Supporting Information

Efficient photocatalytic water oxidation catalyzed by

polyoxometalate of [Fe₁₁(H₂O)₁₄(OH)₂(W₃O₁₀)₂(α-SbW₉O₃₃)₆]²⁷⁻

based on abundant metals

Xiaoqiang Du^a, Yong Ding ^{ab*}, Fangyuan Song ^a, Baochun Ma^a, Junwei Zhao ^c, Jie Song ^d

 ^a State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
 ^b State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
 ^c Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004 (P.R. China)
 ^d Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, Georgia 30322, USA

* To whom correspondence should be addressed. E-mail addresses: dingyong1@lzu.edu.cn

Quantum Yield Calculation

Initial O₂ formation rate = 0.13 µmol·s⁻¹ Irradiation radius = 1 cm = 0.01 m Photon flux = $\pi \times (0.01 \text{ m})^2 \times 1748 \text{ µmol·m}^{-2} \cdot \text{s}^{-1} = 0.549 \text{ µmol·s}^{-1}$ $\Phi_{\text{QY(initial)}} = 2 \times \frac{\text{initial O}_2 \text{ formation rate}}{\text{photon flux}} \times 100\%$ $= \frac{2 \times 0.13 \text{ µmol·s}^{-1}}{0.549 \text{ µmol·s}^{-1}} \times 100\%$ = 47%

Electrochemistry

 H_2SO_4 , Na_2SO_4 , NaOH, H_3BO_3 , $Na_2B_4O_7$ were commercial products. The pH = 3 medium was made up with 0.2 M $Na_2SO_4 + H_2SO_4$. The solutions were deaereated thoroughly for a least 30 min with pure argon and kept under a positive pressure of this gas during the experiments.

Equipment and Apparatus

Cyclic voltammetry (CV) was recorded on a CHI660D electrochemical analyzer, where a glassy carbon, an Ag/AgCl and a Pt wire electrodes were used as a working, reference and auxiliary electrodes, respectively. CV was obtained in buffer solutions containing 0.2 M NaNO₃ as a supporting electrolyte at room temperature with a scanning rate of 25 mV s⁻¹. UV-vis absorption spectra were recorded on Beijing Purkinje General Instrument Co.,Ltd. TU-1810 spectrophotometer equipped with a photomutiplier tube detector. Infrared spectra (2–4% (w/w) sample in KBr pellets) were performed using a Bruker VERTEX 70v FT-IR spectrometer. Elemental analysis of the catalysts was performed on TJA ICP-atomic emission spectrometer (IRIS Advantage ER/S). X-ray photoelectron spectra (XPS) were measured by ESCALAB250xi with X-Ray monochromatisation. GC-MS spectral analyses of isotopic labelled O₂ were performed on an Agilent Series 7890A model chromatograph interfaced with an Agilent Series 5975C model mass spectrometer. The capillary electrophoretic were performed on Beckman, MDQ. equipped with a 32.karat 7.0 software. Transmission electron microscope (TEM) images were obtained with a JEOL JEM-2010 instrument operated at 200 kV.

Isotope-Labeled Experiment

The 10.8 atom % H₂¹⁸O of borate buffer solution (pH 10.0, 80 mM) containing **1** (1.3 μ M), [Ru(bpy)₃](ClO₄)₂ (1 mM), Na₂S₂O₈ (5 mM) was deaerated with Helium gas before irradiation by LED light ($\lambda \ge 420$ nm) in a flask that is sealed with a rubber septum. After 9 min, 50 μ L of gas sample was withdrawn using a gas-tight syringe for gas analysis. An Agilent Series 7890A model chromatograph interfaced with an Agilent Series 5975C model mass spectrometer operating in electron impact ionization mode was used to collect mass spectrometric data. The MS detector was tuned for maximum sensitivity (quadrupole temperature, 150 °C; Ion source temperature, 230 °C). Single ion mode was used to scan for the ions m/z = 28, 32, 34, 36 with a dwell time of 100 ms, resulting in 8.3 cycles per second. The ions of m/z range from 30 to 50 were also scanned in order to observe the abundance change of ¹⁶O¹⁸O and ¹⁸O¹⁸O, which evolved from H₂¹⁶O and H₂¹⁸O, respectively. The total flow rate into the spectrometer was limited to 0.6 mL/min. The GC equipped with a molecular sieve column (30 m × 0.32 mm × 15 um), and the vaporizing chamber temperature and column temperature was set for 100 °C and 35 °C, respectively.

The preparing of $Na_{27}[Fe_{11}(H_2O)_{14}(OH)_2(W_3O_{10})_2(\alpha-SbW_9O_{33})_6]$ ·103H₂O(1), α -Fe₂O₃ nanoparticles, $Na_6[Fe_4(H_2O)_{10}(SbW_9O_{33})_2]$ ·40H₂O and K₅SiFe(OH)₂W₁₁O₃₉·14H₂O

 $Na_{27}[Fe_{11}(H_2O)_{14}(OH)_2(W_3O_{10})_2(\alpha-SbW_9O_{33})_6]$ ·103H₂O were prepared according to a published method¹ and all the characterizations of **1** were reported in published literature¹. α -Fe_2O_3 nanoparticles with size of 60 nm, (Figure S13) were prepared according to a published method². $Na_6[Fe_4(H_2O)_{10}(SbW_9O_{33})_2]$ ·40H₂O were prepared according to a published method³ and K₅SiFe(OH)₂W₁₁O₃₉·14H₂O were prepared according to a published method.⁴

The measurement of Quantum Yield

The quantum yields of O₂ evolution were determined for the photocatalytic water oxidation under the following conditions. A quartz flask containing a borate buffer solution (80 mM, pH 10.0, 16 mL) with **1** (1.3 μ M), [Ru(bpy)₃](ClO₄)₂ (1 mM) and Na₂S₂O₈ (5 mM) was irradiated by an interference filtered (Asahi spectra SV 490) from a LED source (420 < λ < 490 nm) described above. The photon flux of the incident light was determined using a Ray virtual radiation actinometer (FU 100, silicon ray detector, light spectrum, 400-700 nm; sensitivity, 10-50 μ V μ mol⁻¹ m⁻² s⁻¹), affording a value to be 1748 μ mol m⁻² s⁻¹.

Laser flash photolysis

Nanosecond transient absorption measurements were performed on an Edinburgh Instruments LP920-KS laser flash photolysis spectrometer, using an OPO laser source (OPOTEK Vibrant). Transient detection was obtained using a photomultiplier-oscilloscope combination (Hamamatsu R928P, Tektronix TDS3012C). Kinetics of bleach recovery conditions: Excitation wavelength = 445 nm, analysis wavelength = 450 nm; 50 μ M [Ru(bpy)₃]²⁺; 5 mM Na₂S₂O₈; 0-100 μ M 1; pH 10.0, 80 mM borate buffer.

Photocatalytic Water Oxidation

Photocatalytic water oxidation was performed as follows. The desired concentration of catalyst (0.33–2.60 μ M) was added to a buffer solution (80 mM, pH 8.0–11.0 for borate buffer) containing [Ru(bpy)₃](ClO₄)₂ (1.0 mM) and Na₂S₂O₈ (5.0 mM). The above solution was deaerated by purging with Ar gas for 5 min in a flask (21 mL) sealed with a rubber septum (the volume of reaction solution was 16 mL). The reaction was then started by irradiating the solution with a LED light source (light intensity 16 mW, beam diameter 2 cm) through a transmitting glass filter ($\lambda \ge 420$ nm) at room temperature. After each irradiation time, 150 μ L of Ar was injected into the flask and then the same volume of gas in the headspace of the flask was withdrawn by a SGE gas-tight syringe and analysed by gas chromatography (GC). The O₂ in the sampled gas was separated by passing through a 2 m × 3 mm packed molecular sieve 5A column with an Ar carrier gas and quantified by a thermal conductivity detector (TCD) (Shimadzu GC-9A). The total amount of the head-space with air was corrected by measuring of N₂ present in the head-space (from the N₂ peak in the GC traces). The solution pH was measured after the reaction by a METTLER TOLEDO FEP20 pH meter.

Atoms	BVS values	Atoms	BVS values	Atoms	BVS values
Fe1	3.23	Fe2	3.16	Fe3	3.20
Fe4	2.93	Fe5	3.00	Fe6	2.98
O1W	0.42	O3W	0.41	O109	1.99
O2W	0.34	O4W	0.42	O110	1.99
O5W	0.45	O6W	0.38	O7W	0.34

Table S1. The BVS Values of Fe and Selected the Oxygen Atoms in 1

101120	
Identification code	$Na_{6}[Fe_{4}(H_{2}O)_{10}(SbW_{9}O_{33})_{2}] \cdot 40H_{2}O$
Empirical formula	$H_{100}Fe_4Na_6O_{116}Sb_2W_{18}\\$
Formula weight	5752
Temperature/K	293(2)
Crystal system	monoclinic
Space group	$P2_1/c$
a/Å	16.1262(8)
b/Å	15.2572(5)
c/Å	20.2165(13)
α/°	90.00
β/°	96.061(7)
γ/°	90.00
Volume/Å ³	4946.3(4)
Ζ	2
$ ho_{calc}mg/mm^3$	3.908
m/mm ⁻¹	47.815
F(000)	5164.0
Radiation	Cu K α (λ = 1.54184)
2Θ range for data collection	8 to 145.32°
Index ranges	$-19 \le h \le 19, -18 \le k \le 18, -21 \le l \le 25$
Reflections collected	33341
Independent reflections	9794 [$R_{int} = 0.0370$]
Data/restraints/parameters	9794/12/658
Goodness-of-fit on F ²	1.042
Final R indexes $[I \ge 2\sigma(I)]$	$R_1^{a} = 0.0250, wR_2^{b} = 0.0534$
Final R indexes [all data]	$R_1^{a} = 0.0320, wR_2^{b} = 0.0562$
Largest diff. peak/hole / eÅ-3	1.85/-1.15
$\overline{a}\mathbf{R}_{1} = \sum F_{0} - F / \sum F_{0} \cdot \mathbf{b} \mathbf{w}R_{2} = \sum [w]$	$(F_0^2 - F^2)^2 / \sum [w(F_0^2)^2]^{1/2}$

Table S2. Crystal Data and Structure Refinements for Na6[Fe4(H2O)10 (SbW9O33)2]·40H2O

 ${}^{a}\mathbf{R}_{1} = \Sigma ||F_{0}| - |F_{c}|| / \Sigma |F_{0}|; {}^{b}\mathbf{w}R_{2} = \Sigma [w(F_{0}{}^{2} - F_{c}{}^{2})^{2}] / \Sigma [w(F_{0}{}^{2})^{2}]^{1/2}$

	v	· · · · · · · · · · · · · · · · · · ·	10/0 =	
Entry	[Ru(bpy) ₃]Cl ₂	$Na_2S_2O_8$	Catalyst	O ₂ (µmol)
	(mM)	(mM)	(µM)	
1	1	5	0	1.9
2	1	0	1.3	0
3	0	5	1.3	0

Table S3. Water Oxidation Catalyzed without 1 or Ru(bpy)₃Cl₂ or Persulfate

Conditions: LED lamp ($\lambda \ge 420$ nm), 80 mM sodium borate buffer (initial pH 10.0), total reaction volume is 16 mL and overall volume is ~21 mL, vigorous agitation using a magnetic stirrer.

			(~F)))(4)2	
Entry	$[Ru(bpy)_3](ClO_4)_2$	$Na_2S_2O_8$	Catalyst	O_2 (µmol)
	(mM)	(mM)	(µM)	
1	1	5	0	3.9
2	1	0	1.3	0
3	0	5	1.3	0

Table S4. Water Oxidation Catalyzed without 1 or Ru(bpy)₃(ClO₄)₂ or Persulfate

Conditions: LED lamp ($\lambda \ge 420$ nm), 80 mM sodium borate buffer (initial pH 10.0), total reaction volume is 16 mL and overall volume is ~21 mL, vigorous agitation using a magnetic stirrer.

Entry	pH (80 mM NaBi)	O ₂ (µmol)
1	8.0	0.2
2	9.0	3.1
3	10.0	3.9
4	11.0	4.3

Table S5. Water Oxidation Catalyzed without 1 under Different pH

Conditions: LED lamp ($\lambda \ge 420$ nm), 0 μ M 1, 1.0 mM [Ru(bpy)₃](ClO₄)₂, 5.0 mM Na₂S₂O₈, total reaction volume is 16 mL and overall volume is ~21mL, vigorous agitation using a magnetic stirrer.

Entry	pН	O ₂ (µmol)	O_2	TON	TOF(s ⁻	$[Ru(bpy)_3](ClO_4)_2$
			yield(%)		1)	Degradation Percentage (%)
1 ^b	5.8	0	0	0	0	Not studied
2 °	8	3.4	8.6	164	0.9	51.5
3 °	9	15.9	40	762	4.0	13.9
4 °	10	37.8	94	1815	6.3	3.4
5 °	11	26.8	67	1290	5.0	6.3

Table S6. Water Oxidation Catalyzed by Fe₁₁ POM under Different pH ^a

^a Conditions: LED lamp ($\lambda \ge 420$ nm), 1.3 μ M Fe₁₁ POM, 1.0 mM [Ru(bpy)₃](ClO₄)₂, 5.0 mM Na₂S₂O₈, total reaction volume is 16 mL and overall volume is ~21mL, vigorous agitation using a magnetic stirrer. Dye degradation was evaluated by using UV-vis spectrosocpy (Figure S 18 -23). ^b 20 mM Na₂SiF₆ buffer

^c 80mM borate buffer,

Catalyst	Representative reaction conditions	TON	TOF	$\Phi_{ m QY(initial)}$ %	Ref.
1	LED lamp ($\lambda \ge 420$ nm), 1.3 µM catalyst, 1.0 mM [Ru(bpy) ₃](ClO ₄) ₂ , 5.0 mM Na ₂ S ₂ O ₈ , 80 mM sodium borate buffer (pH 10.0)	1815	6.3 s ⁻¹	47	This work
$Na_{10}[Co_4(H_2O)_2($ α -PW ₉ O ₃₄) ₂]	Xe lamp (420–470 nm), 5 μ M catalyst, 1.0 mM [Ru(bpy) ₃]Cl ₂ , 5.0 mM Na ₂ S ₂ O ₈ , 80 mM sodium borate buffer (pH 8.0)	224	No data	30	5
K _{10.2} Na _{0.8} [{Co ₄ (μ- OH)(H ₂ O) ₃ }(Si ₂ W ₁₉ O ₇₀)]	Xe lamp (420–520 nm), 10 μ M catalyst, 1.0 mM [Ru(bpy) ₃]Cl ₂ , 5 mM Na ₂ S ₂ O ₈ , 25 mM sodium borate buffer (pH 9.0)	80	0.1 s ⁻¹	No data	6
(NH ₄) ₃ [CoMo ₆ O ₂₄ H ₆]	300 W Xe lamp (400–800 nm), 0.4 mM [Ru(bpy) ₃](NO ₃) ₂ , 3 mM Na ₂ S ₂ O ₈ , 0.1 M borate buffer solution (pH 8.0)	107 (Based on 3.6 μM catalyst)	0.11 s ⁻¹ (Based on 20 μM catalyst)	54	7
(NH ₄) ₆ [Co ₂ Mo ₁₀ O ₃₈ H ₄]	300 W Xe lamp (400–800 nm), 0.4 mM [Ru(bpy) ₃](NO ₃) ₂ , 3 mM Na ₂ S ₂ O ₈ , 0.1 M borate buffer solution (pH 8.0)	154 (Based on 1.9 μM catalyst)	0.16 s ⁻¹ (Based on 10 μM catalyst)	42	7
Trans- [$Co^{II}(qpy)(OH_2)$ 2](ClO_4)2	500 W mercury arc lamp (457 nm), 0.2 μ M catalyst, 128 μ M [Ru(bpy) ₃]Cl ₂ , 5 mM Na ₂ S ₂ O ₈ , 15 mM borate buffer solution (pH 8.0)	355 (Reaction time = 1.5 h)	No data	No data	8
$[Co^{II}(Me_6tren)(OH_2)](ClO_4)_2$	500 W Xe lamp ($\lambda > 420$ nm), 5.0 μ M catalyst, 0.5 mM [Ru(bpy) ₃](ClO ₄) ₂ , 10 mM Na ₂ S ₂ O ₈ , 100 mM borate buffer solution (pH 9.0)	420 (Decompos ed to Co(OH) _x)	No data	32	9
[Co ^Ⅲ (Cp*)(bpy)(OH ₂)](PF ₆) ₂	500 W Xe lamp ($\lambda > 420$ nm), 5.0 μ M catalyst, 0.5 mM [Ru(bpy) ₃](ClO ₄) ₂ , 10 mM Na ₂ S ₂ O ₈ , 100 mM borate buffer solution (pH 9.0)	320 (Decompos ed to Co(OH) _x)	No data	30	9
$Co^{II}_4O_4(OAc)_4(p$ y) ₄	250W high power Arc lamp (450 nm), 41.5 μM catalyst, 0.5 mM [Ru(bpy) ₃]Cl ₂ , 10.5 mM Na ₂ S ₂ O ₈ , HCO ₃ ⁻ buffer (pH 7.0)	40	0.02 s ⁻¹	No data	10

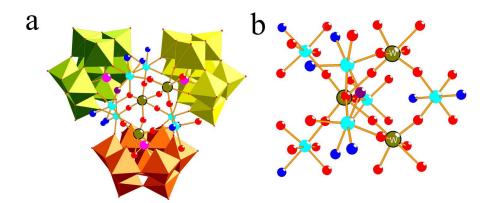
Table S7. TON, TOF_{initial} and Quantum Yield of Photocatalytic Water Oxidation Catalyzed

by Different Catalysts

K ₁₀ H ₂ [Ni ₅ (OH) ₆ (OH ₂) ₃ (Si ₂ W ₁₈ O ₆₆) ₂]	17 mW LED light (455 nm), 1.0 mM [Ru(bpy) ₃]Cl ₂ , 5.0 mM Na ₂ S ₂ O ₈ , 80 mM sodium borate buffer (pH 8.0)	60 (Based on 2μM catalyst)	1 s ⁻¹ (the first 10 Seconds)	3.8	11
$Cs_9[(\gamma - PW_{10}O_{36})_2Ru_4O_5$ (OH)(H ₂ O) ₄	Xe lamp (420–520 nm), 5.1 μ M catalyst, 1.0 mM [Ru(bpy) ₃]Cl ₂ , 5 mM Na ₂ S ₂ O ₈ ,20 mM Na ₂ SiF ₆ buffer (pH 5.8)	120	0.13 s ⁻¹	No data	12
α - K ₆ Na[{Ru ₃ O ₃ (H ₂ O)Cl ₂ }(SiW ₉ O ₃₄)	LED lamp (470 nm), 50 μ M catalyst, 1 mM [Ru(bpy) ₃]Cl ₂ , 5 mM Na ₂ S ₂ O ₈ , 20 mM Na ₂ SiF ₆ buffer (pH 5.8)	23	0.7 s ⁻¹	No data	13
α - K ₁₁ Na ₁ [Co ₄ (H ₂ O)) ₂ (SiW ₉ O ₃₄) ₂]	LED lamp(470 nm) 1 mM [Ru(bpy) ₃]Cl ₂ , 5 mM Na ₂ S ₂ O ₈ , 20 mM Na ₂ SiF ₆ buffer (pH 5.8)	24 (Based on 20μM catalyst)	0.4 s ⁻¹ (Based on 42µM catalyst)	No data	13
Ru ^{II} (hqc)(pic) ₃	A 500 W xenon lamp ($\lambda > 400 \text{ nm}$), 55.0 μ M catalyst, 550 μ M [Ru-(bpy) ₃] ²⁺ , 10mM S ₂ O ₈ ²⁻ , 20 mM phosphate buffer (pH 7.2)	< 5	No data	No data	14
	A 500 W xenon lamp ($\lambda > 400 \text{ nm}$), 55.0 μ M catalyst, 550 μ M [Ru-(bpy) ₂ (dcbpy)] ²⁺ , 10 mM S ₂ O ₈ ²⁻ , 20 mM phosphate buffer (pH 7.2)	42	No data	No data	14
	A 500 W xenon lamp ($\lambda > 400 \text{ nm}$), 55.0 μ M catalyst, 550 μ M [Ru-(bpy) (dcbpy) ₂] ²⁺ , 10mM S ₂ O ₈ ²⁻ , 20 mM phosphate buffer (pH 7.2)	61	No data	9	14
Fe(mcp)Cl ₂	A 200 W Xe lamp ($\lambda > 420$ nm), 1.0 mM Catalyst, 0.2 mM [Ru(bpy) ₃]Cl ₂ , 2mM Na ₂ S ₂ O ₈ , 15 mM borate buffer (pH 8.5) at 23 °C	194	No data	No data	15
[Fe(bpy) ₂ Cl ₂]Cl	A 200 W Xe lamp ($\lambda > 420$ nm), 1.0 mM Catalyst, 0.2 mM [Ru(bpy) ₃]Cl ₂ , 2mM Na ₂ S ₂ O ₈ , 15 mM borate buffer (pH 8.5) at 23 °C	157	No data	No data	15
[Fe(tpy) ₂]Cl ₂	A 200 W Xe lamp ($\lambda > 420$ nm), 1.0 mM Catalyst, 0.2 mM [Ru(bpy) ₃]Cl ₂ , 2mM Na ₂ S ₂ O ₈ , 15 mM borate buffer (pH 8.5) at 23 °C	376	No data	No data	15
[Fe(cyclen)Cl ₂]C	A 200 W Xe lamp ($\lambda > 420$ nm), 1.0 mM	412	No data	No data	15

1	Catalyst, 0.2 mM [Ru(bpy) ₃]Cl ₂ , 2mM Na ₂ S ₂ O ₈ , 15 mM borate buffer (pH 8.5) at 23 °C				
Fe(tmc)Br ₂	A 200 W Xe lamp ($\lambda > 420$ nm), 1.0 mM Catalyst, 0.2 mM [Ru(bpy) ₃]Cl ₂ , 2mM Na ₂ S ₂ O ₈ , 15 mM borate buffer (pH 8.5) at 23 °C	364	No data	No data	15
Fe(ClO ₄) ₃	A 200 W Xe lamp ($\lambda > 420$ nm), 1.0 mM Catalyst, 0.2 mM [Ru(bpy) ₃]Cl ₂ , 2mM Na ₂ S ₂ O ₈ , 15 mM borate buffer (pH 8.5) at 23 °C	436	No data	No data	15
Fe(BQEN)(OTf)	A 500 W xenon lamp ($\lambda > 400$ nm), 5.0 μ M catalyst, 0.25 mM [Ru(bpy) ₃]SO ₄ , 5.0 mM Na ₂ S ₂ O ₈ , 100 mM sodium borate buffer (pH 9.0)	259	No data	No data	16
Fe(BQCN)(OTf) 2	A 500 W xenon lamp ($\lambda > 400 \text{ nm}$), 5.0 μ M catalyst, 0.25 mM [Ru(bpy) ₃]SO ₄ , 5.0 mM Na ₂ S ₂ O ₈ , 100 mM sodium borate buffer (pH 9.0)	No data	No data	No data	16
[Co ^Π 4(hmp)4(μ- OAc) ₂ (μ ₂ - OAc) ₂ (H ₂ O) ₂]	LED lamp (λ = 470 nm), 60 µM catalyst, 1 mM [Ru(bpy) ₃] ²⁺ , 5 mM Na ₂ S ₂ O ₈ , , 50 mM borate (pH 9.0)	28	7 s ⁻¹	No data	17
$[\{Co(H_2O)_3\}_2\{C \\ oBi_2W_{19}O_{66}(OH) \\ \\ _4\}]^{10^-}$	LED lamp (470 nm), 115 μM catalyst, 1 mM [Ru(bpy) ₃]Cl ₂ , 5 mM Na ₂ S ₂ O ₈ , 20 mM Na ₂ SiF ₆ buffer (pH 5.8)	21	No data	No data	18
[NiL ₃](ClO ₄) ₂	500 W Xe lamp (λ =457 nm), 0.6 mM catalyst, 0.12 mM [Ru(bpy) ₃](ClO ₄) ₂ , 2.5 mM Na ₂ S ₂ O ₈ ,30mM borate buffer (pH 8.0), T=23°C	855	No data	No data	19
$[\{Co_4(OH)_3(PO_4) \\ \}_4(SiW_9O_{34})_4]^{32^-}$	A 300 W xenon lamp ($\lambda > 420$ nm), 20 μ M catalyst, 1.0 mM [Ru(bpy) ₃]Cl ₂ , 5.0 mM Na ₂ S ₂ O ₈ , 80 mM sodium borate buffer (pH 9.0)	22.5	0.053s ⁻¹	No data	20
$[\{Co_4(OH)_3(PO_4) \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	A 300 W xenon lamp ($\lambda > 420$ nm), 20 μ M catalyst, 1.0 mM [Ru(bpy) ₃]Cl ₂ , 5.0 mM Na ₂ S ₂ O ₈ , 80 mM sodium borate buffer (pH 9.0)	38.75	0.105s ⁻¹	No data	20

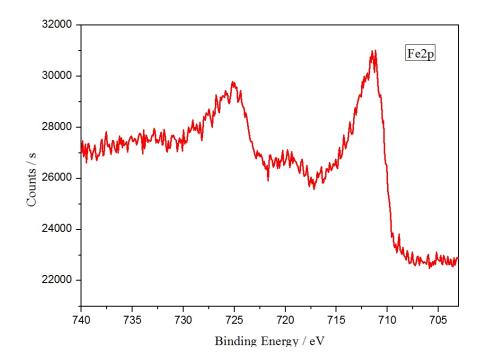
[{Co ₄ (OH) ₃ (PO ₄)	A 300 W xenon lamp ($\lambda > 420 \text{ nm}$), 20	20.25	No data	No data	20
$_{4}(PW_{9}O_{34})_{4}]^{28-}$	μM catalyst, 1.0 mM [Ru(bpy) ₃]Cl ₂ , 5.0				
	mM Na ₂ S ₂ O ₈ , 80 mM sodium borate				
	buffer (pH 9.0)				
[{Co ₄ (OH) ₃ (PO ₄)	A 300 W xenon lamp ($\lambda > 420 \text{ nm}$), 20	33.0	No data	No data	20
$_{4}(AsW_{9}O_{34})_{4}]^{28-}$	μM catalyst, 1.0 mM [Ru(bpy) ₃]Cl ₂ , 5.0				
	mM Na ₂ S ₂ O ₈ , 80 mM sodium borate				
	buffer (pH 9.0)				
Na ₁₀ [Co ₄ (H ₂ O) ₂ (LED lamp (λ =455 nm), 0.2 μ M catalyst,	4210	$>1 \times 10^{3} s^{-1}$	47.7	21
$VW_9O_{34})_2].35H_2$	1.0 mM [Ru(bpy) ₃] Cl ₂ , 5.0 mM Na ₂ S ₂ O ₈ ,				
0	80 mM sodium borate buffer (pH 9.0)				
K ₁₀ [Co-	LED lamp ($\lambda \ge 420$ nm), 5.0 μ M catalyst,	186.9	1.2s ⁻¹	27	22
(H ₂ O) ₂ (γ-	$1.0 \text{ mM} [\text{Ru}(\text{bpy})_3] \text{ Cl}_2, 5.0 \text{ mM} \text{ Na}_2\text{S}_2\text{O}_8,$				
$SiW_{10}O_{35})_{2}]\cdot 23H$	80 mM sodium borate buffer (pH 9.0)				
₂ O					
Na24[Ni12(OH)9(A 300 W xenon lamp ($\lambda\!>\!420$ nm), 2 μM	85.6	0.13s ⁻¹	No data	23
CO ₃) ₃ (PO ₄)(SiW	catalyst, 1.0 mM [Ru(bpy) ₃]Cl ₂ , 5.0 mM				
$_{9}O_{34})_{3}] \cdot 56H_{2}O$	Na ₂ S ₂ O ₈ , 80 mM sodium borate buffer				
	(pH 9.0)				
Na ₂₅ [Ni ₁₃ (H ₂ O) ₃ (A 300 W xenon lamp ($\lambda\!>\!420$ nm), 2 μM	94.1	0.15s ⁻¹	No data	23
OH)9(PO4)4(SiW	catalyst, 1.0 mM [Ru(bpy) ₃]Cl ₂ , 5.0 mM				
$_{9}O_{34})_{3}] \cdot 50H_{2}O$	$Na_2S_2O_8$, 80 mM sodium borate buffer				
	(pH 9.0)				
Na ₅₀ [Ni ₂₅ (H ₂ O) ₂ (A 300 W xenon lamp ($\lambda\!>\!420$ nm), 2 μM	124.4	0.21s ⁻¹	No data	23
OH) ₁₈ (CO ₃) ₂ (PO	catalyst, 1.0 mM [Ru(bpy) ₃]Cl ₂ , 5.0 mM				
4)6(SiW9O34)6]·8	$Na_2S_2O_8$, 80 mM sodium borate buffer				
5H ₂ O	(pH 9.0)				


 $TOF_{initial} = TON_{initial}/60 \text{ s}, TON_{initial} = Molar of oxygen produced in 1 minute/Molar of 1,$ (montum viald) = [(initial O, formation rate)/(nhoten flux)]

 $\Phi_{QY}($ quantum yield $) = [(initial O_2 formation rate)/(photon flux)].$

Catalyst	Representative reaction conditions	TON	TOF	Ref.
1	LED lamp ($\lambda \ge 420 \text{ nm}$), 1.3µM	1815	6.3 s ⁻¹	This
I		1815	0.3 8	
	catalyst, 1.0 mM $[Ru(bpy)_3](ClO_4)_2, 5.0 mM$			work
	$Na_2S_2O_8$, 80 mM sodium borate			
	buffer (pH 10.0)			
E_0 TAMI (V – V –C1 D – E	$182 \text{ mM} (\text{NH}_4)_2 \text{Ce}(\text{NO}_3)_6, 0.980$	16	1.3 s ⁻¹	24
Fe-TAML ($X_1 = X_2 = Cl$, $R = F$.		10	1.5 8	2.
$Y = H_2O)$	mM catalyst in water		NT. 1.4.	25
[Fe(OTf) ₂ (^{Me2} Pytacn)]	$125 \text{ mM} (\text{NH}_4)_2 \text{Ce}(\text{NO}_3)_6, 37.5$	70 ± 5	No data	25
	μ M catalyst in water (pH 1)		NT 1 .	25
[Fe(OTf) ₂ (^{Me2} Pytacn)]	$125 \text{ mM} (\text{NH}_4)_2 \text{Ce}(\text{NO}_3)_6, 12.5$	82 ± 8	No data	25
	μM catalyst in water (pH 1)			25
$[Fe(OTf)_2(mcp)]$	125 mM (NH ₄) ₂ Ce(NO ₃) ₆ , 37.5	360 ± 20	No data	25
	µM catalyst in water (pH 1)			
[FeCl ₂ (mcp)]	125 mM (NH ₄) ₂ Ce(NO ₃) ₆ , 37.5	320 ± 15	No data	25
	µM catalyst in water (pH 1)			
$(Fe(mcp))_2(\mu-O)(\mu-OH)](OTf)_2$	125 mM (NH ₄) ₂ Ce(NO ₃) ₆ , 6.25	210 ± 21	No data	25
	μ M catalyst in water (pH 1)			
[Fe(OTf) ₂ (mcp)]	125 mM NaIO ₄ , 37.5 μM	>1050	No data	25
	catalyst in water (pH 2)			
[Fe(OTf) ₂ (bpbp)]	125 mM (NH ₄) ₂ Ce(NO ₃) ₆ , 37.5	63 ± 7	No data	25
	μ M catalyst in water (pH 1)			
[Fe(OTf) ₂ (mep)]	125 mM (NH ₄) ₂ Ce(NO ₃) ₆ , 37.5	145 ± 5	No data	25
	µM catalyst in water (pH 1)			
[Fe(OTf) ₂ (tpa)]	125 mM (NH ₄) ₂ Ce(NO ₃) ₆ , 37.5	40 ± 4	No data	25
	μ M catalyst in water (pH 1)			
Fe(BQEN)(OTf) ₂	125 mM (NH ₄) ₂ Ce(NO ₃) ₆ , 12.5	80 ± 10	No data	16
	µM catalyst in nonbuffered			
	aqueous solution			
Fe(BQCN)(OTf) ₂	125 mM (NH ₄) ₂ Ce(NO ₃) ₆ ,12.5	20 ± 5	No data	16
	µM catalyst in nonbuffered			
	aqueous solution			

Table S8.TON and $TOF_{initial}$ of Chemical Water Oxidation Catalyzed by Different Catalysts Containing Iron


 $TOF_{initial} = TON_{initial}/60$ s, $TON_{initial} = Molar$ of oxygen produced in 1 minute/Molar of 1.

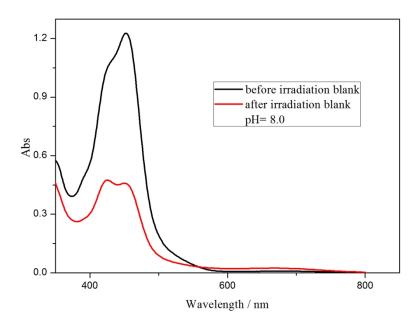
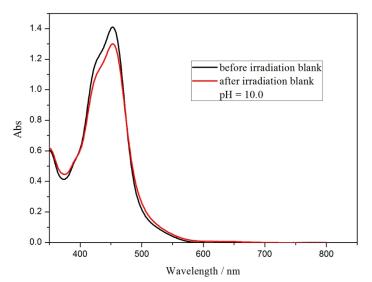
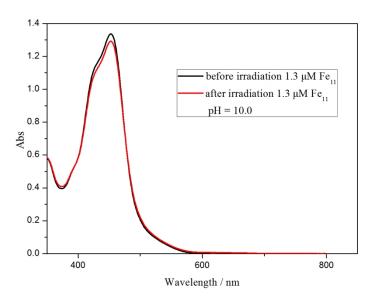
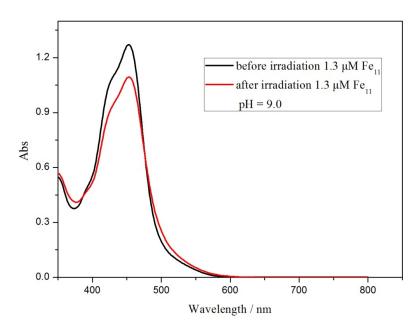
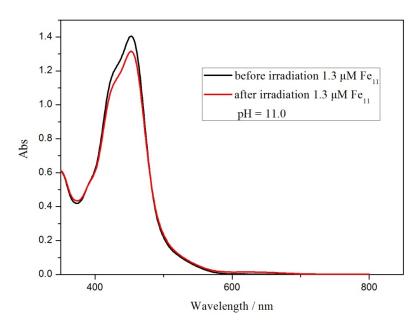

Figure S1. X-ray crystal structure of half-unit of **1a** in combined polyhedral and ball-and-stick representations. Color scheme: $[\alpha$ -SbW₉O₃₃]^{9–} polyhedra (lime, yellow, orange), Fe (cyan), O (red), H₂O (blue), OH (violet), Sb (pink), W (green).

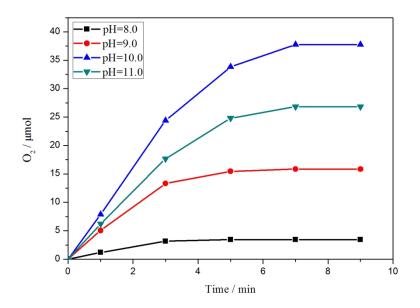

Figure S2. FT-IR spectrum of $Na_6[Fe_4(H_2O)_{10}(SbW_9O_{33})_2]$ ·40H₂O.


Figure S3. X-ray photoelectron spectra of **1** showing the region of Fe $2p_{3/2}$ and Fe $2p_{1/2}$ peaks of **1**. The binding energy of each element was normalized to the C 1s peak (284.8 eV).


Figure S4.UV-vis spectral changes during the photocatalytic O₂ evolution without any catalyst. The black line shows the absorption of aqueous borate buffer solutions (pH = 8.0, 80 mM) containing [Ru(bpy)₃](ClO₄)₂ (1.0 mM) and Na₂S₂O₈ (5.0 mM). The red line shows the absorption of above solution after 9 min of irradiation. (the concentration of [Ru(bpy)₃]²⁺ decreased by 62.7%)


Figure S5. UV-vis spectral changes during the photocatalytic O₂ evolution with Fe₁₁ POM. The black line shows the absorption of aqueous borate buffer solutions (pH = 8.0, 80 mM) containing [Ru(bpy)₃](ClO₄)₂ (1.0 mM), Na₂S₂O₈ (5.0 mM) and and Fe₁₁ POM (1.3 μ M). The red line shows the absorption of above solution after 9 min of irradiation. (the concentration of [Ru(bpy)₃]²⁺ decreased by 51.5%)


Figure S6.UV-vis spectral changes during the photocatalytic O₂ evolution without any catalyst. The black line shows the absorption of aqueous borate buffer solutions (pH = 10.0, 80 mM) containing [Ru(bpy)₃](ClO₄)₂ (1.0 mM) and Na₂S₂O₈ (5.0 mM). The red line shows the absorption of above solution after 9 min of irradiation. (the concentration of [Ru(bpy)₃]²⁺ decreased by 7.8%)


Figure S7. UV-vis spectral changes during the photocatalytic O₂ evolution with Fe₁₁ POM .The black line shows the absorption of aqueous borate buffer solutions (pH = 10.0, 80 mM) containing [Ru(bpy)₃](ClO₄)₂ (1.0 mM), Na₂S₂O₈ (5.0 mM) and Fe₁₁ POM (1.3 μ M). The red line shows the absorption of above solution after 9 min of irradiation. (the concentration of [Ru(bpy)₃]²⁺ decreased by 3.4%)

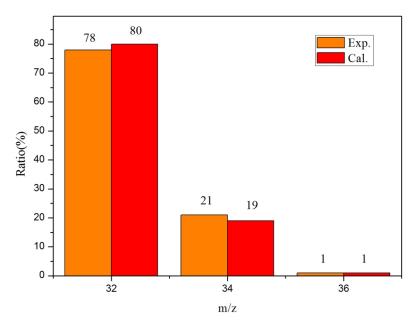

Figure S8. UV-vis spectral changes during the photocatalytic O₂ evolution with Fe₁₁ POM. The black line shows the absorption of aqueous borate buffer solutions (pH = 9.0, 80 mM) containing [Ru(bpy)₃](ClO₄)₂ (1.0 mM), Na₂S₂O₈ (5.0 mM) and and Fe₁₁ POM (1.3 μ M). The red line shows the absorption of above solution after 9 min of irradiation. (the concentration of [Ru(bpy)₃]²⁺ decreased by 13.9%)

Figure S9. UV-vis spectral changes during the photocatalytic O₂ evolution with Fe₁₁ POM. The black line shows the absorption of aqueous borate buffer solutions (pH = 11.0, 80 mM) containing [Ru(bpy)₃](ClO₄)₂ (1.0 mM), Na₂S₂O₈ (5.0 mM) and and Fe₁₁ POM (1.3 μ M). The red line shows the absorption of above solution after 9 min of irradiation. (the concentration of [Ru(bpy)₃]²⁺ decreased by 6.3%)

Figure S10. Kinetics of O₂ formation in the photocatalytic system under various pH conditions (pH = 8.0, 80 mM NaBi, black; pH = 9.0, 80 mM NaBi, red; pH = 10.0, 80 mM NaBi, blue; pH = 11.0, 80 mM NaBi, green). Conditions: LED lamp ($\lambda \ge 420$ nm), 1.3 μ M **1**, 1.0 mM [Ru(bpy)₃](ClO₄)₂, 5.0 mM Na₂S₂O₈, total reaction volume is 16mL and overall volume is ~21mL, vigorous agitation using a magnetic stirrer.

Figure S11. Observed and theoretical relative abundances of ¹⁸O-labeled and unlabeled oxygen evolved during the photocatalytic oxidation of a buffer solution (4.5 mL) prepared with $H_2^{18}O$ -enriched water (10.8% $H_2^{18}O$) containing **1** (1.3 μ M), [Ru(bpy)₃]²⁺ (1.0 mM) and Na₂S₂O₈ (5.0 mM) (yellow, observed mass intensity; red, calculated values assuming that evolved O₂ results exclusively from water).

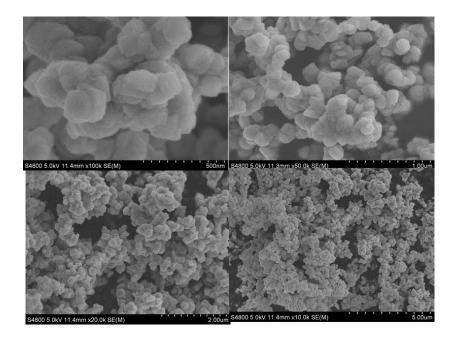


Figure S12. SEM images of commercially available Fe₂O₃ particles.

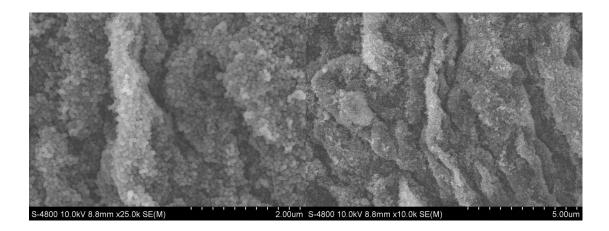


Figure S13. SEM images of α -Fe₂O₃ nanoparticles.

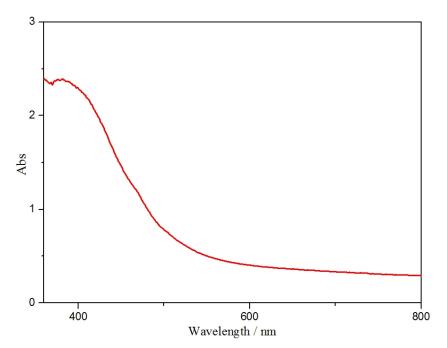
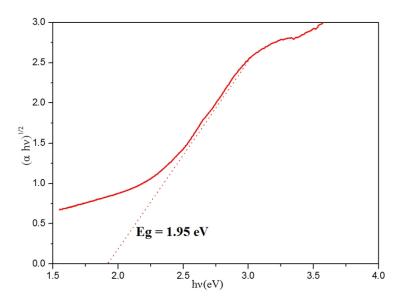
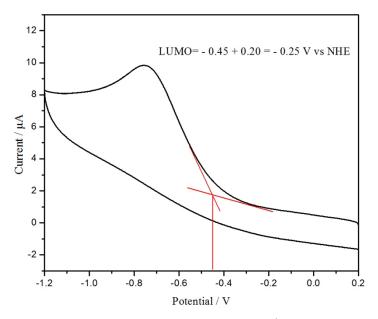




Figure S14. UV-Vis diffuse reflectance spectrum of 1.

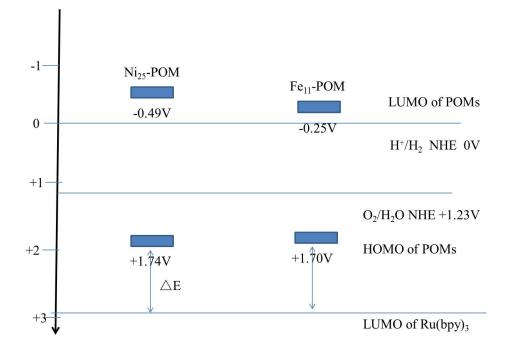

Figure S15. $(ahv)^{1/2}$ versus hv curve of **1**. The red dashed lines are the tangents of the curves. The intersection value is the band gap.

Figure S16. Cyclic voltammogram of 2.5×10^{-4} M **1** in pure water (pH = 7.0) at a scan rate of 100 mV/s. The working electrode was glassy carbon and the reference electrode was Ag/AgCl.

With Ag/AgCl electrode as reference electrode, relative to that NHE potential of 0.20 eV, the formula for calculating level:

$$\begin{split} E_{HOMO} &= -(eE^{ox} + 4.5 + 0.20) \text{ eV} = -(eE^{ox} + 4.70) \text{ eV} \\ E_{LUMO} &= -(eE^{red} + 4.5 + 0.20) \text{ eV} = -(eE^{red} + 4.70) \text{ eV} \\ Eg &= E_{HOMO} - E_{LUMO} \qquad E^{red} = -0.25 \text{ V} \\ E_{LUMO} &= -(Ee^{red} + 4.5 + 0.20) \text{ eV} = -(-0.25 + 4.70) \text{ eV} = -4.45 \text{ eV} \qquad Eg = 1.95 \text{ eV} \\ E_{HOMO} &= -(1.95 + 4.45) \text{ eV} = -6.40 \text{ eV} \end{split}$$

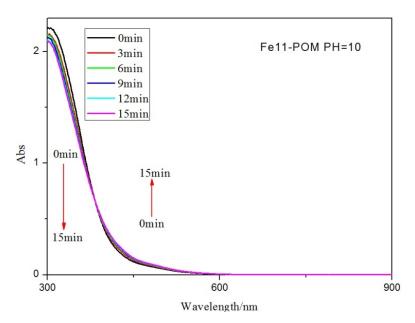
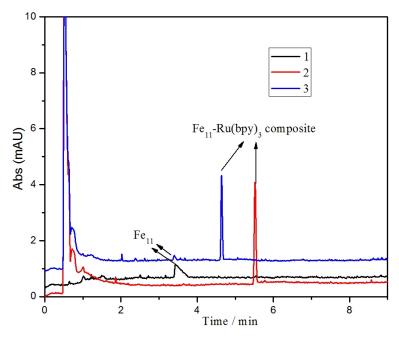


Figure S17. The band gap structures of Ni₂₅-POM and compounds 1. $\Delta E = HOMO$ ([Ru(bpy)₃]³⁺) – HOMO(POMs).


			Diam. (nm)	% Intensity	Width (nm)
Z-Average (d.nm):	0.000	Peak 1:	0.000	0.0	0.000
PdI:	0.000	Peak 2:	0.000	0.0	0.000
Intercept:	0.00	Peak 3:	0.000	0.0	0.000
Result quality	Refer to quali	ty report			

Size Distribution by Intensity
Record 19: 1

Figure S18. Particle size distribution measured by DLS in a solution of **1** (1.30 μ M), [Ru(bpy)₃](ClO₄)₂ (1.0 mM), Na₂S₂O₈ (5.0 mM) in 80 mM, pH = 10.0 borate buffer after 9 min of irradiation

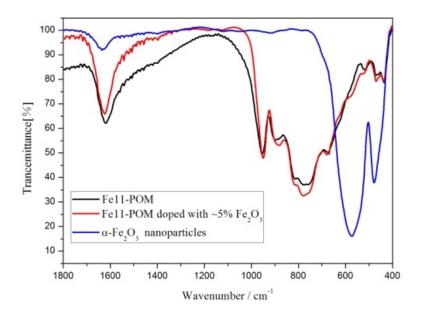


Figure S19. Time-dependent UV-vis absorption spectra of **1** (50 μ M) over 15 min in borate buffer (80 mM, pH 10.0)

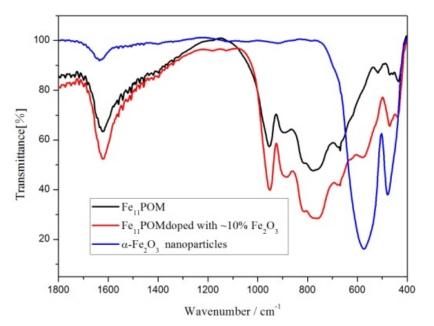
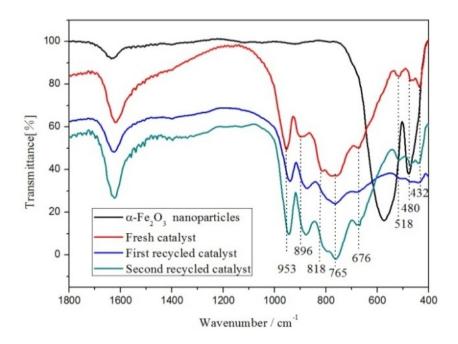


Figure S20. An electropherogram for 5.0 μ M of compounds **1**. Black lines: 5 μ M of compounds **1** in a 20 mM sodium borate buffer solution (pH = 10.0). Red lines: 5.0 μ M of compounds **1** in a 20 mM sodium borate buffer solution (pH = 9.0) containing [Ru(bpy)₃]²⁺ (1 mM), Na₂S₂O₈ (5 mM) before illumination. Blue lines: 5.0 μ M of compounds **1** in a 20 mM sodium borate buffer solution (pH = 10.0) containing [Ru(bpy)₃]²⁺ (1 mM), Na₂S₂O₈ (5 mM) before illumination. Blue lines: 5.0 μ M of compounds **1** in a 20 mM sodium borate buffer solution (pH = 10.0) containing [Ru(bpy)₃]²⁺ (1 mM), Na₂S₂O₈ (5 mM) after 9 min of irradiation. Experimental conditions for capillary electrophoresis: Fused-silica capillaries (50 μ m i.d., 365 μ m o.d., Hebei Yongnian Factory, China) with total length of 50.2 cm and effective length of 10 cm were used. The detection wavelength was set at 214 nm. The running buffer for CE separation was 20 mM sodium borate buffer (pH 10.0). The separation voltage was set at -20 kV. The sample was injected into the capillary (0.5psi, 3 s).


The peaks of compounds 1 was not observed before photocatalytic reactions, because formation of $POM-Ru(bpy)_3$ composite precipitates is more than that after photocatalytic reactions.

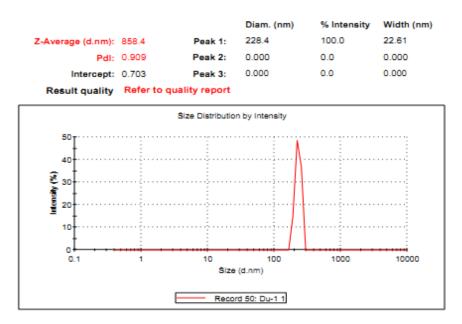

Figure S21. FT-IR spectra of **1** and α -Fe₂O₃ nanoparticles. Black: spectrum of **1**. Red: **1** doped with ~5% α -Fe₂O₃ nanoparticles. Blue: α -Fe₂O₃ nanoparticles, highlighting the characteristic peaks at 480 cm⁻¹ and 580 cm⁻¹ that would be visible if **1** decomposes to α -Fe₂O₃ nanoparticles under catalytic conditions.

Figure S22. FT-IR spectra of **1** and α -Fe₂O₃ nanoparticles. Black: spectrum of **1**. Red: **1** doped with ~10% α -Fe₂O₃ nanoparticles. Blue: α -Fe₂O₃ nanoparticles, highlighting the characteristic peaks at 480 cm⁻¹ and 580 cm⁻¹ that would be visible if **1** decomposes to α -Fe₂O₃ nanoparticles under catalytic conditions.

Figure S23. FT-IR spectra of 1, recovered catalyst and α -Fe₂O₃ nanoparticles: fresh catalyst, red; first recycled catalyst, blue; second recycled catalyst, green; α -Fe₂O₃ nanoparticles, black.

Figure S24. Particle size distribution measured by DLS in a solution of 99.0% of **1** and 1.0% $Fe(NO_3)_3$ (**1** + $Fe(NO_3)_2 = 1.3 \mu M$), $[Ru(bpy)_3](CIO_4)_2$ (1.0 mM), $Na_2S_2O_8$ (5.0 mM) in 80 mM borate buffer (pH = 10.0) after 9 min of irradiation.

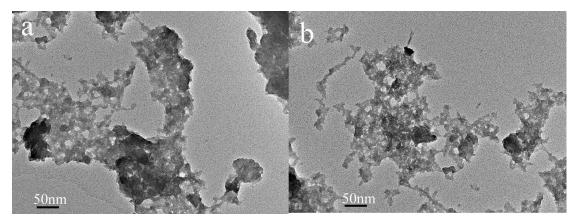


Figure S25.TEM images of the fresh catalyst (a) and recovered catalyst (b).

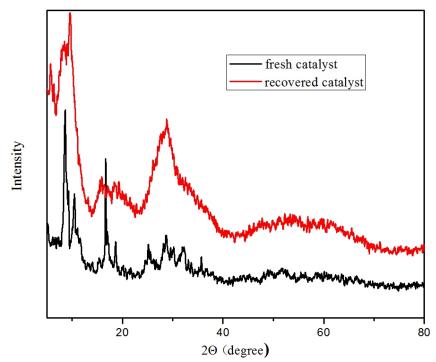


Figure S26. XRD of fresh catalyst (black) and recovered catalyst (red).

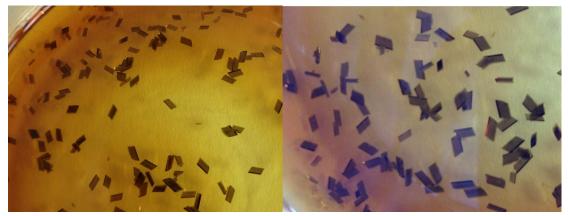


Figure S27. Images for crystal of 1.

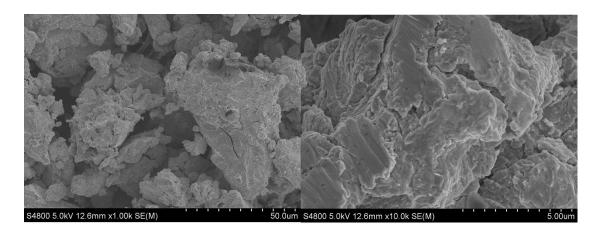


Figure S28.SEM images of 1

References

- 1. X. Du, J. Zhao , J. Mi , Y. Ding , P. Zhou, B. Ma, J. Zhao and J. Song, *Nano Energy*, 2015, DOI:10.1016/j.nanoen.2015.06.025.
- 2. T. Raming, A. Winnubst, C. M. van Kats and A. Philipse, J. Colloid Interface Sci., 2002, 249, 346-350.
- 3. U. Kortz, M. G. Savelieff, B. S. Bassil, B. Keita and L. Nadjo, *Inorg. Chem.*, 2002, **41**, 783-789.
- 4. F. Zonnevijlle, C. M. Tourne and G. F. Tourne, *Inorg. Chem.*, 1982, **21**, 2751-2757.

- Z. Huang, Z. Luo, Y. V. Geletii, J. W. Vickers, Q. Yin, D. Wu, Y. Hou, Y. Ding, J. Song, D. G. Musaev, C. L. Hill and T. Lian, *J. Am. Chem. Soc.*, 2011, 133, 2068-2071.
- G. Zhu, Y. V. Geletii, P. Kogerler, H. Schilder, J. Song, S. Lense, C. Zhao, K. I. Hardcastle, D. G. Musaev and C. L. Hill, *Dalton Trans.*, 2012, 41, 2084-2090.
- 7. S. Tanaka, M. Annaka and K. Sakai, Chem. Commun., 2012, 48, 1653-1655.
- 8. C. Leung, S. Ng, C. Ko, W. Man, J. Wu, L. Chen and T. Lau, *Energy Environ. Sci.*, 2012, 5, 7903-7907.
- 9. D. Hong, J. Jung, J. Park, Y. Yamada, T. Suenobu, Y.-M. Lee, W. Nam and S. Fukuzumi, *Energy Environ. Sci.*, 2012, **5**, 7606-7616.
- N. S. McCool, D. M. Robinson, J. E. Sheats and G. C. Dismukes, J. Am. Chem. Soc., 2011, 133, 11446-11449.
- G. Zhu, E. N. Glass, C. Zhao, H. Lv, J. W. Vickers, I. Geletii, D. G. Musaev, J. Song and C. L. Hill, *Dalton Trans.*, 2012, 41, 13043-13049.
- C. Besson, Z. Huang, Y. V. Geletii, S. Lense, K. I. Hardcastle, D. G. Musaev, T. Lian, A. Proust and C. L. Hill, *Chem. Commun.*, 2010, 46, 2784-2786.
- 13. P. Car, M. Guttentag, K. K. Baldridge, R. Alberto and G. R. Patzke, *Green Chem.*, 2012, 14, 1680-1688.
- L. Tong, Y. Wang, L. Duan, Y. Xu, X. Cheng, A. Fischer, M. r. S. Ahlquist and L. Sun, *Inorg. Chem.*, 2012, 51, 3388-3398.
- 15. G. Chen, L. Chen, S. Ng, W. Man and T. Lau, *Angew. Chem.*, *Int. Ed.*, 2013, **52**, 1789-1791.
- D. Hong, S. Mandal, Y. Yamada, Y. M. Lee, W. Nam, A. Llobet and S. Fukuzumi, *Inorg. Chem.*, 2013, **52**, 9522-9531.
- 17. F. Evangelisti, R. Guttinger, R. More, S. Luber and G. R. Patzke, *J.Am. Chem.Soc.*, 2013, **135**, 18734-18737.
- 18. F. Evangelisti, P. Car, O. Blacque and G. R. Patzke, *Catal.Sci.Technol.*, 2013, **3**, 3117.
- 19. G. Chen, L. Chen, S. M. Ng and T. C. Lau, ChemSusChem, 2014, 7, 127-134.
- X. B. Han, Z. M. Zhang, T. Zhang, Y. G. Li, W. Lin, W. You, Z. M. Su and E. B. Wang, J. Am. Chem. Soc., 2014, 136, 5359-5366.
- H. Lv, J. Song, Y. V. Geletii, J. W. Vickers, J. M. Sumliner, D. G. Musaev, P. Kogerler, P. F. Zhuk, J. Bacsa, G. Zhu and C. L. Hill, *J. Am. Chem. Soc.*, 2014, 136, 9268-9271.
- 22. R. Xiang, Y. Ding and J. Zhao, Chem. Asian. J., 2014, 9, 3228-3237.
- X. B. Han, Y. G. Li, Z. M. Zhang, H. Q. Tan, Y. Lu and E. B. Wang, J. Am. Chem. Soc., 2015, 137, 5486-5493.
- 24. W. C. Ellis, N. D. McDaniel, S. Bernhard and T. J. Collins, J. Am. Chem. Soc., 2010, 132, 10990-10991.
- J. L. Fillol, Z. Codolà, I. Garcia-Bosch, L. Gómez, J. J. Pla and M. Costas, *Nat. Chem.*, 2011, 3, 807-813.