Supporting information for "Nano-mole Scale Signal Assignment by ¹H Detected Protein Solid-state NMR by Ultra-Fast Magic-Angle Spinning and HIGHLIGHT Spectral Editing"

by Songlin Wang, Sudhakar Parthasarathy, Yiling Xiao, Yusuke Nishiyama, Fei Long, Isamu Matsuda, Yuki Endo, Takahiro Nemoto, Kazuo Yamauchi, Tetsuo Asakura, Mitsuhiro Takeda, Tsutomu Terauchi, Masatsune Kainosho, and Yoshitaka Ishii^{*}

Experimental Details

All the multi-dimensional NMR data were processed using the nmrPipe software.¹ Unless stated otherwise, all indirect time-domain signals in the 2D and 3D data were extended to 1.5-fold and 2-fold by linear prediction, respectively. The multi-dimensional SSNMR data were apodized with 45°- and 60°-shifted sine-bell window functions in the ¹H and ¹³C/¹⁵N dimensions, respectively, to balance sensitivity and resolution. The cooling N₂ gas temperature was set to -20°C, and the temperature of the GB1 sample was approximately 30°C. The pulse sequences and experimental conditions are shown in the supplementary figures and their captions below.

Preparation of lysine reverse labeled GB1 microcrystals

E. coli BL21 (DE3) cells transformed with a pET3 vector encoding GB1 T2Q mutant were grown in 500 mL of M9 medium enriched with 2.0 g/L of ¹³C₆-D-glucose and 1.0 g/L of ¹⁵NH₄Cl at 37 °C using New Brunswick Scientific EXCELLA E24R incubator until OD₆₀₀ reached ~0.8. At this time, 3.0 mM of unlabeled L-Lys was additionally supplemented for 0.5 h. The GB1 expression was induced by adding 0.8 mM isopropyl- β -D-thiogalactopyranoside. After 4 h of the induction, the cells were harvested. Harvested cells were suspended in a 5-mL PBS buffer (1.7 mM KH₂PO₄, 5 mM Na₂HPO₄, 150 mM NaCl, pH 7.4) per gram of cells, heated at 80 °C for exactly five minutes, then immediately cooled on ice for 10 minutes. The cell lysate was centrifuged using a Sorvall Lynx 6000 centrifuge (Thermo Scientific) at 3.06 × 10⁴ g for 30 min at 4 °C. The supernatant was dialyzed against a 50 mM sodium phosphate buffer (pH 5.6, 0.02 w/v% NaN₃), and then the protein was purified by HPLC. GB1 eluted when the acetonitrile concentration is approximately 50% (v/v). The collected fraction was dialyzed in a 50 mM sodium phosphate buffer (pH 5.6) containing NaN₃ (0.02 w/v% NaN₃) for a buffer exchange.²

For preparation of microcrystalline GB1 used for SSNMR, we first concentrated the protein in the 50 mM sodium phosphate buffer to ~30 mg/mL by ultrafiltration. The GB1 solution was concentrated in an Amicon Ultra-4 centrifugal filter (Ultracel-3; 3-kDa molecular-weight cutoff; EMD Millipore) using an Eppendorf 5810R centrifuge at 6.0×10^3 g and 4 °C in a 15-mL conical tube. The concentrated GB1 solution (~500 µL) recovered from the filter unit was mixed with a crystallization solution (a 1:2 (v/v) mixture of 2-propanol and (+/–)-2-methyl-2,4-pentanediol; Hampton Research) in a 1:3 (v/v) ratio. The crystallization solution was added to the protein solution in three aliquots so that the final concentration becomes 75% (v/v) crystallization solution and 25% (v/v) protein solution.³ The solution was mixed well after each addition of the crystallization solution. GB1 was crystallized for 30 min at room temperature.

A solution containing microcrystals (~2 mL) was centrifuged in a micro-centrifuge tube using a Sorvall Legend Micro 17 centrifuge at 6.0 × 10^3 g for ~3 min in order to sediment the crystals. Then, a supernatant (~1.9 mL) was removed from the test tube. Subsequently, Cu-EDTA (Ethylenediaminetetraacetoc acid copper(II) disodium salt, Sigma-Aldrich) was dissolved into the supernatant and vortexed. The Cu-EDTA solution of ~1.9 mL was introduced to the microcrystals so that the final Cu-EDTA concentration was 20 mM. Doping of Cu-EDTA was employed to suppress ¹H T_1 values of the protein sample. Cautions should be exercised as Cu-EDTA also reduces ¹H T_2 values in a concentration dependent manner. Thus, doping of excess Cu-EDTA may introduce line broadening for the residues exposed to the protein surface,⁴ although no notable ¹H line broadening was observed in the condition used for our experiments. The mechanism of a paramagnetic relaxation for the PACC experiments under UFMAS conditions is not well understood. A further analysis is needed in order to quantitatively examine the relaxation dynamics under UFMAS.

The principle of HIGHLIGHT spectral editing

We briefly explain the principle of HIGHLIGHT spectral editing using the pulse sequence in Fig. S1 used to collect the data in Fig. 1b. ¹⁵N spin polarization was prepared with double-quantum adiabatic cross polarization (DQ-CP)^{4, 5} using an amplitude-modulated shaped pulse for the ¹⁵N channel and a rectangular pulse for the ¹H channel. The DQ-CP scheme was

adjusted so that the sum of the average RF nutation frequencies for the ¹H and ¹⁵N channels ($\omega_{\rm H}$ $+ \langle \omega_{\rm N} \rangle / 2\pi$ was matched to the spinning frequency of $\omega_{\rm R} / 2\pi$,⁵ where $\omega_{\rm A} / 2\pi$ denotes an RF nutation frequency in the CP scheme for nuclei A (A = ¹H or ¹⁵N) and $\langle \omega_A \rangle$ denotes its time average. During the HIGHLIGHT mixing, a π -pulse train with the XY-16 phase cycle was rotorsynchronously applied in *n* rotor cycles to the ¹³C channel so that two π -pulses were applied in one rotor cycle. This scheme reintroduces heteronuclear dipolar couplings between ¹⁵N and ¹³C. This π -pulse train is followed by a refocusing scheme by a Gaussian selective pulse on ¹³CO and a hard ¹⁵N π -pulse and the second set of the XY16 π -pulse train on the ¹³C channel. This set of the pulse sequence corresponds a frequency selective REDOR scheme⁶ that allows for reintroducing dipolar couplings only between ¹⁵N and ¹³CO; hence, the ¹⁵N signals do not decay due to a strong dipolar coupling between ${}^{15}N$ and ${}^{13}C_{\alpha}$ within a residue. The frequency selective REDOR sequence is repeated m times (m = 2 in Fig. S1-3). The effective mixing time of $(2nm\tau_R)$ should be experimentally adjusted by changing n and m so that a ¹⁵N signal for a residue next to a labeled ¹³CO is nearly completely dephased while a ¹⁵N signal for the "highlighted" residue following an unlabeled residue is not dephased by two-bond ¹⁵N-¹³CO dipolar coupling within the same residue. It should be noted that the dephasing curve does not follow that for a standard REDOR sequence as the RF duty factor for the π -pulse train is close to 1.0. We empirically found that the sequence with m of 2 performed better than that with m of 1 for the total effective mixing time used in our experiments. After the HIGHLIGHT mixing, ¹⁵N shifts are recorded in the t_1 period. The ¹⁵N polarization is transferred to amide ¹H for signal detection after a water suppression scheme. A resulting spectrum exhibits ¹⁵N-¹H correlations only for the residues following selective unlabeled residues in a reverse-labeled protein in which residues other than the selected amino-acid types are uniformly ¹³C and ¹⁵N-labeled. Further details and simulation results of the HIGHLIGHT mixing at varied spinning speeds will be presented in our forthcoming paper.

Supplementary Figure

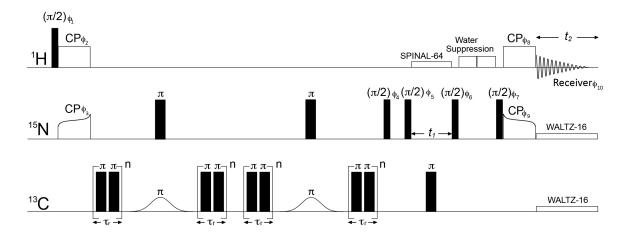


Figure S1. The pulse sequence for the 2D ¹⁵N/¹H correlation experiment with a HIGHLIGHT REDOR scheme used for Fig. 1b. The control experiment in Fig. 1a was performed with the sequence without the mixing period (i.e. n = 0). ¹⁵N spin polarization was prepared with double-quantum adiabatic cross polarization (DQ-CP) using an amplitude-modulated shaped pulse with an upward tangential ramp for the ¹⁵N channel and a rectangular pulse for the ¹H channel. The ¹⁵N RF field strength was ramped from 17.2 kHz to 28.7 kHz with the average rf field at $\sim 2v_{\rm R}/7$ while the ¹H RF field amplitude was kept constant at 58 kHz ($\sim 5v_{\rm R}/7$). The contact time of the first CP was 1.25 ms. Then, ¹⁵N signals were dephased for directly bonded ¹⁵N-¹³CO pairs by the HIGHLIGHT REDOR sequence without ¹H rf irradiation. During the HIGHLIGHT REDOR mixing, a π -pulse train with the XY-16 phase cycle was rotor-synchronously applied to the ¹³C channel so that two π -pulses were applied in one rotor cycle. The π -pulse width was 6.0 us and n = 72. A Gaussian shape π -pulse with the maximum rf strength of 5k Hz and a pulse width of 265 us was applied to selectively invert the carbonyl ¹³C spin states. Then, the second π -pulse train to ¹³C was applied. The mixing scheme was repeated twice. After the HIGHLIGHT REDOR mixing, a transverse component of the ¹⁵N polarization was stored along the z-axis and the unnecessary coherences were dephased during a z-filter period of 5 ms. After the excitation by a $\pi/2$ -pulse, the ¹⁵N chemical shift was recorded during the t_1 period with an t_1 increment of 0.45 ms and the maximum t_1 period of 16.2 ms. During the t_1 period, SPINAL-64 ¹H decoupling was applied with RF field strengths of 10 kHz and a ¹³C π -pulse was applied at the middle of t_1 for ¹³C-¹⁵N decoupling. Then, a selected transverse component of the ¹⁵N polarization was stored along the z-axis. During the z-filter period, two water-suppression pulses of 2-ms widths and 19.5-kHz field strength were applied. The ¹⁵N polarization was transferred back to ¹H spins by an adiabatic CP scheme for ¹H detection in the t_2 period. The contact time of the second CP period was 0.7 ms. ¹H chemical shifts were recorded during the t_2 period under 10 kHz WALTZ-16 ¹³C decoupling and 2 kHz WALTZ-16 ¹⁵N decoupling. The t_2 acquisition time was 6.4 ms with 5 µs dwell time. The phase cycles for the pulse sequence were as follows: $\phi_1 = y$; $\phi_2 = x$; $\phi_3 = x$, x, -x, -x; $\phi_4 = y$; $\phi_5 =$ y; $\phi_6 = y, y, y, y, -y, -y, -y, -y, -y; \phi_7 = x; \phi_8 = x; \phi_9 = y, -y; \phi_{10} = x, -x, -x, x, -x, x, x, -x$. The phase ϕ_5 and the receiver phase were incremented along the t_1 points using the States-TPPI data collection mode.

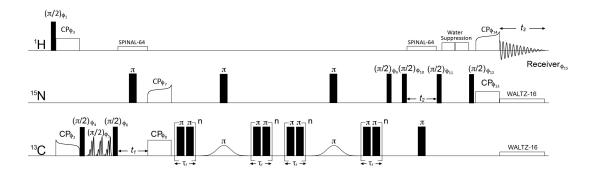


Figure S2. The pulse sequence for the 2D CA(N)H and 3D CANH correlation experiments with the HIGHLIGHT REDOR scheme used for Fig. 1c, Fig. 2, and Fig. 4a. For the 2D version used for Fig. 1c, the t_2 value was set to 0.1 µs and t_3 was incremented as t_2 . Standard 3D CANH experiments without HIGHLIGHT REDOR in Fig. 1c (blue) were performed using this sequence without the mixing period (i.e. n = 0 for Fig.1c. n = 0 and Gaussian π -pulses on ¹³C channel was removed for Fig.2 and Fig.4). ¹³C spin polarization was prepared with adiabatic double-quantum cross polarization (DQ-CP) using an amplitude-modulated shaped pulse with a downward tangential ramp for the ¹³C channel and a rectangular pulse for the ¹H channel. The ¹³C RF field strength was ramped down from 76.3 kHz to 45.8 kHz, and the ¹H RF field strength was kept constant at 16.0 kHz. The contact time of the first CP was 1.5ms. To saturate unwanted ¹³CO polarization, three E-BURP-2 shaped $\pi/2$ -pulses were applied near the ¹³CO resonance (175 ppm) before the t_1 period. For each E-burp pulse, the maximum field strength was 11.0 kHz and the pulse width was 0.3 ms. After the t_1 period, the ¹³C polarization was transferred to ¹⁵N spins by applying the adiabatic DQ-CP with an upward tangential ramp for ¹⁵N. During the contact time of 6.0 ms, the ¹⁵N RF field was ramped from 16.6 kHz to 27.6 kHz while the ¹³C RF field was kept at 57.3 kHz. Then, ¹⁵N signals were quenched by the HIGHLIGHT REDOR sequence without ¹H rf irradiation. After the HIGHLIGHT mixing, a transverse component of the ¹⁵N polarization was stored along the z-axis, and the unnecessary coherences were removed during the z-filter period of 5 ms. During the t_1 and t_2 period, SPINAL-64 ¹H decoupling was applied with RF field strengths of 10 kHz. One ¹⁵N π pulse and one ¹³C π -pulse decoupling were applied at the middle of t_1 and t_2 respectively. A water suppression pulse was applied after t_2 as discussed in Fig.S6. Then, the ¹⁵N polarization was transferred back to ¹H spins by adiabatic DQ-CP for ¹H detection in the t_3 period. In the DQ-CP sequence, the ¹H RF field was ramped from 35.4 kHz to 59.0 kHz and the ¹⁵N RF field strength was set constant to 27.2 kHz. The contact time of the third DQ-CP period was 0.7 ms. ¹H chemical shifts are recorded during the t_3 period under 10 kHz WALTZ-16 ¹³C decoupling and 5 kHz WALTZ-16 ¹⁵N decoupling. For Fig. 1c, the t_1 increment was 0.2 ms. For Fig. 2, the t_1 increment was 0.2 ms, the t_2 increment was 0.45 ms. For Fig. 4, the t_1 increment was 0.25 ms, and the t_2 increment was 0.425 ms. The phase cycles were as follows: $\phi_1 =$ y; $\phi_2 = x$, -x; $\phi_3 = x$; $\phi_4 = x$; $\phi_8 = x$; $\phi_7 = x$, x -x, -x; $\phi_9 = y$; $\phi_{10} = -y$; $\phi_{12} = x$; $\phi_{11} = x$, x, x, x, -x, -x, -x; $\phi_{13} = x$; $\phi_{11} = x$, x, x, x, -x, -x, -x; $\phi_{13} = x$; $\phi_{12} = x$; $\phi_{13} = x$; = x, -x, -x, x, -x, x, x, -x, ϕ_1 = y; ϕ_2 = x, -x; ϕ_3 = x; ϕ_4 = y; ϕ_5 = y; ϕ_6 = y; ϕ_7 = x, x - x, -x; ϕ_8 = x; ϕ_9 = y; ϕ_{10} = -y; $\phi_{11} = y$; $\phi_{12} = -y$; $\phi_{13} = x, x, x, x, x, -x, -x, -x, -x; \phi_{14} = x; \phi_{15} = x, -x, -x, x, x, -x, x, x, -x$. The phase ϕ_6, ϕ_{10} and the receiver phase were incremented along the t_1 and t_2 points using the States-TPPI mode.

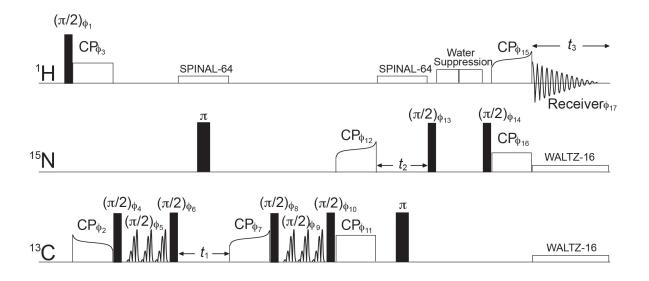
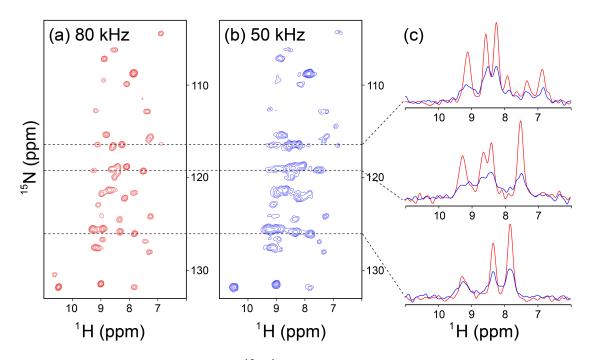
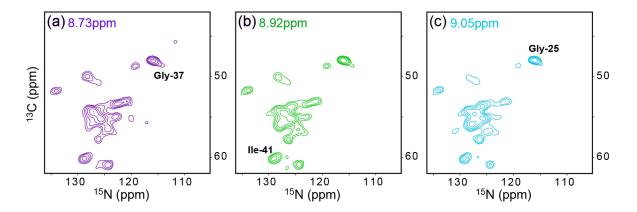




Figure S3. The pulse sequence for the 3D CA(CO)NH correlation experiment used for Fig. 2. ¹³C spin polarization was prepared with adiabatic double-quantum cross polarization (DQ-CP) using an amplitudemodulated shaped pulse with a downward tangential ramp for the ¹³C channel and a rectangular pulse for the ¹H channel. The ¹³C RF field strength ramped down from 76.3 kHz to 45.8 kHz, and the ¹H RF field strength was set to 16.0 kHz. The contact time of the first CP was 1.5ms. As discussed in Fig. S2, three E-Burp $\pi/2$ -pulses were applied to selectively dephase unwanted ¹³CO polarization after the CP period. After the t_1 period, the ¹³C_a polarization was transferred to carbonyl ¹³C by using a DREAM sequence⁷ with an upward tangential ramp from 26.3 kHz to 43.8 kHz. Another set of selective E-burp pulses were applied near the ${}^{13}C_{\alpha}$ resonance (50 ppm) before the t_2 period to selectively dephase unwanted ${}^{13}C_{\alpha}$ polarization. Then, the ¹³C polarization was transferred to ¹⁵N by adiabatic DQ-CP with an upward tangential ramp for the ¹⁵N channel and a rectangular pulse for the ¹³C channel. The ¹⁵N RF field amplitude ramped from 16.2 kHz to 27.0 kHz and the ¹³C RF field amplitude was set to 58.0 kHz. The contact time of the ¹³C-¹⁵N DQ-CP was 6.0 ms. The rest of the pulse sequence was the same as that in Fig.S2. The t_1 increment was 0.2 ms, the t_2 increment was 0.45 ms, and the t_3 acquisition time was 7.2ms with 0.5 µs dwell time. The phase cycles for the pulse sequence were as follows: $\phi_1 = y$; $\phi_2 = x$, -x; $\phi_3 = x$; $\phi_4 = y; \phi_5 = y; \phi_6 = y; \phi_7 = x; \phi_8 = y; \phi_9 = y; \phi_{10} = y; \phi_{11} = x; \phi_{12} = x, x, -x, -x; \phi_{13} = y; \phi_{14} = -y; \phi_{15} = x; \phi_{16} = y; \phi_{16} = y$ x, x, x, x, -x, -x, -x, -x; $\phi_{17} = x$, -x, -x, x, -x, x, -x. The phase ϕ_6 , ϕ_{12} and the receiver phase were incremented along the t_1 and t_2 points using the States-TPPI data collection mode.

Figure S4. A comparison of 2D 15 N/¹H correlation spectra of the same lysine-reverse-labeled GB1 microcrystal sample collected under MAS at (a) 80 kHz and (b) 50 kHz. The pulse sequence is comprised by two adiabatic CP schemes with all the contact times of 1.5 ms. The spin polarization was transferred from ¹H to ¹⁵N by the first adiabatic CP; then the ¹⁵N signal was monitored in the t_1 period. After the t_1 period, the polarization was transferred back from ¹⁵N to ¹H spins by the second adiabatic CP scheme for ¹H detection. For the data in (a), during the first adiabatic CP period, the ¹⁵N RF field strength was ramped up from 18.6 kHz to 31.0 kHz with the average rf field at $\sim v_R/3$ while the ¹H RF field was kept constant at 55 kHz ($\sim 2v_R/3$). For the second adiabatic CP period, the ¹⁵N RF field was ramped down from 33.3 kHz to 19.9 kHz with the average rf field at $\sim v_R/3$ while the ¹H RF field was kept at 55 kHz ($\sim 2v_R/3$). For the data in (b), during the first adiabatic CP period, the ¹⁵N RF field was ramped from 10.6 kHz to 17.7 kHz with the average rf field at $\sim 2v_{\rm R}/7$, while the ¹H RF field strength was kept at 35 kHz ($\sim 5v_{\rm R}/7$). In the second adiabatic CP period, the ¹⁵N RF field was ramped from 9.7 kHz to 16.1 kHz with the average rf field at $\sim v_R/4$ while the ¹H RF field amplitude was kept at 37 kHz ($\sim 3v_R/4$). The cooling N₂ gas temperature was set to -18°C for experiment under 80 kHz spinning and 18°C for experiment under 50 kHz spinning so that the GB1 sample temperature was approximately 30°C for the both cases. The data were collected with 16 scans for each t_1 period; the recycle delay was set as 0.2 s and the total experimental time was 4.5 min for each spinning condition. (c) 1D slices of the 2D NH spectra for the spinning speeds of 80 kHz (red) and 50 kHz (blue). For a comparison of the sensitivity and resolution, the slices are displayed in the same scale.

Figure S5. Three color-coded 2D ${}^{13}C_{\alpha}/{}^{15}N$ slices from the 3D CANH spectrum of A β (1-42) fibrils at the ${}^{1}H$ shift positions indicated in the inset. The corresponding 2D projection is displayed in Fig. 4b. The pulse sequence and experimental condition of 3D CANH experiment were described in Fig. S2.

	¹⁵ N	¹³ CO	$^{13}C_{\alpha}$	$^{13}C_{\beta}$	$^{1}\mathrm{H}$
M1	-	171.4	54.4	-	-
Q2	125.7	174.7	55.9	30.7	8.2
Y3	123.9	-	57.3	43.2	8.95
K4	-	-	-	-	-
L5	127.3	174.9	53.2	42.7	9.02
I6	126.8	175.1	60.2	37.8	8.95
L7	127.4	175	54.8	42.7	9.18
N8	125.5 ^{d)}	176.8	51.1	38.5	8.92 ^{d)}
G9	109.5	-	44.8	-	8.04
K10	-	-	-	-	-
T11	107.4	173.2	62.2	69.5	8.82
L12	127.3	-	54.6	43.7	7.18
K13	_	-	-	-	-
G14	106.4	171.1	45.3	-	8.54
E15	121.5	174	54.1	33.8	8.74
T16	115.5	172	60.6	70.6	8.8
T17	116	174.3	60.4	72.8	8.25
T18	116.2	171.5	61.9	70.9	9.13
E19	126	175.7	55	31.2	7.89
A20	124.7 ^{d)}	177.4	51.1	23.2	9.16 ^{d)}
V21	116.5	174.8	64	32	8.41
D22	115.7	*	53.3	*	7.37
A23	*	*	*	*	-
A24	121.6	181.4	54.9	*	7.96
T25	117.4	175.8	67.6	*	8.38
A26	124	177.2	55.2	17.4	7.28
E27	117	-	59.5	28.9	8.58
K28	-	-	-	-	-
V29	118.9	178.3	66.6	31.7	7.54
F30	119.1	-	57.5	37.5	8.61
K31	-	-	-	-	-
Q32	121.3	177.5	59.1	28.7	7.8
Y33	121	178.4	61.6	38.8	8.54
A34	122.7	179.6	56.2	18	9.07
N35	118.8	179.5	57.3	40	8.48

 Table S1. The signal assignments of the lysine-reverse-labeled GB1 microcrystalline sample.

D36	121.7	176.2	56.3	38.3	8.97
N37	115.4	174.3	53.8	40.6	7.31
G38	108.5	174	47.2	-	7.89
V39	122.3	175	62.1	31.9	8.18
D40	130.8	175.2	53.6	*	8.87
G41	108.3	172.7	45.5	-	7.8
E42	120.1	177.6	55.5	31.1	8.54
W43	125.5	176.8	57.7	33.4	8.9
T44	109.6	173.8	61.1	73.1	9.03
Y45	119.5	171.9	57.9	42.8	9.26
D46	126.9	176.3	51.2	42.8	7.47
D47	125.9	177.3	*	*	8.67
A48	119.5	179.2	54.3	18.8	8.28
T49	104.2	-	60.8	70.1	6.95
K50	-	-	-	-	-
T51	113.1	174.3	62.8	71.6	7.44
F52	130.1	175.7	56.7	43.2	10.56
T53	113.4	172.2	60.8	71.7	9.22
V54	119.3	172.7	58.7	32.6	8.12
T55	124.3	173.9	61.3	72.1	8.35
E56	132.2	-	*	*	7.82
) 771		•	1		

a) The main-chain assignments were obtained by 3D CANH, CA(CO)NH, CONH experiments. Additionally, 3D CX(CA)NH experiment was performed for ${}^{13}C_{\beta}$ assignments. All chemical shifts were calibrated based on DSS standard.

b) The peaks noted by * were missing in the 3D spectra presumably due to higher mobility.

c) The peaks noted by – were not observed by the 3D experiments because of the reverse labeling, because the site does not exist (${}^{13}C_{\beta}$ Gly), or because the residue was located at the terminus.

d) Assignments of these resonances required 3D CX(CA)NH in addition to 3D CANH and 3D CA(CO)NH experiments. All other ¹⁵N, ¹³C_{α}, ¹H resonances could be assigned solely from the 3D CANH and 3D CA(CO)NH experiments.

	Torsion angles predicted from ${}^{1}H$, ${}^{13}C_{\alpha}$, ${}^{13}CO$, ${}^{13}C_{\beta}$, ${}^{15}N^{b)}$	Torsion angles predicted from 1 H, 13 C _a , 15 N ^{b)}	X-ray torsion angles ⁸ (ϕ, ψ)
	(φ, ψ)	(φ, ψ)	
M1			
Q2	(-99±24, 137±13)	(-103±21, 136±16)	(-83, 132)
Y3	(-121±13, 145±15)	(-117±17, 142±16)	(-120, 146)
K4	(-119±10, 130±13)	(-107±18, 125±9)	(-118, 144)
L5	(-103±9, 123±17)	(-112±13, 126±13)	(-118, 126)
I6	(-109±15, 123±12)	<mark>(-120±10, 126±8)</mark>	(-98, 121)
L7	(-104±13, 119±19)	(-106±13, 127±16)	(-98, 121)
N8	$(-108\pm27, 129\pm33)^{\#a}$	<mark>(-131±21, 120±51)[#]</mark>	(-132, 58)
G9	(-173±85, 170±29) [#]	<mark>(-, -)[#]</mark>	(-78, 172)
K10	<mark>(-74±80, 166±46)[#]</mark>	$(-60\pm13, -28\pm18)^{\#}$	(-58, -42)
T11	(-105±17, 1±12)	<mark>(-107±17, 0±16)</mark>	(-122, -20)
L12	(-120±35, 135±20) [#]	$(-113\pm35, 131\pm42)^{\#}$	(-98, 118)
K13	(-137±16, 162±14)	$(-108\pm37, 155\pm14)^{\#}$	(-133, 157)
G14	$(-169\pm53, 161\pm22)^{\#}$	$(81\pm 8, 9\pm 13)^{\#}$	(130, -146)
E15	(-135±16, 143±16)	<mark>(-69±74, 142±47</mark>) [#]	(-145, 149)
T16	(-120±24, 145±17)	(-139±6, 147±11)	(-144, 158)
T17	(-120±21, 151±11)	(-132±20, 149±14)	(-126, 157)
T18	<mark>(-126±23, 130±14)</mark>	<mark>(-112±26, 134±11)</mark>	(-142, 150)
E19	<mark>(-113±17, 124±6)</mark>	<mark>(-129±20, 126±31)[#]</mark>	(-95, 120)
A20	(-123±39, 153±14)	$(-85\pm18, 163\pm26)^{\#}$	(-143, 157)
V21	(-70±13, -27±10)	(-70±20, -17±17)	(-72, -25)
D22	$(-105\pm13, -2\pm20)^{\#}$	<mark>(-102±19, -5±13)[#]</mark>	(-163, 170)
A23	(-71±26, -32±26)	(-67±20, -42±11)	(-69, -33)
A24	(-65±6, -41±4)	(-61±3, -39±3)	(-64, -37)
T25	(-66±4, -41±6)	(-66±5, -46±4)	(-72, -43)
A26	(-63±5, -44±7)	(-61±5, -45±7)	(-59, -39)
E27	(-63±5, -39±6)	(-65±5, -38±4)	(-57, -44)
K28	(-65±5, -40±5)	(-68±7, -32±19)	(-63, -45)
V29	(-62±11, -44±4)	(-64±11, -42±4)	(-59, -50)
F30	(-70±11, -29±17)	(-66±11, -38±17)	(-68, -40)
K31	(-69±14, -39±16)	(-81±22, -22±35)	(-68, -36)
Q32	(-62±5, -44±6)	(-64±6, -45±6)	(-65, -44)
Y33	(-64±5, -42±8)	(-64±5, -41±7)	(-59, -47)
A34	(-63±4, -41±6)	(-64±4, -39±5)	(-62, -49)

Table S2. The torsion angles of the lysine-reverse-labeled GB1 microcrystalline sample predicted by TALOS+ software and corresponding angles from an X-ray structure.

N35	(-62±4, -41±6)	(-63±4, -41±5)	(-57, -45)
D36	(-62±4, -26±9)	(-64±5, -28±11)	(-68, -24)
N37	(-94±12, 4±9)	(-92±16, 5±10)	(-100, 14)
G38	(86±8, 12±11)	$(78\pm10, 20\pm14)^{\#}$	(75, 20)
V39	(-80±16, 132±8)	(-95±20, 127±10)	(-93, 122)
D40	(-111±23, 130±25)	(-113±31, 127±25)	(-127, 92)
G41	$(177\pm58, 177\pm19)^{\#}$	$(-173\pm60, 171\pm32)^{\#}$	(-139, -172)
E42	<mark>(-102±16, 126±16)</mark>	(-118±33, 138±16)	(-96, 144)
W43	(-103±11, 144±13)	(-104±21, 156±7)	(-119, 143)
T44	(-130±23, 154±12)	(-135±28, 160±5)	(-124, 162)
Y45	(-144±16, 129±17)	(-125±22, 129±14)	(-146, 131)
D46	(-116±21, 134±29)	(-111±10, 124±32)	(-116, 114)
D47	(-68±22, -23±26)	(-59±4, -32±10)	(-71, -17)
A48	(-69±12, -26±12)	(-70±10, -22±12)	(-80, -36)
T49	(-102±17, -4±15)	(-110±10, -6±24)	(-106, 2)
K50	$(65\pm 6, 24\pm 13)^{\#}$	<mark>(-77±7, -13±12)[#]</mark>	(56, 37)
T51	(-115±25, 131±8)	(-114±22, 127±8)	(-123, 129)
F52	(-117±17, 150±10)	(-106±17, 136±28)	(-101, 150)
T53	(-134±11, 147±10)	(-126±15, 148±143)	(-131, 147)
V54	(-126±18, 132±14)	(-132±9, 135±12)	(-132, 132)
T55	<mark>(-98±16, 117±13)</mark>	<mark>(-92±24, 126 ±16)</mark>	(-134, 130)
E56			

- a) The torsion angles noted by # were categorized as "ambiguous" prediction by the TALOS+ software (Ver 3.40 F1 Rev 2011.030.18.13).
- **b)** The predicted torsion angles highlighted by yellow show deviations exceeding 15° and the indicated error from the angles obtained by the X-ray structure.

Supplementary References:

- 1. F. Delaglio, S. Grzesiek, G. W. Vuister, G. Zhu, J. Pfeifer and A. Bax, *J. Biomol. NMR*, 1995, 6, 277-293.
- 2. J. M. Louis, I. J. L. Byeon, U. Baxal and A. M. Gronenborn, J. Mol. Biol., 2005, 348, 687-698.
- 3. W. T. Franks, D. H. Zhou, B. J. Wylie, B. G. Money, D. T. Graesser, H. L. Frericks, G. Sahota and C. M. Rienstra, *J. Am. Chem. Soc.*, 2005, **127**, 12291-12305.
- 4. N. P. Wickramasinghe, S. Parthasarathy, C. R. Jones, C. Bhardwaj, F. Long, M. Kotecha, S. Mehboob, L. W. M. Fung, J. Past, A. Samoson and Y. Ishii, *Nature Methods*, 2009, **6**, 215-218.
- 5. S. Parathasarathy, Y. Nishiyama and Y. Ishii, Acc. Chem. Res., 2013, 46, 2127-2135.
- 6. C. P. Jaroniec, B. A. Tounge, J. Herzfeld and R. G. Griffin, J. Am. Chem. Soc., 2001, **123**, 3507-3519.
- 7. R. Verel, M. Ernst and B. H. Meier, J. Magn. Reson., 2001, 150, 81-99.
- 8. H. L. F. Schmidt, L. J. Sperling, Y. G. Gao, B. J. Wylie, J. M. Boettcher, S. R. Wilson and C. A. Rienstra, *J. Phys. Chem. B*, 2007, **111**, 14362-14369.