Supporting Information

Hybrid Materials of Ni NP@MOF by a Simple Synthetic Method

Megumi Mukoyoshi,^a Hirokazu Kobayashi,^{*ab} Kohei Kusada,^{ab} Mikihiro Hayashi,^a Teppei Yamada,^{a‡} Mitsuhiko Maesato,^a Jared M. Taylor,^{ab} Yoshiki Kubota,^c Kenichi Kato,^{de} Masaki Takata,^{de} Tomokazu Yamamoto,^{bf} Syo Matsumura^{bfg} and Hiroshi Kitagawa^{*abhi}

^aDivision of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan, ^bJST CREST, 7, Gobancho, Chiyoda-ku, Tokyo 102-0076, Japan, ^cDepartment of Physical Science, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan, ^dRIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan, ^eJapan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan, ^fDepartment of Applied Quantum Physics and Nuclear Engineering, Graduate School of Engineering, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan, ^gResearch Laboratory for High-Voltage Electron Microscopy, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan, ^hInstitute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan, ⁱINAMORI Frontier Research Center, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan

Current addresses

[‡] Center for Molecular Systems (CMS), Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan; Depart-ment of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, Motooka744, Nishi-ku, Fu-kuoka 819-0395, Japan

E-mail: hkobayashi@kuchem.kyoto-u.ac.jp, kitagawa@kuchem.kyoto-u.ac.jp

Table of contents

- Experimental section
- S1 Thermogravimetric analysis
- S2 X-ray diffraction measurements
- S3 Fourier-transform infrared (FT-IR) spectroscopy measurements
- S4 EDX maps
- S5 TEM images
- S6 Nitrogen sorption
- S7, S8 Magnetic property measurements

Experimental section

General information. 2, 5-Dihydroxyterephthalic acid was purchased from TCI. All other chemicals were purchased from Wako Pure Chemical Industries and used as received.

Synthesis of Ni-MOF-74. Ni₂(dhtp) (Ni-MOF-74, CPO-27-Ni) was synthesized using a slight modification to an established procedure. To a solid mixture of H₄dhtp (4.79 g, 24.2 mmol) and Ni(NO₃)₂ • $6H_2O$ (23.8 g, 81.8 mmol) was added a 1:1:1 (v/v/v) mixture of DMF–ethanol–water (2 L) in a 3 L eggplant flask. The suspension was mixed until homogeneous and then heated to 100 °C. After 5 days, the sample was cooled to RT. A yellow material was isolated and washed with methanol (1 L). The washing was repeated four times over 2 days. The material was then washed twice with deionised water (1 L). The solvent was removed under vacuum at RT over 1 day.

TG-DTA. The thermogravimetric analysis of Ni-MOF-74 was performed using a NETZSCH Japan TG-DTA 2,000SA with a heating rate of 2 K per min under a constant He flow.

XRD measurements. Powder X-ray diffraction (PXRD) patterns were measured using beamline BL02B2 of SPring-8 ($\lambda = 0.998$, 1.001 Å).

FT-IR spectra. Fourier-transform infrared (FT-IR) spectra were collected using a Perkin-Elmer Spectrum 100.

XPS spectra. The XPS spectra of samples on a carbon sheet were recorded using an ESCA-3400 (Shimadzu). The binding energies were corrected by referencing the C(1s) line at 284.3 eV.

TEM images. Transmission electron microscope (TEM) images were obtained using a HITACHI HT7700 at an accelerating voltage of 100 kV. High-resolution scanning transmission electron microscope (HRSTEM) images were obtained using a JEM-ARM200F at accelerating voltages of 80 kV and 120 kV, respectively. The JEM-ARM200F was also equipped with an energy dispersive X-ray spectrometer (EDX) system that allows for the elemental analysis of samples.

Nitrogen sorption. N₂ adsorption/desorption isotherms were measured using a BELSORP-max at 77 K up to 1 bar. Before starting the adsorption measurements, each sample was activated by heating under vacuum at 120 °C for 12 h.

Magnetic property measurements. Magnetization curves and magnetic susceptibility were measured using a QUANTUM DESIGN MPMS-XL, and AC susceptibility was measured using a QUANTUM DESIGN MPMS-5S.

	6 h	12 h	24 h	3 days	7 days
250 °C	250-6h	250-12h	250-24h		250-7d
300 °C	300-6h	300-12h	300-24h	300-3d	
350 °C	350-6h	350-12h	350-24h		
400 °C	400-6h	400-12h	400-24h		

Table S1. Synthesis conditions and sample names for Ni NP@MOF.

S1 Thermogravimetric analysis (TGA) for Ni-MOF-74

Figure S1. Thermogravimetric analysis (TGA) curves of Ni-MOF-74 (in He flow).

Figure S2. Powder X-ray diffraction (PXRD) patterns of 250-6h, 250-12h, 250-24h, and 250-7d (a), 300-6h, 300-12h, 300-24h, and 300-3d (b), 350-6h, 350-12h, and 350-24h (c), 400-6h, 400-12h, and 400-24h (d), and the result of Rietveld analysis for 350-12h (e).

Figure S3. Fourier-transform infrared (FT-IR) spectra of Ni-MOF-74 and composites.

S4 EDX maps

Figure S4. HAADF-STEM image (a), C-K STEM-EDX map (b) and Ni-K STEM-EDX map (c) of Ni-MOF-74. (d) The reconstructed overlay image of the maps shown in (b) and (c).

Figure S5. TEM images of Ni-MOF-74 (a), **250-6h** (b), **250-12h** (c), **250-24h** (d), **250-7d** (e), **300-6h** (f), **300-12h** (g), **300-24h** (h), **300-3d** (i), **350-6h** (j), **350-12h** (k), **350-24h** (l), **400-6h** (m), **400-12h** (n), and **400-24h** (o).

	6 h	12 h	24 h	3 days	7 days
250 °C					2.5 ± 0.6
300 °C	2.2 ± 0.4	2.3 ± 0.6	2.4 ± 0.5	3.0 ± 0.6	
350 °C	4.0 ± 1.4	4.3 ± 1.4	4.6 ± 1.3		
400 °C	4.3 ± 1.1	4.5 ± 1.2	5.0 ± 1.2		

Table S2. Mean diameter of Ni nanoparticles.

S6 Nitrogen sorption

Figure S6. Nitrogen sorption isotherms for 250-6h, 250-12h, 250-24h, and 250-7d (a), 300-6h, 300-12h, 300-24h, and 300-3d (b), 350-6h, 350-12h, and 350-24h (c), 400-6h, 400-12h, and 400-24h (d) at 77 K up to 1 bar. The solid and open symbols represent adsorption and desorption, respectively.

S7, S8 Magnetic property measurements

Figure S7. (a) The magnetic susceptibility as a function of temperature for Ni-MOF-74 (the open and solid symbols represent zero-field-cooled (ZFC) and field-cooled (FC), respectively). (b) Magnetization as a function of magnetic field for Ni-MOF-74. The kink structure around 4T indicates spin flop.

Figure S8. (a) The magnetic susceptibility as a function of temperature for **400-12h** at 10 Oe. The open and solid symbols represent zero-field-cooled (ZFC) and field-cooled (FC), respectively). (b) Magnetization as a magnetic field for **400-12h** at 2 K (blue circle), 50 K (green circle), 120 K (black circle) and 300 K (red circle).