Supporting Information

A quick Chan-Lam C-N and C-S cross coupling at room temperature in presence of square pyramidal [Cu(DMAP)₄I]I as catalyst

Subhasish Roy, Manas Jyoti Sarma, Bishwapran Kashyap and Prodeep Phukan*

Department of Chemistry, Gauhati University, Guwahati, Assam, India-781014 E-mail: pphukan@yahoo.com

CONTENTS

General	S2.
General procedure for the synthesis of [Cu(DMAP) ₄ I]I complex	S2
General procedure for Chan-Lam coupling	S2
Spectral Data	\$3-\$10
Reference	S11-S12
Crystale parameters of the catalyst	S13
Orteb diagram of catalyst	S14
UV Visiable spectra of the catalyst	S15
IR spectra of the catalyst	S16
X-band EPR of metal Complex	S17
DSC of the catalyst	S18
TGA of the catalyst	S19
NMR Spectra	S20-S120

Page S1 of S120

General:

All the chemicals used were of analytical grade. IR spectra were recorded by using Perkin Elmer Spectrum RX I FT-IR Spectrometer. ¹H and ¹³C-NMR spectra were obtained in CDCl₃ using Bruker 300 MHz instrument. TGA and DSC data were recorded on a Mettler Toledo instrument. The X-Band Electron Paramagnetic Resonance (EPR) spectrum of the complex was recorded on a JES-FA200 ESR spectrometer.

General procedure for the synthesis of [Cu(DMAP)₄I]I complex:

A Solution of CuI (4.0 mmol) in DMSO (5 mL) was stirred at room temperature. To this solution 4-(Dimethylamino)pyridine (DMAP) (16.4 mmol) was added and the mixture was allowed to stirred at room temperature (25 °C) for 3 hours. Now the reaction mixture was filtered and the eluent is allowed to recrystallize. After two days pure bluish green crystal of $[Cu(DMAP)_4I]I$ separated out. The complex was characterized by UV-Vis spectroscopy, FT-IR, ESR analysis, DSC analysis and Single crystal XRD . DSC study shows that the compound is stable up to 131°C, UV-Vis spectroscopy shows peak at 644 nm, ESR spectram at room temperature shows the presence of X-band, which shows that in the complex copper atom is in +2 oxidation state and the complex has symmetry C_{4v} . Again single crystal X-ray diffraction studies shows that the complex is square pyramidal in shape, where four DMAP ligand occupied the equatorial positions and one iodine atom occupied the axial position and another iodine atom is in free state and outside the coordination sphere.

General procedure for Chan-Lam coupling:

To a stirred solution of aryl boronic acid (1.0 mmol), substrate (amine, amide or thiol; 1.0 mmol) in 2 ml MeOH was added [Cu (DMAP)₄I]I complex (0.002 mmol, 2 mol %) under air atmosphere. The reaction mixture was stirred at room temperature for required time until its total conversion (monitored by TLC). After completion of reaction, the reaction mixture was filtered and the filtrate part was evaporated under vacuum to get the crude product. The crude was purified by flash column chromatography in 230-400 silica mesh using ethyl acetate / petroleum ether as eluent.

In case of morpholine, 1.2 equivalent of boronic acid was used. Moreover, the crude produce was re dissolved in ethyl acetate and washed with saturated NaHCO₃ solution ($3ml \times 3$). Finally the organic part was dried over Na₂SO₄ and evaporated under vacuum to get the crude product. The crude was purified by flash column chromatography in 230-400 silica mesh using ethyl acetate / petroleum ether as eluent.

SPECTRAL DATA:

*N***-phenylaniline** $(1a)^{1}$:

White solid (0.147 g, 87% yield); IR (KBr, cm⁻¹): υ 3357, 3013, 1611, 1527, 1486, 1325, 755; ¹H NMR (300 MHz, CDCl₃): δ 7.32-7.27 (m, 4H), 7.10 (d, J = 6 Hz, 4H), 6.98-6.93 (m, 2H) , 5.73 (s, 1H); ¹³C NMR (75 MHz, CDCl₃): δ 143, 129.3, 120.9, 117.7

4-methoxy-*N*-phenylaniline (1b) ¹:

Yellow oil (0.162 g, 81% yield); IR (KBr, cm⁻¹): υ 3376, 3012, 2944, 2846, 2544, 1825, 1583, 1524, 1411, 1230, 1121, 1023, 766; ¹H NMR (300 MHz, CDCl₃): δ 7.28-7.25 (m, 2H), 7.1 (d, *J* = 9 Hz, 2H), 6.96-6.88 (m, 5H), 5.54 (s, 1H), 3.83 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 155.1, 145.1, 135.6, 129.2, 122.1, 119.5, 115.5, 114.6, 55.5.

3-methyl-*N***-phenylaniline,** 1c²:

Yellow oil (0.150 g, 82% yield); IR (KBr, cm⁻¹): υ 3387, 3024, 2933, 2867, 2371, 1930, 1596, 1379, 1331, 1190, 1012, 878, 742; ¹H NMR (300 MHz, CDCl₃): δ 7.3-7.25 (m, 2H), 7.16 - 7.06 (m, 3H), 6.95-6.89 (m, 3H), 6.77 (d, *J* = 6 Hz, 1H), 5.67 (br, 1H), 2.32 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 143.2, 143, 129.3, 129.1, 120.8, 118.4, 117.8, 114.9, 29.7.

4-methyl-*N*-phenylaniline, 1d¹:

Yellow oil (0.156 g, 85% yield); IR (KBr, cm⁻¹): υ 3387, 3022, 2345, 1591, 1388, 1100, 868, 734; ¹H NMR (300 MHz, CDCl₃): δ 7.25 (t, *J* = 6 Hz, 2H), 7.09-7.03 (m, 6H), 6.90 (d, *J* = 6 Hz, 1H), 5.67 (br, 1H), 2.32 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 143.9, 140.2, 130.8, 129.8, 129.3, 120.2, 118.8, 116.8, 29.7.

N-phenylnaphthalen-2-amine, 1e²:

White solid (0.153 g, 70% yield); IR (KBr, cm⁻¹): υ 3375, 2932, 2849, 1589, 1497, 1310, 732; ¹H NMR (300 MHz, CDCl₃): δ 7.76 (d, J = 8.7 Hz, 2H), 7.66 (d, J = 7.8 Hz, 1H), 7.49 (s, 1H), 7.42 (t, J = 7.5 Hz, 1H), 7.36-7.30 (m, 3H), 7.25-7.19 (m, 3H), 7.01 (t, J =7.2 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃): δ 147.0, 140.3, 134.6, 130.4, 129.8, 127.7, 126.5, 123.5, 122.5, 119.7, 117.8.

Page S3 of S120

OMe

4-nitro-*N*-phenylaniline, 1f¹⁷:

Yellow solid (0.188 g, 88% yield); IR (KBr, cm⁻¹): υ 3317, 3042, 1577, 1292; ¹H NMR (300 MHz, CDCl₃): δ 8.11 (d, J = 8.5 Hz, 2H), 7.42-7.39 (m, 2H), 7.26-7.14 (m, 3H), 6.96 (d, J = 8.7 Hz, 2H), 5.86 (br, 1H); ¹³C NMR (75 MHz, CDCl₃): δ 150.2; 139.6, 139.4, 129.7, 126.2, 124.6, 121.9, 113.6.

N-cyclohexylaniline, 1g¹⁵:

Colorless oil (0.131 g, 75% yield); IR (KBr, cm⁻¹): υ 3385, 3038, 2933, 2852, 1907, 1738, 1597, 1519, 1447, 1327, 1249, 1169, 1142, 1123, 882, 742, 697; ¹H NMR (300 MHz, CDCl₃): δ 7.18 (t, *J* = 7.8 Hz, 2H), 6.73-6.64 (m, 3H), 3.31-3.22 (m, 1H), 2.07 (d, *J* = 12.3 Hz, 2H), 1.81-1.75 (m, 2H), 1.68-1.63 (m, 1H), 1.44-1.11 (m, 5H); ¹³C NMR (75 MHz, CDCl₃): δ 146.2, 129.1, 117.9, 114.1, 52.6, 33.1, 25.8, 25.

N-benzylaniline, 1h¹:

Colorless oil (0.152 g, 83% yield); IR (KBr, cm⁻¹): υ 3450, 3087, 3010, 1624, 1500, 1388, 694; ¹H NMR (300 MHz, CDCl₃): δ 7.41-7.32 (m, 5H), 7.25-7.20 (m, 2H), 6.79-6.74 (m, 1H), 6.68 (d, *J* = 9 Hz, 2H), 4.37 (s, 2H), 4.06 (br, 1H); ¹³C NMR (75 MHz, CDCl₃): δ 148.1, 139.4, 129.2, 128.6, 127.4, 127.2, 117.5, 112.8, 48.2.

N-benzyl-3-methylaniline, 1i¹¹:

Colorless oil (0.160 g, 81% yield); IR (KBr, cm⁻¹): v 3417, 3022, 2929, 2854, 1610, 1525, 1467, 1341, 1234, 1171, 801, 736; ¹H NMR (300 MHz, CDCl₃): δ 7.37-7.27 (m, 5H), 7.10-7.05 (m, 1H), 6.56 (d, *J* = 6 Hz, 1H) , 6.49-6.45 (m, 2H), 4.33 (s, 2H), 2.28 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 148.2, 139.5, 139.0, 129.8, 129.1, 128.6, 128.2, 127.5, 127.2, 118.5, 113.6, 109.9, 48.3, 21.2.

N-benzyl-4-methylaniline, 1j³:

Yellow Oil (0.158 g, 80% yield); IR (KBr, cm⁻¹): v 3412, 3068, 3011, 1535, 1397, 713; ¹H NMR (300 MHz, CDCl₃): δ 7.36-7.34 (d, J = 6 Hz, 5H), 6.99 (d, J = 6 Hz, 2H), 6.57 (d, J = 9 Hz, 2H), 4.32 (s, 2H), 2.24(s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 145.8, 139.6, 136.3, 134.4, 129.8, 129.7, 128.9, 128.2, 127.4, 127, 126.6, 112.9, 48.5, 30.8.

N-benzyl-4-nitroaniline, 1k³:

Yellow Solid (0.189 g, 83% yield); IR (KBr, cm⁻¹): υ 3363, 3062, 3024, 2924, 1604, 1539, 1469, 1280, 1103, 833, 748; ¹H NMR (300 MHz, CDCl₃): δ 8.08 (d, *J* = 9Hz, 2H), 7.35-7.33(m, 5H), 6.58 (d, *J* = 9Hz, 2H), 4.93 (br, 1H), 4.44-4.43 (m, 2H); ¹³C NMR(75 MHz, CDCl₃): δ 153, 138.2, 137.3, 128.9, 127.8, 127.3, 126.4, 111.3, 47.6.

N-benzyl-3-nitroaniline, 11³:

Yellow Solid (0.178 g, 78% yield); IR (KBr, cm⁻¹): υ 3378, 3078, 3012, 1613, 1478, 1200, 1110, 825; ¹H NMR (300 MHz, CDCl₃): δ 7.54 (d, *J* = 6 Hz, 1H), 7.45 (br, 1H), 7.38-7.24 (m, 6H), 6.88 (d, *J* = 9 Hz, 1H), 4.40 (s, 2H); ¹³C NMR(75 MHz, CDCl₃): δ 148.8, 138.1, 129.8, 128.9, 127.7, 127.5, 118.8, 112.1, 106.6, 48.

N-benzyl-*N*-methylpyridin-3-amine, 1m²⁴:

Light yellow Solid (0.133 g, 67%)); IR (KBr, cm⁻¹):υ 3019, 2890, 1578, 1483, 1447, 1367, 1342, 1232, 1047, 1012, 945, 927, 724, 705, 685; ¹H NMR (300 MHz, CDCl₃): δ 7.56-7.27 (m, 6H), 7.24-7.18 (m, 3H), 7.06 (d, *J* = 6.9 Hz, 1H), 4.58 (s, 2H), 3.10 (s, 3H) ¹³C NMR(75 MHz, CDCl₃): δ 162.8, 137.1,

134.6, 131.7, 130.5, 128.9, 127.7, 127.6, 126.7, 124.7, 121, 56.3, 33.9

4-bromo-*N***-phenylaniline,** 1n²¹:

Light yellow Solid (0.198 g, 80% yield); IR (KBr, cm⁻¹): υ 3395, 3051, 3019, 1582, 1502, 1482, 1316, 1065, 781; ¹H NMR (300 MHz, CDCl₃): δ 7.37-7.27 (m, 4H), 7.07 (d, J = 8.4 Hz, 2H), 7.0-6.91 (m, Br 3H); ¹³C NMR(75 MHz, CDCl₃): δ 142.4, 132.2, 129.5, 121.7, 119, 118.3, 112.6.

4-chloro-N-phenylaniline, 10²¹:

Light yellow Solid (0.166 g, 82%); IR (KBr, cm⁻¹): υ 3401, 3045, 3027, 1593, 1492, 1478, 1315, 1248, 1165, 1030, 773; ¹H NMR (300 MHz, CDCl₃): δ 7.39-7.22 (m, 4H), 7.16-6.93 (m, 5H)) ¹³C Cl NMR(75 MHz, CDCl₃): δ 142.6, 141.8, 129.7, 129.3, 125.5, 121.5, 118.9, 117.6

3-nitro-*N***-phenylaniline,** 1p²⁵:

Red Solid (0.161 g, 75% yield); IR (KBr, cm⁻¹):υ 3399, 3047, 3025, 1598, 1532, 1479, 1325, 1255, 1176; ¹H NMR (300 MHz, CDCl₃): δ 7.40-7.24 (m, 4H), 7.17-7.07 (m, 1H), 6.95 (t, *J* = 7.5 Hz, 1H), 6.86 (d, *J* = 7.8 Hz, 2H) ¹³C NMR(75 MHz, CDCl₃): δ 155.6, 145.1, 141, 129.7, 129.6, 123.2, 121.9, 120.7, 114.7, 110.3

2-ethyl-6-methyl-N-phenylaniline, 1q:

Light yellow gum (0.143 g, 68% yield); IR (KBr, cm⁻¹):v 3397, 3065, 3031, 2927, 2875, 1582, 1039, 765; ¹H NMR (300 MHz, CDCl₃): δ 7.39-7.25 (m, 1H), 7.20-6.92 (m, 6H), 6.76 (t, J = 7.2 Hz, 1H), 6.52 (d, J = 8.1 Hz, 2H), 3.84 (s, 1H), 2.66-2.59 (m, 2H), 2.23 (s, 3H), 1.17 (t, J = 7.5 Hz, 3H). ¹³C NMR(75 MHz, CDCl₃): δ 143.7, 142.5, 128, 126.8, 122.2, 121.6, 120.6, 120.5, 118.9, 116.7, 21.1, 14.2, 13.4; MS (ES) m/z 212

 $[M+H,\,100];\,Anal.\,Calcd.\,for\,C_{15}H_{17}N~(\%):\,C,\,85.26;\,H,\,8.11;\,N,\,6.63~Found:\,C,\,85.45;\,H,\,8.01;\,N,\,6.76.$

2-bromo-4-methyl-N-phenylaniline, 1r²²:

Light Yellow Oil (0.194 g, 74% yield); IR (KBr, cm⁻¹):υ 3387, 3057, 3022, 2924, 2867, 1589, 1034, 754; ¹H NMR (300 MHz, CDCl₃): δ 7.39-7.27 (m, 3H), 7.21 (d, J = 8.4 Hz, 1H), 7.15-7.11 (m, 2H), 7.05-6.95 (m, 3H), 2.30 (s, 3H); NMR(100 MHz, CDCl₃): δ 141.5,132.7, 129.5, 129.4, 129, 121.6, 119.1, 118.3,

117.6, 115.8, 109.3, 20.1

2-methyl-4-nitro-N-phenylaniline, 1s:

Light yellow gum (0.178 g, 78% yield); IR (KBr, cm⁻¹): υ 3382, 3052, 3027, 2934, 2865, 1592, 1575, 1045, 778; ¹H NMR (300 MHz, CDCl₃): δ 7.42-7.27 (m, 5H), 7.05-6.99 (m, 3H), 2.37 (s, 3H); ¹³C NMR(75 MHz, CDCl₃): δ 143.3, 142.1, 129.3, 129.2, 126.4, 121.8, 121.2, 120.2, 118.6, 116.4, 13.0 MS (ES) m/z 229 [M+H, 100]; Anal. Calcd. for C₁₃H₁₂N₂O₂ (%): C, 68.41; H, 5.3; N, 12.27 Found: C, 68.28; H, 5.39; N, 12.39.

N-methylbenzylamine, 1t

Colourless oil (0.097 g, 80%); IR 3027, 2978, 2855, 1658, 1562, 1475, 1320,1272, 1047, 892, 743; ¹H NMR (300 MHz, CDCl₃): δ 7.37-7.27 (m, 5H), 3.75 (s, 2H), 2.46 (s, 3H); ¹³C NMR (75 MHz, CDCl₃):δ 140, 128.4, 128.2, 127, 56, 35.9

N-benzyl-*N*-methylaniline, 2a⁴:

Light Yellow Oil (0.183 g, 93% yield); IR (KBr, cm⁻¹):v 3012, 2987, 2863, 1788, 1578, 1465, 1319, 1282, 1056, 933, 747; ¹H NMR (300 MHz, CDCl₃): δ 7.35-7.23 (m, 8H), 6.78-6.7 (m, 2H), 4.55 (s, 2H), 3.03 (s, 3H); ¹³C NMR(75 MHz, CDCl₃): δ 136.3, 134.4, 129.7, 129, 128.4, 126.7, 116.4, 112.3, 56.5, 38.5.

N H

N-benzyl-*N*,4-dimethylaniline, 2b⁴:

Light Yellow Oil (0.190 g, 90% yield); IR (KBr, cm⁻¹): υ 3062, 2911, 2853, 1627, 1564, 1487, 1472, 1325, 1277, 1131, 1029, 801, 743; ¹H NMR (300 MHz, CDCl₃): δ 7.35-7.27 (m, 5H), 7.18-7.06 (m, 2H), 6.74-6.58 (m, 2H), 4.53 (s, 2H), 3.01 (s, 3H), 2.29 (s, 3H); ¹³C NMR(75 MHz, CDCl₃): δ 147.7, 139.2, 129.6, 128.5, 126.8, 125.7, 117.4, 112.6, 56.9, 38.6, 20.2.

N-benzyl-*N*,3-dimethylaniline, 2c⁴:

Light Yellow Oil (0.184 g, 87% yield); IR (KBr, cm⁻¹): υ 2931, 2850, 2822, 2776, 1621, 1534, 1456, 1366, 1250, 1181, 961, 802; ¹H NMR (300 MHz, CDCl₃): δ 7.34-7.25 (m, 6H), 6.61-6.56 (m, 3H), 4.55 (s, 2H), 3.02 (s, 3H), 2.32 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 149.9, 139.2, 129.7, 129.0, 128.5, 126.8, 117.5, 113.0, 112.6, 109.6, 56.9, 38.6, 21.9.

N-benzyl-4-methoxy-*N*-methylaniline, 2d ⁴:

Yellow Oil (0.191 g, 84% yield); IR (KBr, cm⁻¹): v 2952, 2837, 1588, 1516, 1332, 1234, 1179, 1140, 1041, 825, 783, 752, 687; ¹H NMR (300 MHz, CDCl₃):δ 7.34-7.21 (m, 7H), 6.29 (d, *J* = 6 Hz, 2H), 4.53 (s, 2H), 3.77 (s, 3H), 3.01 (s, 3H); ¹³C NMR (75 MHz, CDCl₃):δ 160.7, 151.1, 138.9, 129.8, 128.5, 126.8, 126.6, 114.6, 56.5, 55.1, 38.6.

N-benzyl-*N*-methyl-4-nitroaniline, 2e¹⁴:

Yellow Solid (0.218 g, 90% yield); IR (KBr, cm⁻¹): v 2910, 2817, 1570, 1538, 1359, 1243, 1169, 1097, 817, 793, 743, 674; ¹H NMR (300 MHz, CDCl₃): δ 8.11(d, *J* = 9 Hz, 2H), 7.35-7.18 (m, 5H), 6.66 (d, *J* = 9 Hz, 2H), 4.68 (s, 2H), 3.2 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 153.76, 137.30, 137.56, 128.94, 128.56, 127.52, 126.22, 110.57, 56.12, 39.19.

1-pent-1-enyl-1H-imidazole, 2f:

Colourless Liquid (0.122 g, 90%); E/Z isomeric ratio 3:1; IR (KBr, cm⁻¹): v 2968, 2934, 1655, 1511, 1334, 1094, 745, 610; ¹H NMR (300 MHz, CDCl₃) for major isomer: δ 7.51-7.46 (m, 1H), 7.02-6.9 (m, 2 H), 6.61-6.48 (m, 1H), 5.76-5.67 (m, 1H), 2.10-1.99 (m, 2H), 1.45-1.32 (m, 2H), 0.88-0.83 (m, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 136.7, 135.4, 129.3, 128.7, 125.6, 123, 122.1, 119.7, 118.9, 115.9, 31.3, 28.5, 22.1, 13.2; ; HRMS (ESI) calcd for [M+H]⁺: 137.1079; found 137.1084.

4-phenylmorpholine, 3a⁴:

Light brown solid (0.127 g, 78% yield); IR (KBr, cm⁻¹): v 2955, 2842, 2817, 1610, 1512, 1452, 1267, 1229, 1118, 922, 745, 697; ¹H NMR (300 MHz, CDCl₃): δ 7.37-7.24 (m, 2H), 6.99-6.89 (m, 3H), 3.92 (t, *J* = 4.5

Hz, 4H), 3.20 (t, J = 4.5 Hz, 4H); ¹³C NMR (75 MHz, CDCl₃): δ 150.96, 129.17, 120.35, 115.88, 66.80, 49.43.

4-(3-methylphenyl)morpholine, 3b⁴:

Light brown solid (0.133 g, 75% yield); IR (KBr, cm⁻¹): v 2959, 2856, 2816, 2759, 1609, 1495, 1449,

1243, 1180, 1118, 951, 871, 775, 688; ¹H NMR (300 MHz, CDCl₃): δ 7.24 (t, J = 7.8 Hz, 1H), 6.82-6.75

(m, 3H), 3.92 (t, J = 4.8 Hz, 4H), 3.20 (t, J = 4.8 Hz, 4H), 2.40 (s, 3H); 13 C NMR (75 MHz, CDCl₃): δ

151.3, 139, 129.1, 121.2, 116.7, 113, 67, 49.6, 21.8

4-(4-methoxyphenyl)morpholine, 3c⁴:

white solid (0.139 g, 72% yield); IR (KBr, cm⁻¹): v 2965, 2851, 2822, 2742, 1570, 1512, 1456,

1267, 1239, 1187, 1113, 1026, 924, 815, 706; ¹H NMR (300 MHz, CDCl₃): δ 6.93-6.84 (m, 4H),

3.87 (t, J = 4.8 Hz, 4H), 3.78 (s, 3H), 3.07 (t, J = 4.8 Hz, 4H). ¹³C NMR (100 MHz, CDCl₃): δ

154.1, 145.5, 117.9, 114.6, 67.0, 55.6, 50.9

4-(3-nitrophenyl)morpholine, 3d¹⁹:

Yellow solid (0.150 g, 72% yield); IR (KBr, cm⁻¹): v 2958, 2832, 2770, 1626, 1591, 1506, 1261, 1214, 1118, 968, 831, 745, 625; ¹H NMR (300 MHz, CDCl₃): δ 7.52-7.47 (m, 1H), 7.41-7.36 (m, 1H), 7.31-7.27 (m, 1H), 7.17 (s, 1H), 3.95 (t, J = 4.8 Hz, 4H), 3.27 (t, J = 4.8 Hz, 4H); ¹³C NMR (75 MHz, CDCl₃): δ 149.1, 128.9, 123.6, 119, 110.2, 66.9, 49.8

N-(3-methylphenyl)benzamide, 4a⁵:

Light yellow solid (0.158 g, 75% yield); IR (KBr, cm⁻¹): v 3275, 1640, 1535, 1302, 1255, 715 ¹H NMR (300 MHz, CDCl₃): δ 7.93 (br, 1H) 7.87 (d, J = 6.9 Hz, 2H), 7.41-7.57 (m, 5H), 7.22-7.28 (m, 1H), 6.97 (d, J = 7.5 Hz, 1H), 2.36 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 165.7, 139.0, 137.8, 135.0, 131.8, 128.8, 128.7, 127.0, 125.3, 120.8, 117.2, 21.5.

N-(4-chlorophenyl)benzamide, 4b⁵:

Light yellow solid (0.169 g, 73% yield); IR (KBr, cm⁻¹): v 3345, 1653, 1592, 1522, 1490, 1395, 820, 715; ¹H NMR (300 MHz, CDCl₃): δ 7.96 (br, 1H), 7.88 (d, J = 8.4Hz, 2H), 7.47-7.64 (m, 5H), 7.34

Page S8 of S120

(d, J = 9 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃): δ 172.3, 136.5, 134.5, 132.0, 129.1, 128.8, 127.0, 121.4.

N-phenylbenzamide, 4c⁵:

White solid (0.154 g, 78% yield); IR (KBr, cm⁻¹): υ 3340, 1649, 1536, 754; ¹H NMR (300 MHz, CDCl₃): δ 7.89 (d, *J* = 7.2Hz, 1H), 7.65 (d, *J* = 7.8Hz, 1H), 7.48-7.57 (m, 1H), 7.37-7.42 (m, 1H), 7.18-7.27 (m, 3H), 6.83-6.95 (m, 3H), 5.56 (br, 1H); ¹³C NMR (75 MHz, CDCl₃): δ 155.6, 134.7, 132.0, 129.6, 129.3, 128.8, 127.0, 124.8, 120.5, 120.4, 115.3.

4-methyl-*N*-phenylbenzamide, 4d ⁵:

White solid (0.152 g, 72% yield); IR (KBr, cm⁻¹): υ 3345, 1654, 1528, 759; ¹H NMR (300 MHz, CDCl₃): δ 7.88 (br, 1H), 7.78 (d, *J* = 7.8 Hz, 2H), 7.65 (d, *J* = 8 Hz, 2H), 7.37 (t, *J* = 7.5 Hz, 2H), 7.28 (d, *J* = 8.1 Hz, 2H), 7.15 (t, *J* = 7.5 Hz, 1H), 2.43 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 165.7, 142.4, 138.0, 132.0, 129.4, 129.1, 127.0, 124.4, 120.1, 22.7,

N-(naphthalen-2-yl)benzamide, 4e¹⁰:

Brown solid (0.170 g, 69% yield); IR (KBr, cm⁻¹): υ 3065, 2975, 1765, 1705, 1545, 1462, 1378, 1019, 863, 735; ¹H NMR (300 MHz, CDCl₃): δ 8.37 (s, 1H), 8.13-8.18 (m, 1H), 7.94 (d, *J* = 7.2Hz, 2H), 7.8-7.86 (m, 3H), 7.41-7.62 (m, 6H); ¹³C NMR (75 MHz, CDCl₃): δ 165.9, 135.3, 134.9, 133.8, 131.9, 130.7, 128.8, 127.7, 127.6, 127.0, 126.5, 125.1, 120.1, 117.0.

4-methyl-*N*-(naphthalen-2-yl)benzamide, 4f²⁰:

White soild (0.170 g, 65% yield); IR (KBr, cm⁻¹): υ 3285,3086, 2919, 1649, 1586, 1501, 1352, 1283, 1026, 866, 820; ¹H NMR (300 MHz, CDCl₃): δ 8.08 (s, 1H), 7.84-7.75 (m, 4H), 7.62-7.58 (m, 1H), 7.50-7.38 (m, 3H), 7.32-7.23 (m, 3H), 2.44 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ // 165.8, 142.5, 135.4, 132, 130.7, 129.5, 128.8, 128.1, 127.7, 127.5, 127.1, 126.5, 125.1, 120.1, 117, 21.5

N-(4-fluorophenyl)-4-methylbenzamide, 4g¹⁶:

Light yellow solid (0.172 g, 75% yield); IR (KBr, cm⁻¹): υ 3252, 3095, 3017, 1680, 1522; ¹H NMR (300 MHz, CDCl₃): δ 7.89 (br, 1H), 7.76 (d, *J* = 8.1 Hz, 2H), 7.62-757 (m, 2H), 7.28 (d, *J* = 7.8 Hz, 2H), 7.05 (t, *J* = 8.7 Hz), 2.43 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 165.7, 158.5, 142.5, 133.9, 131.8, 129.5, 126.9, 122.1, 115.8, 21.5.

N-(3-nitrophenyl)benzamide, 4h²:

White solid (0.194 g, 80% yield); IR (KBr, cm⁻¹): v 2959, 2919, 2856, 1747, 1616, 1529, 1484, 1352, 1312, 1273, 1113, 1078; ¹H NMR (300 MHz, CDCl₃):δ 8.51 (s, 2H), 8.49-8.30 (m, 3H), 7.99 (d, *J* = 7.5 Hz, 2H), 7.72 (d, *J* = 7.5 Hz, 2H). ¹³C NMR (75 MHz,CDCl₃): δ 156.3, 140.4, 133.1, 130.3, 124.5, 123.3, 122.1, 121.9, 115.9, 110.5

N-(4-nitrophenyl)benzamide, 4i¹⁸:

White solid (0.193 g, 80% yield); IR (KBr, cm⁻¹): v 2952, 2915, 2847, 1649, 1620, 1589, 1526, 1501, 1479, 1388,1299. 1249, 1167, 1087, 1017; ¹H NMR (300 MHz, CDCl₃): δ 8.37 (d, *J* = 8.7 Hz, 2H), 8.17 (d, *J* = 9.3 Hz 2H), 7.92-7.79 (m, 3H), 6.93 (d, *J* = 9 Hz, 2H), ¹³C NMR (100 MHz,CDCl₃): δ 161.9, 145, 141.4, 132.8, 129.1, 128.4, 127.2, 126.2, 125.2, 124.4, 119.7.

4-methyl-*N*-phenylbenzenesulfonamide, 4k²³:

White solid (0.161 g, 65% yield); IR (KBr, cm⁻¹): v 3297, 1377, 1185; ¹H NMR (300 MHz, CDCl₃): δ 7.69 (d, *J* = 7.8 Hz, 2H), 7.35 (s, 1H), 7.27-7.20 (m, 4H), 7.11-7.06 (m, 3H), 2.36 (s, 3H); ¹³C NMR (100 MHz,CDCl₃): δ 144.1, 136.8, 136.2, 132.5, 129.9, 129.5, 127.5, 125.4, 123.1, 121.6, 21.7

N-(4-bromophenyl)-4-methylbenzenesulfonamide, 41²³:

White solid (0.206 g, 63% yield); IR (KBr, cm⁻¹): υ 3301, 1346, 1180; ¹H NMR (400 MHz, CDCl₃): δ 7.96

(s, 1H), 7.81 (d, *J* = 8.1 Hz, 2H), 7.39 (d, *J* = 8.7 Hz, 2H), 7.30 (d, *J* = 8.1 Hz, 2H), 7.11 (d, *J* = 8.7 Hz,

2H), 244 (s, 3H); ¹³C NMR (100 MHz,CDCl₃): δ 144.4, 136.0, 135.6, 132.4, 130.0, 127.4, 123.0, 118.4, 21.7

N-(4-methoxyphenyl)-4-methylbenzenesulfonamide, 4m²³:

White solid (0.167 g, 60% yield); IR (KBr, cm⁻¹): v 3321, 1327, 1175,;NMR (400 MHz, CDCl₃): δ 7.58 (d, J = 8.2 Hz, 2H) 7.21 (d, J = 8.1 Hz, 2H), 6.97 (d, J = 8.9 Hz, 2H), 6.75 (d, J = 8.9 Hz, 2H), 6.51 (s, 1H), 3.75 (s, 3H), 2.38 (s, 3H) ¹³C NMR (100 MHz,CDCl₃): δ 158.2, 143.9, 129.8, 129.1, 127.6, 125.7, 114.6, 55.6, 21.8.

diphenyl sulfide, 5a⁶:

Colourless oil (0.149 g, 80% yield); IR (KBr, cm⁻¹): v 3143, 3100, 1600, 1492, 1426, 1051, 612; ¹H

Page S**10** of S**120**

B

NHTs

NHTs

NMR (300 MHz,CDCl₃): δ 7.40- 7.30 (m, 10 H); ¹³C NMR (75 MHz,CDCl₃): δ 135.7, 131, 129.1, 127.0.

1-methoxy-4-(phenylsulfanyl)benzene, 5b⁷:

Colourless oil (0.168 g, 78% yield); IR (KBr, cm⁻¹): v 3067, 3013, 2901, 2871, 1565, 1217, 1222, 1100; ¹H NMR (300 MHz,CDCl₃): δ 7.43 (d, J = 9 Hz, 2H), 7.27-7.15 (m, 5H), 6.91 (d, J = 9 Hz, 2H), 3.84(s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 159.8, 138.6, 135.4, 128.9, 128.1, 125.7, 124.2, 114.9, 55.3.

4-nitrophenyl phenyl sulfide, 5c⁶:

Yellow Solid (0.196 g, 85% yield); IR (KBr, cm⁻¹): υ 3120, 3019, 1592, 1489, 1293, 1118, 1854, 729; ¹H NMR (300 MHz, CDCl₃): δ 8.06(d, *J* = 9 Hz, 2H), 7.57-7.54(m, 2H), 7.47-7.46 (m, 3H), 7.17 (d, *J* = 9 Hz, 2H) ; ¹³C NMR(75 MHz, CDCl₃): δ 148.4, 145.2, 134.6, 130.2, 129.9, 129.6, 126.5, 113.9.

4-bromophenyl phenyl sulfide, 5d, 5i⁷:

Colorless oil (0.212 g, 80% yield) (0.207 g 78% yield); IR (KBr, cm⁻¹): υ 2919, 2844, 1706, 1604,1489, 1266, 1203, 764; ¹H NMR (300 MHz, CDCl₃): δ 7.29-7.24 (m, 4H), 6.98-6.87 (m, 5H); ¹³C NMR(75 MHz, CDCl₃): δ 137.8,135.1, 133.8, 132.9, 132.3, 128.9, 127.0, 126.5.

S C BI

1,1'-sulfanediylbis(4-methoxybenzene), 5e⁸:

Colorless oil (0.187 g, 76% yield); IR (KBr, cm⁻¹): v 3045, 1276, 1132, 1015, 780; ¹H NMR (300 MHz, CDCl₃): δ 7.31(d, J = 9 Hz, 4H), 6.86 (d, J = 9 Hz, 4H), 3.8(s, 6H); ¹³C MeO NMR(75 MHz, CDCl₃): δ 158.8, 132.6, 127.2, 114.6, 55.2.

1-methoxy-4-[(4-nitrophenyl)sulfanyl]benzene, 5f¹²:

Yellow Solid (0.211 g, 81% yield); IR (KBr, cm⁻¹): υ 3100, 2988, 2804, 1545, 1511, 1310, 1217, 1189, 1015, 867; ¹H NMR (300 MHz, CDCl₃): δ 8.04(d, *J* = 9 Hz, 2H), 7.49 (d, *J* = 9 Hz, 2H), 7.09 (d, *J* = 9 Hz, 2H), 7.0 (d, *J* = 9 Hz, 2H), 3.88(s, 3H); ¹³C NMR(75 MHz, CDCl₃): δ 160.95, 150, 144.8, 137, 125.4, 123.8, 119.9, 115.5, 55.3.

1-bromo-4-[(4-methylphenyl)sulfanyl]benzene, 5g⁹:

White Solid (0.349 g, 80% yield); IR (KBr, cm⁻¹): v 3061, 1614, 1457, 1418, 1123, 1071, 1037, 717; ¹H NMR (300 MHz, CDCl₃): δ 7.37 (d, J = 9 Hz, 2H), 7.31 (d, J = 6 Hz, 2H), 7.16 (d, J = 9

Page S11 of S120

OMe

Hz, 2H), 7.10 (d, *J* = 6 Hz, 2H), 2.36 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 138.05, 137.78, 136.64, 132.56, 131.9, 130.71, 130.11, 119.95, 21.05.

1-bromo-4-[(4-nitrophenyl)sulfanyl]benzene, 5h¹³:

Yellow Solid (0.257 g, 83% yield); IR (KBr, cm⁻¹): υ 3075, 2365, 1655, 1564, 1514, 1322, 1068, 1018, 853, 745; ¹H NMR (300 MHz, CDCl₃): δ: 8.06 (d, *J* = 9 Hz, 2H), 7.56 (d, *J* = 9 Hz, 2H), 7.38 (d, *J* = 9 Hz, 2H), 7.18 (d, *J* = 9 Hz, 2H); ¹³C NMR(75 MHz, CDCl₃): δ 147.31, 145.45, 135.88, 133.11, 129.70, 126.91, 124.05.

Reference:

- S. M. Islam, N. Salam, P. Mondal, A. S.Roy, K. Ghosh and K. Tuhina, *J. Mol. Catal. A: Chem.* 2014, 387, 7.
- 2. Z.-J. Quan, H.-D. Xia, Z. Zhang, Y.-X. Da and X.-C. Wang, Appl. Organometal. Chem. 2014, 28, 81.
- M. M. Reddy, M. A. Kumar, P. Swamy, M. Naresh, K. SruJana, L. Satyanarayana, A. Venugopal and N. Narender, *Green Chem.* 2013, 15, 3474.
- 4. L. Zhu, T.-T. Gao and L.-X. Shao, *Tetrahedron* 2011, 67, 5150.
- 5. B. Y.-H. Tan and Y.-C. Teo, Org. Biomol. Chem. 2014, 12, 7478.
- 6. A. Correa, M. Carril and C. Bolm, Angew. Chem., Int. Ed. 2008, 47, 2880.
- 7. L. Rout, T. K. Sen and T. Punniyamurthy, Angew. Chem. Int. Ed. 2007, 46, 5583.
- 8. M. Kuhn, F. C. Falk and J. Paradies, Org. Lett. 2011, 13, 4100.
- 9. P. Malik and D. Chakraborty, Appl. Organometal. Chem. 2012, 26, 557.
- **10.** T. Kaicharla, M. Thangara*J* and A. T. Biju, *Org. Lett.* 2014, **16**, 1728.
- C. Salome, P. Wagner, M. Bollenbach, F. Bihel, J.-J. Bourguignon and M. Schmitt, *Tetrahedron* 2014, 70, 3413.
- 12. N. Singh, R. Singh, D. S. Raghuvanshi and K. N. Singh, Org. Lett. 2013, 15, 5874.
- 13. R. M. López-Nicolás, J. A. Abad and J. Vicente, *Tetrahedron Lett.* 2005, 46, 5839.
- 14. A. R. Hajipour, F. Dordahan and F. Rafiee, Appl. Organometal. Chem. 2013, 27, 704.

- D. B. Bagal, R. A. Watile, M. V. Khedkar, K. P. Dhake, and B. M. Bhanage, *Catal. Sci. Technol.* 2012, 2, 354.
- 16. K. N. Kumar, K. Sreeramurthy, S. Palle, K. Mukkanti and P. Das, *Tetrahedron Lett.* 2010, 51, 899.
- 17. T. Kubo, C. Katoh, K. Yamada, K. Okano, H. Tokuyama and T. Fukuyama, Tetrahedron 2008, 64, 1120.
- S. Jammi, S. Sakthivel, L. Rout, T. Mukherjee, S. Mandal, R. Mitra, P. Saha and T. Punniyamurthy, J. Org. Chem. 2009, 74, 1971.
- 19. D. Jiang, H. Fu, Y. Jiang and Y. Zhao, J. Org. Chem. 2007, 72, 672.
- T. T. Dang, Y. Zhu, S. C. Ghosh, A. Chen, C. L. L. Chai and A. M. Seayad, *Chem. Commun.* 2012, 48, 1805.
- 21. M. A. Carroll and R. A. Wood Tetrahedron 2007, 63, 11349.
- 22. M. T. Barros, S. S. Dey and C. D. Maycock, Eur. J. Org. 2013, 742.
- 23. S.-Y. Moon, J. Nam, K. Rathwell and W.-S. Kim, Org. Lett. 2014, 16, 338.
- 24. L. Zhu, T.-T. Gao and L.-X. Shao, Tetrahedron 2011, 67, 5150
- 25. T. Kubo, C. Katoh, K. Yamada, K. Okano, H. Tokuyama and T. Fukuyama Tetrahedron 2008, 64, 11230

Single-Crystale Data Parameters of the catalyst

Chemical formula	$C_{28}H_{40}CuI_2N_8$
Formula weight	806.02
Crystal system	Monoclinic
Space group	P2 ₁ /c
T/K	296(2)
a/Å	18.1909(3)
b/Å	19.1754(4)
c/Å	20.7590(4)
α/°	90
β/°	112.8500(10)
$\gamma/^{\circ}$	90
Z	8
V/Å3	6672.9(2)
Dcalc/g cm-3	1.605
μ/mm-1	2.535
Reflns. Collected	16166
Unique reflns.	8300
R1 $[I > 2(I)]$	0.0452
wR2 (all)	0.1283
Goodness-of-fit	0.979
Structure refinement	SHELXL-97
Data collection	Bruker SMART

$C_{28}H_{40}Cul_2N_8$	Z=8
$M_r = 806.02$	$D_x = 1.605 \text{ Mgm}^{-3}$
P21/c	Mo <i>Kα</i> radiation
a=18.1909(3) [°] A	μ = 2.53 mm ⁻¹
b=19.1754(4) [°] A	Т = 296(2) К
c=20.7590(4) [°] A	Needle, brown
V=6672.86 [°] A ³	0.35 x 0.28 x 0.25 mm

Absorption Correction:
$T_{min} = 0.4707, T_{max} = 0.5698$
61812 measured reflections
16166 independent reflections
8300 reflections with $l > 2\sigma(l)$
R _{int} = 0.046
$\theta_{max} = 28.1^{\circ}$
h = -24→23
k = -22→25
I =-23→27

Page S15 of S120

UV-visible spectrum of [Cu (DMAP)₄I]I

FT-IR spectrum of [Cu (DMAP)₄I]I

X –band EPR of [Cu (DMAP)₄I]I complex at room temperature

DSC analysis of [Cu (DMAP) 4I] I complex

TGA of [Cu (DMAP)₄I]I

Page S**112** of S**120**

