LB 3.00 Hz GB 0 PC 1.00								
190 180 170 16	0 150 140	130 120	110 100	90 80	70 60	50 40		ppm

			une 21.20.00.000			****				 11-11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	 ang ta special grade the state	 	
PL13 14,00 dB SF02 598.6029930 MHz F2 Processing parameters SI 65536 SF 150.5181035 MHz WDW EM SSB 0 LB 3.00 Hz GB 0 PC 1.00													
NUC1 13C P1 4.80 use PL1 0 dB SF01 150.5346470 MHz CPDPRG2 waltz16 NUC2 1 PCPD2 92.00 use PL2 120.00 dB PL1 9.00 dB	2 = 2	3a P	rh							 	 	 	
Dw 11.100 Use; DE 6.50 Use; TE 301.2 K D1 3.5000000 sec DELTA 3.4000001 sec MCMRK 0.01500000 sec	-	Ph											
PROCNO 1 F2 - Acquisition Parameters Date											 	 	
Current Data Parameters NAME SNK-5041 EXPNO 2									\vee				
	- 168	- 162	- 133	- 132 - 130 - 130 - 128 - 128	- 126 - 126		- 100	- 93.	. 77 - . 77 -				

-3.839

			99.89	77.21		71.01
Current Data Parameters NAME SNK-5049 EXPNO 2 PROCNO 1 F2 - Acquisition Parameters Date Date 20150107 Time 0.29 INSTRUM spect PROBHD 5 mm QNP PULPROG 22768 SOLVENT CDC10 DS 100 DS 1.374666 Hz AQ 0.3637748 sec RG .2048						
DW 11.100 usec DE 6.50 usec TE 295.7 K D1 3.5000000 sec dl1 0.03000000 sec DELTA 3.4000001 sec MCREST 0 sec MCREST 0 sec MCREST 0 sec NUC1 13C P1 4.80 usec PL1 0 dB SP01 150.5346470 MHz	O O O O O Ph					
P113 14.00 dB SF02 598.6029940 MHz F2 - Processing parameters SF 150.5181069 MHz WDW EM SSB 0 LB 3.00 Hz GB 0 PC 0.50				1		
	160 150 140	130 120 110 1	, 	B0 70 60 50	40 30 20	ppm

5.596

	161.20 160.63	133.27 130.47 128.62 128.62 126.48	100.51	77.21 77.00 76.79					
	$\backslash /$		\backslash	\vee					
urrent Data Parameters IAME SNK-5065 IXPNO 2 PROCNO 1									
2 - Acquisition Parameters ate20150106 'ime 6.34 NSTRUM spect ROBHD 5 mm QNP 1H/1 'ULPROG 232768 !OLVENT CCC13 IS 0 WH 45045.047 Hz 'IDRES 1.374666 Hz VQ 0.3637748 sec VG 2048 VW 11.100 usec PE 6.50 usec TE 295.8 K V1 3.50000000 sec V11 0.0300000 sec V11 3.40000010 sec VERES 3.40000010 sec					_0				
CWRK 0.01500000 sec CHANNEL fl JC1 13C I 4.80 usec L1 0 dB F01 150.5346470 MHz									
CHANNEL f2 PDPRG2 waltz16 UC2 JH CPD2 92.00 L2 120.00 L12 9.00 L13 14.00 F02 598.6029940									
2 - Processing parameters 1 65536 F 150.5181007 MHz DW EM SB 0 B 3.00 Hz B 0 C 0.50									
hai yadi yadi yadi ninan dadi ni kata yadi yadi yadi dana malangadi	material frankrike and a state and a state of the state o	warder and the management	warespectry and argument with	นองและของเหม่าให้กำรงจะเล่าสะหน่างไม่เป็นเป็นเหมืองน้ำ	n aifs yll <mark>hakandrir (hjan</mark>	hiller to an a fair of the	ian yaka ing panya k	uistring, totalist vitae	ali adaga je stalja da sa qa
) 160 150	140 130 120	110 100 90		 50	40	30	 20	

				L	 	
FC 1.00						
F2 Processing parameters SI 65536 SF 150.5181358 MHz WOW EM SSB 0 LB 3.00 Hz DF 0			. 1			
CHANNEL f2 creating CPDPRG2 waltz16 NUC2 1H PCPD2 92.00 PL2 120.00 dB PL12 9.00 dB PL13 14.00 dB CPD2 500 cm0000 dF	3h Ph				 	
NUCl 13C P1 4.80 usec PL1 0 dB SF01 150.5346470 MHz					I Å	
DW 11.100 usec DE 6.50 usec TE 295.3 K D1 3.5000000 sec d11 0.0300000 sec DELTA 3.4000010 sec MCMEST 0 sec	n-Bu					
PROCNO 1 F2 - Acquisition Parameters Date20141230 Time 6.40 INSTRUM spect PROBHD 5 mm QNP 1H/1 PULPROG 32768 SOLVENT CDC13 NS 22 DS 0 SWH 45045.047 Hz FIDRES 1.374666 Hz AQ 0.3637748 sec RG 2048						
Current Data Parameters NAME SNK-5045 EXPNO 2 PPOCNO 1						
175		133	99.	77.15	32.0	21.8

	162.42		99.69	77.21 77.00 76.78	32.08	19.05
Current Data Parameters NAME SNK-5046 EXPNO 2 PROCNO 1						
F2 - Acquisition Parameters Date 20150106 Time 22.36 INSTRUM spect PROBHD 5 mm QNP 1H/1 PULPROG zgpg TD 32768 SOLVENT CDC13 NS 200 DS 0 SWH 45045.047 Hz FIDRES 1.374666 Hz AQ 0.3637748 sec RG .2048 sec						
DW 11.100 usec DE 6.50 usec TE 296.6 K D1 3.5000000 sec d11 0.03000000 sec DELTA 3.4000010 sec MCREST 0 sec MCWRR 0.01500000 sec CHANNEL f1 13C		_0				
P1 4.80 usec PL1 0 dB 0.5346470 MHz SP01 150.5346470 MHz	3i Ph					I
Fils 5100 000 SP02 598.6029940 MHz F2 - Processing parameters 65536 SF 150.5181275 MHz WDW EM SSB 0 LB 3.00 Hz GB 0 CB 0 .50 150 .50			.			
				l		
 190 180 17(D 160 150	140 130 120		80 70 60	50 40 30	20 ppm

179.05			99.86	77.21 77.00 76.79	41.75	25,54
Current Data Parameters NAME SNK-5048 EXPNO 2 PROCNO 1 F2 - Acquisition Parameters Date Date0150106 1 Time & 0150106 Time & 0.9 INSTRUM spect PROBHD 5 mm QNP TD 32768 SOLVENT CDC13 NS 200 DS 00 SMH 45045.047 Hz FIDRES 1.374666 Hz AQ 0.3637748 sec						
DW 11.100 usec DE 6.50 usec TE 296.4 K D1 3.5000000 sec dl1 0.33000000 sec DELTA 3.4000010 sec MCREST 0.0000000 sec MCREST 0.01500000 sec PI 4.80 usec PI1 4.80 usec PL1 0.00 dB FSC1 150.5346470 MHz						
SF02 598.6029940 MHz F2 - Processing parameters 5536 SF 150.5180973 MHz WDW EM 0 SSB 0 0 GB 3.00 Hz PC 0.50 0 ID NMR plot parameters CX CY 4.00 cm F1P F11 30103.62 Hz F2P 0.000 ppm F2 0.000 Hz 0.000 Hz 0.000 Hz						
	0 160 150 1	40 130 120	110 100 90	80 70 60	50 40	30 20 ppm

 190 180	170	160 150	140	130 1	,	 D 100	 90		0 60	 50	40	30	20	
SP03 598.6029930 b F2 - Processing parameter SF 150.5181111 b WDW EM SSB 0 LB 3.00 F GB 1.00 1D NMR plot parameters 20.00 c CY 20.00 c F1P 20.00 c F2P 0.000 f F1P 20.00 c F1P 20.00 c F2 0.000 f	iliz is iz m m ppm jz ppm jz													
DE 6.50 t TE 294.9 P Dl 3.5000000 s dl1 0.0300000 s DELTA 3.4000010 s MCREST 0.000000 s MCREST 0.000000 s MCWRK 0.01550000 s Pl 4.80 t Pl 0.00 c SF01 150.5346470 b CPDPRG2 wltzl6 NUC2 1H PCPD2 92.00 t PL2 120.00 c	sec ec ec ec ec sec B B Hz sec B B B													
NARE DNR-5042 EXPNO 2 PROCNO 1 F2 - Acquisition Paramete Date20141228 Date20141228 20141228 Time 14.13 INSTRUM spect PROBHD 5 num QNP TD 32768 SOLVENT CDC13 NS 64 DS 0 SWH 45045.047 F FIDRES 1.374666 F AQ 0.3637748 S CG 2048 DW 11.100 V	rs z zec sec										3k	O O Me		
Current Data Parameters			✓ 132.39	130.04 128.80 128.18 128.18 126.54 126.54			93.02	77.21 77.00 76.78		87.00	Ph		,O	

7.7.734 7.7.7537 7.5373 7.519 7.519 7.455 7.455 7.455 7.4417 7.445 7.417 7.417 7.331 7.331 7.331 7.240 7.240 7.240 7.265 7.7.076 6.781 6.781

Current Data Parameters NAME PK-1141 EXPNO 15 PROCNO 1	162.25	135.92 132.53 129.80 128.85 128.85 127.87 126.79 126.58	97.00	71.32 77.00 76.68				
F2 - Acquisition Parameters Date_ 20141229 Time 22.55 INSTRUM spect PROBHD 5 mm DUL 13C-1 PULPROG zgp30 TD 65536 SOLVENT CDC13 NS 47 DS 0 SWH 22727.273 AQ 1.4418420 RG 1820 DW 22.000 DE 6.00 DI 2.000000000 SCE 300.0 MD 2.00000000 SCE 300.00 K DI 2.00000000 SCE 300.00 K DELTA 1.89999998	Anna -				Ph C 3m			
TD0 1 TD0 1 NUC1 13C P1 9.70 usec PL1 -0.50 dB SF01 100.6288660 MHz ===== CHANNEL f2 CPDPRG2 waltz16 NUC2 1H PCPD2 90.00 usec PL2 -0.4 dP								
Figure Figure<						~~~~		diment/hui-investigain.
190 180 170	160 150	140 130 120	110 100 90	80 70	60 50	40 30	20	ppm

BRUK	ER	-167.71	- 161.95	-146.31	- 143.98	-132.45 -129.68 -128.75 -126.53		-110.90 -110.53	- 94.12	- 92.96	~77.32 -77.00 ~76.69							
Current Data P NAME 2 EXPNO PROCNO	014-12-29 11 1	1942				\ \/ /		Y		1	\mathbb{V}							
F2 - Acquisiti Date_ Time INSTRUM PROBHD 5 mm PULPROG TD SOLVENT NS DS SWH FIDRES AQ RG CQ DW DE TE D12	on Parameter 20141229 22.45 spect DUL 13C-1 290930 65536 CDC13 50 0 22727.273 Hz 0.346791 Hz 1.4418420 se 1820 22.000 us 6.000 us 300.0 K	ss sec sec												Ph 3n				
d11 0 DELTA 1 TD0	.03000000 se .89999998 se 1	ec ec																
===== CHANN NUC1 P1 PL1 SF01 10	EL f1 ====== 13C 9.70 us -0.50 dE 0.6288660 MH	sec 3 Iz				r i l		т	I	1								
===== CHANN CPDPRG2 NUC2 PCPD2	EL f2 ===== waltz16 1H 90.00 us	sec																
PL2 PL12 PL13 SFO2 40 F2 - Processin SF 10 WDW SSB LB	2:49-01 15:10 dF 18:10 dF 18:10 dF 0.1516010 MF 32768 0.6177980 MF EM 0 3:00 H2	3 3 12 5 12			An									анан калан кала Калан калан кал				
GB PC	1.00	-				r II				Ì								
			Ī	I														
******************************	dagalay naishin na na ang matang kapalay	-		mandu	l		<u>a</u>	mudhanan		Lannaan	uning nan Mananan	*****	****	****	an a	,	arnanahar Masar a tanapathi	handrassiasingNyangkhaner
190	180 17	7 0	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	ppm

BR	UKER	-168.13	-163.03		-137.86	-132.40 -130.14 -128.86 -126.52	-118.24		-101.78	- 92.87	- 77.32 - 77.00 - 76.68					-16.54	
Current I NAME EXPNO PROCNO	Data Parameters PK-1132 2 1					\\//					\mathbb{V}						
F2 - Acqu Date_ Time INSTRUM PROBHD PULPROG TD SOLVENT NS SWH FIDRES AQ RG	uisition Parame 20141229 22.06 5 mm DUL 13C-1 2gpq30 65536 CDC13 74 0 22727.273 0.346791 1.4418420 1820	Hz Hz sec	Alexed usually set set as				nterusing publica	Nine Land Jacob Line Line				under an station of a state		Maniana waa kuliu daa	nanum, dau∕94476.ar		una de la constitución de la const
DW DE TE D1 d11 DELTA TD0	22.000 6.00 2.0000000 0.03000000 1.8999998 1	usec K sec sec sec				Antoni (to bala		an antes out that which	allanan oʻlik Arashi sala	and a day of the second			Ph				чту то на ната — то се у на нат
NUC1 P1 PL1 SF01	CHANNEL f1 === 13C 9.70 -0.50 100.6288660 CHANNEL f2 ===	usec dB MHz							I	I			ں 30 //	Ó			
CPDPRG2 NUC2 PCPD2 PL2 PL12 PL13	waltz16 1H 90.00 -2.40 15.10	usec dB dB dB	the frequencies of the second seco	afisikati iyo Padina Panjik	Magangtota an	and and the last		and an	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			Alley below, which and a constraints	***	9/Mp.J./	Sector	لىلىدەلىلەيدارىيۇنىرىدەتىيىر	********************************* *
FLIS SFO2 F2 - Proc SI SF WDW SSB LB GB	400.1516010 cessing paramet 32768 100.6178046 EM 0 3.00 0	MHz ers MHz Hz															
EC.	المرابعة بالمعادية بالمعادية بالم		and block all strategy products	ilessed setting up after forme	ut usual a		the state (mathly, set	eren albere abies his a	and a summer cale	and the second second	Januarya Mala (u, ga di sa	na di Biya ang Malang a	na hatin Bay al Mentante	n da sana da sana	a gent lastifiques, plus hann	and with some of a stream of the source of t	hadre bol historic received
4 a. 14 avaa affa		ر المراجع المحالين الم						and the second sec	·····								
1	90 180	170	160	150	140	130	120	110	100	90	80 7	0 60	50	40	30	20	ppm

Current NAME EXPNO PROCNO	Data Parameters PK-1134 2 1				134.74	130.07	128.73 127.14 126.51 120.45		99.96	93.08	77.32	0.01)						
F2 - Acc Date_ Time INSTRUM PROBHD PULPROG TD SOLVENT NS SOLVENT NS SWH FIDRES AQ RG RG DW DE TE D I TE D I TE	quisition Parame 20150116 9.58 spect 5 mm DUL 13C-1 2gpg30 65536 CDC13 135 0.22727.273 0.346791 1.4418420 57 22.000 6.00	Hz Hz sec usec K						Reduction for the second s		, lanna	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		*****		Ph O 3p	Ph		uter and state and st
d11 DELTA TD0 NUC1 P1 PL1 SF01	2:06308000 0:03000000 1:89999998 1 = CHANNEL f1 === 13C 9.70 -0.50 100.62288660	sec sec usec dB MHz							1	1								
CPDPRG2 NUC2 PCBD2 PL2 PL12 PL12 PL13	= CHANNEL f2 === waltz16 1H 99.20 -2.40 15.10 18.10	dB dB dB dB dB	aqlar ^a daansiadaasi				have the hearing	₩₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽		all announce	innarðslöðist sem en sen skon			Magangthayanthasalantah		berlingter versioner	alk-managed paymething white	arturbaharnaharykayarnakar
SFO2 F2 - Pri SF WDW SSB LB GB PC	400.1516010 ocessing paramet 32768 100.6178105 EM 0 3.00 0 1.00	MHz ers MHz Hz		♪↓↓jantouvututus,ste	14 441- 54 1449 ⁷ Ya		hanged and have been a	ولغيدانورية عرفه وبالينام			,0,000,000	w.e.g.adv.y.e	1 Second Second	be defension of the second	hand an in a start and a start a	Aptersonant	the way of the state of the	nangyakatan
	190 180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	ppm

Current Data Parameters NAME PK-1137-C EXPNO 1 PROCNO 1		98.65	77.00	19.40
F2 - Processing parameters SI 65536 SF 100.5214665 MHz WDW EM SSB 0 LB 0.30 Hz GB 0 FC 1.00			$ \begin{array}{c} Ph \\ $	
	140 130 120 1	10 100 90	80 70 60 50 40	30 20 ppm

Current Data Parameters NAME PK-1138-C EXPNO 1 PROCNO 1 F2 - Processing parameters SI 65536 SF 100.5214687 MHz WDW EM SSB 0 LB 0.30 Hz GB 0 PC 1.00			~	
$ \begin{array}{c} $				
	10 100 90	80 70 60 50	40 30	20 ppm

	165.0	139.9	1229.0	106.6	93.34	77.21 77.00 76.79		29.44		
Current Data Parameters NAME SNK-5059 EXPNO 2 PROCNO 1										
F2 Acquisition Parameters Date20150109 Time 5.01 INSTRUM spect PROBHD 5 mm QNP 1H/1 PULPROG PULPROG zgpq TD 32768 SOLVENT CDC13 DS 0 SWH 45045.047 Hz FIDRES 1.374666 Hz AQ 0.3637788 sec RG 2048										
DW 11.100 usec DE 6.50 usec TE 293.9 K D1 3.5000000 sec d11 0.03000000 sec DELTA 3.4000010 sec MCREST 0 sec MCWRK 0.01500000 sec	Ph	_0	[]]							
NUCL 13C P1 4.80 usec PLI 0 dB SF01 150.5346470 MHz CHANNEL f2 Waltz16 NUC2 1H PCPD2 92.00 usec	3t Ph									
PL2 120.00 dB PL12 9.00 dB PL13 14.00 dB SF02 598.6029940 MHz				a						
F2 - Processing parameters SI 65536 SF 150.5181227 MHz WDW EM SSB 0 LB 3.00 Hz GB 0 PC 0.50										
	Ι.	I		1						
,		l				J			*****	waaabadaayaa aanaaaaaaaaaaaa
190 180 170) 160 150	140	130 120	 110 10	0 90	80 70	60 50	40 30	20	ppm

		// 131.84 130.75 128.53 126.05			77.21 77.00 76.78			24.69	
Current Data Parameters NAME SNK-5062 EXPNO 2 PROCNO 1									
F2 Acquisition Parameters Date20150113 Time 1.46 INSTRUM spect PROBHD 5 mg NP 1H/1 PULPROG z2768 SOLVENT CDC13 NS 10 DS 0 SWH 45045.047 FIDRES 1.374666 AQ 0.3637748 RG 2048									
DW 11.100 usec DE 6.50 usec TE 296.5 K D1 3.5000000 sec d11 0.0300000 sec DELTA 3.4000010 sec MCWREK 0.01500000 sec	Ph								
CHANNEL fl NUC1 J3C J3C PL1 0 dB usec SF01 150.5346470 MHz CHANNEL f2 CPDFRG2 waltz16 NCC2 92.00 usec PL2 120.00 dB PL3 14.00 dB STO2 508 c039040 MHz									
F2 Processing parameters F2 Frameters 6556 SF SF 150.5181330 MDW EM SSB 0 LB 3.00 Hz GB 0 PC 0.50									
	I.		Ĩ						
 190 180 17(0 160 150 140	130 120	110 100	t 90	80 70	60 50	40 30	 20	

				91.11	77.21 77.00 76.79		33.42	24.39	
Current Data Parameters NAME SNK-5063 EXPNO 2 PROCNO 1									
F2 - Acquisition Parameters Date20150113 Time2.06 INSTRUMSpect PROBHD_5_mm_QNP_1H/1 PULPROG2026 TD32768 SOLVENTCDC13 NS00 DS01 SWH 45045.047 Hz FIDRES374666 Hz AQ 0.3637748 sec RG 2048									
DW 11.100 usec DE 6.50 usec TE 296.6 K D1 3.5000000 sec dl1 0.0300000 sec DELTA 3.4000010 sec MCREST 0 sec MCWKK 0.1050000 sec	Ph								
CHANNEL fl 13C NUC1 13C PL1 0 dB SF01 150.5346470 MHz	3w O							 	
F2 - Processing parameters SI 65536 SF 150.5181323 MHz WDW EM SSB 0 LB 3.00 Hz GB 0 PC 0.50									
190 180 17(0 160 150 140	130 120	110 100	90	80 70	60 50	40 30) 20	maa

FROLNO I F2 - Acquisition Parameters Date_ 20150121 Time 14.57 INSTRUM spect PROBHD 5 mm QNP 1H/1					
FOLFROG 2999 TD 22763 SOLVENT CDC13 NS 40 DS 40 SWH 45045.047 Hz SWH 1.374666 Hz AQ 0.3637748 sec					
DW 11.100 Usec DE 6.50 usec TE 297.5 K D1 3.5000000 sec dl1 0.0300000 sec DELTA 3.4000010 sec MCWRR 0.01500000 sec		bann-negengengengengengengengengengengengenge			
NUC1 13C P1 4.80 usec PL1 0.00 dB SF01 150.5346470 MHz		I			
CPDPRG2 waltz16 NUC2 1H PCPD2 92.00 usec PL2 120.00 dB FL12 9.00 dB PL13 14.00 dB		 		<u> </u>	
SP02 598.6029930 MHz F2 - Processing parameters SI 65536 SF 150.5181014 MHz WDW EM SSB 0					
LB 3.00 Hz GB 0 PC 1.00					
LB 3.00 Hz GB 0 PC 1.00 1D NMR plot parameters CX 20.00 cm F1P 200.000 ppm F1 30103.62 Hz F2P 0.000 ppm F2 0.000 Hz	170 ppm				ī
LB 3.00 Hz GB 0 PC 1.00 ID NMR plot parameters CX 20.00 cm CY 4.00 cm FIP 200.000 ppm F1 30103.62 Hz F2P 0.000 ppm F2 0.00 Hz	170 ppm				

Current Data Parameters NAME 2015-03-18 PROCNO 1	160.96			91.04	77.32				24.64	
F2 - Acquisition Parameters Date20150318 Time 21.22 INSTRUM spect PROBHD 5 mm DUL 13C-1 PULPROG zgpg30 TD 65536 SOLVENT CDC13 NS 123 DS 0 SWH 22727.273 FIDRES 0.346791 AQ 1.4418420 Sec 57										
DW 22.000 usec DE 6.00 usec TE 300.0 K D1 2.0000000 sec dl1 0.0300000 sec DELTA 1.8999998 sec TD0 1		$ \begin{array}{c} $								
CHANNEL f2 f2 CPDPRG2 waltzl6 NUC2 1H PCPD2 90.00 PL2 -2.40 PL12 15.10 PL13 18.10 SFO2 400.1516010									 	J
F2 - Processing parameters SI 32768 SF 100.6178151 MHz WDW EM SSB 0 LB 3.00 Hz GB 0 PC 1.00 PK-1173				Ĩ						
190 180 170	160	150 140 130 120	110 100	90	80 70	60	50 4	0 30	20	ppm

210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	nnm
210	200	190	100	170	100	150	140	130	120	110	100	30	00	10	00	50	40	30	20	phi

Current Data Parameters NAME PK-1155 EXPNO 3 PROCNO 1		 102.44	$\overbrace{}^{77.32}_{76.68}$	 19.00
F2 - Acquisition Parameters Date_ 20150202 Time 10.32 INSTRUM spect PROBHD 5 mm DUL 13C-1 PULPROG zgpg30 TD 65536 SOLVENT CDC13 NS 71 DS 0 SWH 22727.273 Hz FIDRES 0.346791 Hz AQ 1.4418420 sec RG 57 DW 22.000 usec DE 6.00 usec				
TE 300.0 K D1 2.00000000 sec d11 0.03000000 sec DELTA 1.89999998 sec TD0 1 ===== CHANNEL fl ====== NUC1 13C P1 9.70 usec PL1 -0.50 dB SF01 100.6288660 MHz ===== CHANNEL f2 ====== CPDPRG2 waltz16 NUC2 1 PCPD2 90.00 usec	$ \begin{array}{c} $			
12.2 15.10 dB PL12 15.10 dB SF02 400.1516010 MHz F2 - Processing parameters 32768 SF 100.6178123 MHz WDW EM SSB 0 LB 3.00 Hz GB 0 PC 1.00				

PL13 SF02 F2 - Pro SI SF	18.10 dB 400.1516010 MHz ccessing parameters 32768 100.6178141 MHz FM								
SF01 CPDPRG2 NUC2 PC DD2 PL2 PL12 PL13	-0.30 dB 100.6288660 MHz • CHANNEL f2 ====== waltz16 1H -2.40 dB 15.10 dB 18.10 dB								
NUC1 P1	L CHANNEL f1 ======= 13C 9.70 usec					1			
DE TE D1 d11 DELTA	6.00 usec 300.0 K 2.0000000 sec 0.03000000 sec 1.89999998 sec		T						
INSTRUM PROBHD PULPROG TD SOLVENT NS DS SWH FIDRES AQ RG DW	spect 5 mm DUL 13C-1 2gpg30 65536 CDC13 110 0 22727.273 Hz 0.346791 Hz 1.4418420 sec 57 22.000 usec		.O ⁿ Bu						
Current NAME EXPNO PROCNO F2 - Acq Date_	Data Parameters 2015-02-11 4 1 puisition Parameters 20150211		\\/	$\backslash /$	\bigvee]		
2		16,	12 13 13	100	77 76 69	41	31	\neg	

5.321 5.314 5.311 5.304 SVZ

7.240

0 1.00 parameters 20.00 cm 4.00 cm 200.000 ppm 30103.62 Hz 0.000 ppm 0.00 Hz	ugh Mengangan Julion ya Nyangan Mangangan Julion ya			4~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		time have have been a second and a
U 1.00 parameters 20.00 cm 4.00 cm 3003.06 ppm 3003.06 Hz 0.000 Hz						
U 1.00 parameters 20.00 cm 4.00 cm 200.000 ppm 30103.62 Hz 0.000 ppm 0.00 Hz						
0 1.00 parameters 20.00 cm 4.00 cm 200.000 ppm 30103.62 Hz			,			
1.00						
3.00 Hz						
65536 150.5180980 MHz EM 0						
9.00 dB 14.00 dB 598.6029930 MHz	*****					
waltz16 1H 92.00 usec 120.00 dB				leven		
4.80 usec 0.00 dB 150.5346470 MHz	5c		1		I	
0.01500000 sec ANNEL f1 ======= 13C		I I				
6.50 usec 297.7 K 3.50000000 sec 0.03000000 sec 3.4000010 sec 0.00000000 sec						
1.374666 Hz 0.3637748 sec 2048 11.100 usec	~~~~~		,	าร่อนกระสารสุรัณาที่สารทำสารสุรัตร์การสารที่สารการการสารการการที่สารการ	·····	mupopounton
32768 CDC13 79 0						
ition Parameters 20150121 14.42 spect mm QNP 1H/1 zapa		11				I
a Parameters SNK-5077 2 1						
			\vee			$ \vee$
- 174		- 104.5 - 101.5	- 77.2 - 76.7 - 60.3	- 41.70	- 34.46 - 31.41 - 28.37	- 22.05 - 19.09 - 13.69 - 13.66
i t	- T /4 . 0	O . 47 / 1		$ \begin{array}{c} & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} & -1.04.5 \\ & -1.04.5 \\ & -1.04.5 \\ & -1.04.5 \\ & -1.01.5 $

Current Data Parameters NAME 2015-03-19 EXPNO 2 PROCNO 1	174.50	103.10	77.32 77.00 76.68		19.01 14.98 11.63 13.63
F2 - Acquisition Parameters Date20150319 Time 16.31 INSTRUM spect PROBHD 5 mm DUL 13C-1 PULPROG zgpq30 TD 65536 SOLVENT CDC13 NS 85 DS 0 SWH 22727.273 FIDRES 0.346791 AQ 1.4418420 57			na Mal (1940) na Santa and Ind	es bible affeture, se unem ta Versenante e	
DW 22.000 Usec DE 6.00 usec TE 300.0 K D1 2.0000000 sec dl1 0.0300000 sec DDELTA 1.89999998 sec TD0 1 ====== CHANNEL fl NUC1 13C P1 9.70 usec PL1 -0.50 dB SE01 100 c288660 MMz	$\bigcap_{i \in \mathcal{O}} O^{n} Bu$				
SFOI 100.0280000 FH2 ===== CHANNEL f2 CPDPRG2 waltz16 NUC2 1H PGFD2 -2.40 dB PL12 15.10 dB PL13 18.10 dB SFO2 400.1516010 MHz	5d			ารอาจารายารายสาวารายารายารายา	man and a second descent and a second as
F2 - Processing parameters SI 32768 SF 100.6178080 MHz WDW EM SSB 0 LB 3.00 Hz GB 0 PC 1.00					
210 200 190 18	30 170 160 150 140 130 120	0 110 100 90		50 40 3	манала ин Манан (шаран 0 20 ppm

192.37			116.40		77.21 77.00 76.79			14.98
Current Data Parameters NAME SNK-52002 EXPNO 2 PROCNO 1 F2 - Acquisition Farameters Date_ Date_ 20150324 Time 23.24 INSTRUM spect PROBHD 5 mm QNP 1H/1 PULPROG TD 32768 SOLVENT DMSO DS 0 SWH 45045.047 Hz		.]]		I				
FIDRES 1.374666 Hz AQ 0.3637748 sec BG 4096 DW 11.100 usec DE 6.50 usec TE 296.2 K D1 0.3000000 sec MCREST 0 sec MCREST 0 sec MUWRK 0.01500000 sec MUUT 13C P1 4.80 usec P11 0 dB SF01 150.5346470 MHz SF01 150.5346470 MHz CHANNEL f2	$Ph \underbrace{O}_{\mathbf{5e}} \underbrace{O}_{0}$							
PCPD2 92.00 usec PL2 120.00 dB PL13 14.00 dB SF02 598.6029930 MHz F2 - Processing parameters SI 65536 SF 150.5180983 WDW EM SSB LB 3.00 Hz GB 0 PC								
		130 1	20 110	100 90	80 70	60 5	0 40	30 20 ppm

195.47	165.43	132.68 132.60 131.52 131.34 131.34 131.34 131.34 131.34 132.62 126.23	106.47 104.37 101.84 101.39	$\bigwedge_{76.79}^{77.21}$	45.23	15.02 14.88 11.32 8.89
Current Data Parameters NAME SNK-5114B EXPNO 2 PROCNO 1 F2 - Acquisition Parameters Date20150402 2 Time 23,11 INSTRUM Spect PROBHD 5 mm QNP PULPROBHD 5 mm QNP SOLVENT CDC13 NS 200 DS 0 SWH 45045.047 FTDRES 1.374666					11	11
AQ 0.3637748 905 RG 4096 DW 11.100 usec DE 6.50 usec TE 297.6 K usec D1 3.5000000 sec dll DELTA 3.4000010 sec MCWRK MCWRK 0.01500000 sec MCWRK NUCC1 13C P1 SF01 150.5346470 MHz SF01 SF01 150.5346470 MHz CPDPRG2 CHANNEL f2 CPDPRG2 waltz16 CPDPRG2 22.00 Usec PL2 120.00 db	PhOEt 5f (dr = 1:1)					
P112 9.00 dB P113 14.00 dB SF02 598.6029930 MHz F2 - Processing parameters SI 65536 SF 150.5181000 MHz WOW EM SSB 0 LB 3.00 Hz GB 0 PC 1.00						
190 180 1	70 160 150 1	40 130 120	110 100 90	D 80 70 60	50 40 3	30 20 ppm

a. 18

File: Proton

Pulse Sequence: s2pul

SNK/5114B

File: Proton

Pulse Sequence: s2pul

192.39	165.62		104.98	$\bigwedge_{76.78}^{77.21}$	46.81	22.34	
Current Data Parameters NAME SNK-5115 EXFNO 2 PROCNO 1							
F2 - Acquisition Parameters Date20150402 Time 23.36 INSTRUM spect PROBHD 5 mm QNP 1H/1 PULPROG zgpg TD 32768 SOLVENT CUC13 NS 100 DS 0 SWH 45045.047 Hz FIDRES 1.374666 Hz AQ 0.3637748 sec							
DW 11.100 usec DE 6.50 usec TE 297.5 K D1 3.5000000 sec dl1 0.0300000 sec DELTA 3.4000010 sec MCWRK 0.01500000 sec	PhO_OMe						
CHANNEL f1 NUC1 13C P1 4.80 usec PL1 0 dB SF01 150.5346470 MHz	5g 0						
PL2 120.00 dB PL12 9.00 dB PL13 14.00 dB SF02 598.6029930 MHz		. I			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
F2 - Processing parameters SI 65536 SF 150.5181000 MHz WDW EM SSB 0 LB 3.00 Hz GB 0 PC 1.00							
							undergeber ern sich bezur gebe
	0 160 150 140) 130 120	110 100 90) 80 70 6	0 50 40	30 20	ppm

	1																1			
210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	ppm

Current Data Parameters NAME Leo-PK-1182 EXPNO 2 PROCNO 1	104.77	$\overbrace{76.79}^{77.21}$	46.45	
F2 - Acquisition Parameters Date20150409 Time21.56 INSTRUM				
DE 6.50 usec TE 296.5 K D1 3.5000000 sec d11 0.03000000 sec DELTA 3.4000010 sec MCCREST 0 sec MCWRK 0.01500000 sec CHANNEL f1 PL1 0 dB SF01 150.5346470 MHz CHANNEL f2 CPDPRG2 walt216 NUC2 1H				
NOC2 11 PCPD2 92:00 USEC PL2 120:00 dB PL12 9:00 dB PL13 14:00 dB SFO2 598:6029930 MHz F2 - Processing parameters SI 65536 SF 150:5180985 MHz WDW EM SSB 0 LB 3:00 Hz GB 0 PC 1:00				

	170 16	0 150 14	0 130	120 110	100	90	80 70) <u>60</u>	50	40	30	20	ppm
PCPD2 90. PL2 -2: PL12 15. PL13 18. SFO2 400.1516(F2 - Processing parameters SF 100.6178(WDW SSB LB 3: GB 3. PC 1.	00 usec 40 dB 10 dB 10 dB 10 MHz meters 668 064 MHz EM 0 0 00 Hz 0 0	ann a baile fair a fair an baile fair fair				up design by the st		ng tang ang dal kang ber ang ang	New Post of Party of	alas, in factor in a constant		unite and generalized	elingura an chaigean sta
DE 66 TE 300 D1 2.00000 d11 0.030000 DELTA 1.899999 TD0 ====== CHANNEL f1 = NUC1 9 P1 9 PL1 -0 SF01 100.62880 ====== CHANNEL f2 - CPDFRG2 walt:	00 usec 0.0 K 000 sec 998 sec 1 13C 7.70 usec 5.50 dB 560 MHz 111								~~~~	50		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
FROCHO F2 - Acquisition Para Date20150(Time1) INSTRUMSpe PROBHD 5 mm DUL 13(PULPROGSpe TD651 SOLVENT0 SS1 DS1 SWH22727.: SWH22727.: FIDRES346' AQ1.4418' RG0 W22.()	1 ameters 526 533 9et -1 330 336 213 225 0 773 Hz 791 Hz 120 sec 577 200 sec									Ph_ 6b		Ph	.OMe
Current Data Paramete NAME 2015-06- EXPNO	90.526 226 2	139.55	131.69	126.132	98.67	89.91	77.32	55.22					

