Experimental Details

Samples were synthesised using the continuous-flow-reactor designed by the Lester group which uses a counter-current mixing reactor to induce rapid reaction and crystallisation of the dissolved precursors.

All chemicals were purchased from Sigma Aldrich and Fisher Scientific and used without further purification.

<u>ZIF-8</u>

A 0.06 M aqueous solution of $Zn(OAc)_2 \cdot 2H_2O$ was used in the upflow (room temperature, 10 mL min⁻¹) and a 0.06 M aqueous solution of 2-methylimidazole (2-HMeIm) was used in the downflow (room temperature- 400 °C, 20 mL min⁻¹). To improve the rate of deprotonation of the acid, ammonium hydroxide (NH₄OH) was also added to the organic solution in the ratio 1:8 (HMeIm:NH₄OH). Final ratio of reagents is 1:2:16 (Zn: HMeIm:NH₄OH).

X-ray Diffraction

Powder X-ray Diffraction (PXRD) was performed on a Bruker D8-Advance diffractometer using Cu K_{α} radiation, $\lambda = 1.5415$ Å over a 20 range of 5 – 40°.

Figure A PXRD patterns for the ZIF-8 products synthesised using $N(Et)_3$ at RT, 100, 200, 300 and 400 °C. ZnO impurities can be seen in the product produced at 300 and 400 °C. The simulated patterns for ZIF-8 and ZnO are shown in black and purple respectively.

Figure B PXRD patterns for the ZIF-8 products synthesised using NH₄OH at RT, 100, 200, 300 and 400 °C. ZnO impurities can be seen in the product produced at 400 °C. The simulated patterns for ZIF-8 and ZnO are shown in black and green respectively.

Figure C PXRD pattern for ZIF-8 synthesised at 100 °C, 0.06 M using the pilot-scale reactor. The simulated pattern for ZIF-8 is shown in blue.

Figure D PXRD patterns for the ZIF-8 activated using the coil reactor. Sample method for activation, in ascending order, room temperature and dilutions of 1:1, 1:2 and 1:3, using a water bath at 50 °C and dilutions of 1:1, 1:2 and 1:3, sonicated water bath at room temperature and dilutions of 1:1, 1:2 and 1:3 and a sonicated water bath at 50 °C and dilutions of 1:1, 1:2 and 1:1, 1:2 and 1:3 and a sonicated water bath at 50 °C and dilutions of 1:1, 1:2 and 1:3, using a water bath at 50 °C and dilutions of 1:1, 1:2, using a water

Thermogravimetric Analysis

Thermogravimetry data was recorded using a Q500 TA instruments thermogravimetric analyser. All material profiles were recorded between room temperature and 800 °C in air.

Figure E Thermogravimetric analysis of the as-made and activated products from the room temperature (a) and 400 $^{\circ}$ C (b) experiments.

Surface Area Analysis

Nitrogen isotherms were recorded using a Micromeritics Tristar II 3020 surface area analyser. Partial pressure range was 0.01 - 0.99. The Microactive software, which uses the Rouquerol method, was used for determining the BET range for each dataset independently.

Figure F Nitrogen adsorption isotherms for the products produced at room temperature (a) and 400 $^{\circ}$ C (b). BET surface areas for each product are given.

Table A synthesis conditions and corresponding surface areas for various ZIF-8 materials. All products were synthesised with the reagent ratio of 1:2:16 (Zn^{2+} :HMeIm:NH₄OH). [‡]Bench batch-reaction performed for comparison, [§] reagent ratio was 1:4:16, ^{*} pilot-scale reactor used for synthesis, a = reaction was performed under autogenous pressure created internally within the equipment.

	Characterisation				
Temperature	Pressure	Zn ²⁺ concentration	Product	BET Surface Area	
(°C)	(bar)	(M)		(m² g⁻¹)	
[‡] RT	(Bench)	0.06	ZIF-8	1654	
RT	а	0.06	ZIF-8	1713	
RT	240	0.06	ZIF-8	1680	
100	а	0.06	ZIF-8	1806 1741	
100	240	0.06	ZIF-8		
100	240	0.24	Unknown	938	
			impurity		
100	240	0.015	ZIF-8	1805	
400	240	0.06	ZIF-8	1555	
[§] 100	а	0.24	ZIF-8	1741	
*100	а	0.06	ZIF-8	1780	

Figure G PXRD pattern of ZIF-8 before and after activation, synthesised at 100 °C and 0.24 M (Zn^{2+}), showing the presence of an unidentified impurity phase. The simulated pattern for ZIF-8 is shown in blue.

Space-Time Yield

Space-time yields were calculated based on the highest concentration reactions ($Zn^{2+} = 0.24$ M) using the product concentration and the total internal volume of the reactor.

$$\sigma_p = \frac{m_p}{Vt}$$

Metal salt concentration = 0.24 M

units

Internal reactor volume (total pressurised pipework) 0.000055 m-3

	Total flow rate	30	mL min ⁻¹
	Product concentration	0.0148	kg L⁻¹
	Production rate (per hr)	0.027	kg hr⁻¹
(σ_{p})	Production rate (per day [8 hours]) Space-time yield (total pressurised pipework)	0.213 3874.9	kg d⁻¹ kg m⁻³ d⁻¹