Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2015

Supporting Information

Activation of Boryl-, Borylene and Metalloborylene Complexes by isonitriles

Holger Braunschweig,* William Ewing, Katharina Ferkinghoff, Alexander Hermann, Thomas Kramer, Rong Shang, Eva Siedler and Christine Werner

> Institut für Anorganische Chemie Julius-Maximilians-Universität Würzburg Am Hubland, 97074 Würzburg (Germany) Fax: (+49)931-31-84623 E-Mail: h.braunschweig@uni-wuerzburg.de

Table of Contents

Experimental Section	
General considerations	2
Preparation of $[(\eta^5-C_5Me_5)(OC)_2Fe(CN^tBu)(BCl_2)]$ (2)	2
Reaction of 2 with a Lewis acid.	2
Preparation of $[(\eta^5-C_5H_5)(OC)_2MnC{N(tBu)B(tBu)(IMe)}]$ (4)	2
Preparation of $[(\eta^5 - C_5 Me_5)(OC)_2 Fe(CNCy)(B)(CNCy)_2 Cr(CO)_5]$ (6)	3
X-ray Crystallographic studies	4
Computational Studies	5
References	

Experimental Section

General considerations: All syntheses were carried out under argon atmosphere with standard Schlenk and glovebox techniques unless otherwise stated. The complexes $[(\eta^5-C_5Me_5)(OC)_2FeBCl_2]$ (1), $[(\eta^5-C_5H_5)(OC)_2Mn=BtBu]$ (3) and $[{(\eta^5-C_5Me_5)(OC)_2Fe}(\mu-B){Cr(CO)_5}]$ (5) were prepared according to published procedures.^[1-3] Pentane, hexane, benzene and toluene were dried by distillation over Na/K alloy under argon and stored over molecular sieves. C_6D_6 was dried *via* three *freeze-pump-thaw* cycles and stored over molecular sieves. Elemental analyses were obtained from an Elementar Vario MICRO cube instrument. NMR spectra were recorded on a Bruker Avance 400 (¹H: 400.1 MHz, ¹¹B: 128.3 MHz, ¹³C{¹H}: 100.6 MHz) and/or a Bruker Avance 500 FT-NMR spectrometer (¹H: 500 MHz, ¹¹B: 160 MHz, ¹³C{¹H}: 126 MHz). Chemical shifts are given in ppm, and are referenced against external Me₄Si (¹H, ¹³C{¹H}) and BF₃·Et₂O (¹¹B).

Preparation of $[(\eta^5-C_5Me_5)(OC)_2Fe(CNtBu)(BCI_2)]$ (2)

tert-Butylisonitrile (78 mg, 0.9 mmol) in 5 mL toluene was added dropwise to a solution of **1** (0.31 g, 0.9 mmol) in 10 mL toluene at -70 °C. After stirring for 30 min at -70 °C the solution was allowed to warm to room temperature and was stirred for a further 60 min. The colour of the solution changed from red to yellow and an insoluble precipitate formed. After filtration and concentration of the solution and storage at -35 °C, a yellow crystalline solid was isolated (271 mg, 71%). Crystals suitable for X-ray diffraction were obtained from a solution of **2** in toluene.

NMR: ¹H (C₆D₆, 400.1 MHz): δ = 1.50 (s, 15H, C₅*Me*₅), 1.44 (s, 9H, CN-CN*Me*₃) ppm. ¹³C{¹H} (C₆D₆, 100.6 MHz): δ = 221.7 (s, CN-CNMe₃), 216.7 (s, CO), 100.7 (s, C₅Me₅), 61.3 (s, CN-CMe₃), 28.5 (s, C₅*Me*₅), 9.7 (s, CNC*Me*₃) ppm. ¹¹B{¹H} (C₆D₆, 128.4 MHz): δ = -6.3 (s, C(*B*Cl₂)N) ppm.

IR (hexane): $\tilde{\nu}$ = 2017 (br, CO), 1969 (br, CO) cm⁻¹.

Elemental analysis (%) found for FeCl₂ONC₁₇BH₂₄ C: 49.81 H: 6.06, N: 3.35; calcd. data (%): C: 49.57, H: 5.87; N: 3.40

Reaction of 2 with a Lewis acid

To a solution of **2** (10 mg, 0.024 mmol) in 0.5 mL d₆-benzene was added tris(pentafluoro)phenylborane (12 mg, 0.024 mmol). The color of the solution changed from yellow to orange. The formation of **1** and $(C_6F_5)_3B$ -CN*t*Bu can be observed *via* NMR spectroscopy.^[4]

NMR: ¹H (C₆D₆, 400.1 MHz): δ = 1.42 (s, 15H, C₅Me₅), 0.70 (s, 9H, CMe₃) ppm. ¹¹B{¹H} (C₆D₆, 128.4 MHz): δ = 95.3 (s, FeBCl₂), -21.8 (s, (C₆F₅)₃B-CNCMe₃) ppm.

Preparation of $[(\eta^5-C_5H_5)(OC)_2MnC\{N(tBu)B(tBu)(IMe)\}]$ (4)

tert-Butylisonitrile (4.9 mg, 0.059 mmol) was added to a yellow solution of $[(\eta^5-C_5H_5)(OC)_2MnB(tBu)(IMe)]$ (3) (20 mg, 0.059 mmol) in benzene (1 mL) at room temperature. After stirring for 5 min, all volatiles were removed under vacuum and the residue washed with pentane (2 × 1 mL) to afford a mixture of **4** as a yellow powder. Yellow single crystals of **4** suitable for X-ray diffraction were obtained by slow evaporation of a benzene solution at room temperature (15.5 mg, 0.037 mmol, 62%).

NMR: ¹H (C₆D₆, 400.1 MHz): $\delta = 5.73$ (s, 2H, NC*H*C*H*N), 4.55 (s, 5H, C₅H₅), 3.53 (br, 6H, N-C*H*₃), 1.59 (s, 9H, N-*t*Bu), 0.89 (s, 9H, *t*Bu); ¹¹B{¹H} (C₆D₆, 128.4 MHz) $\delta = -17.3$ (s). ¹H (d₈-THF, 400.1 MHz): $\delta = 7.15$ (s, 2H, NC*H*C*H*N), 4.32 (s, 5H, C₅H₅), 4.16 (s, 6H, N-C*H*₃), 1.57 (s, 9H, N-*t*Bu), 0.68 (s, 9H, *t*Bu); ¹¹B{¹H} (d₈-THF, 128.4 MHz) $\delta = -17.6$ (s); ¹³C{¹H} (d₈-THF, 100.6 MHz): $\delta = 237.9$ (s, CO), 234.3 (s, CO), 122.4 (s, N-CH₃), 83.0 (s, C₅H₅), 38.0 (s, N-CH₃), 31.7 (s, C(CH₃)₃), 30.2 (s, N-C(CH₃)₃).

IR (hexane) \tilde{v} = 1904 (s), 1842 (s) cm⁻¹.

Elemental analysis (%) calcd. for C₂₁H₃₁BMnN₃O₂: C 59.59, H 7.38, N 9.93. Found. C 58.90, H 7.50, N 9.53.

Preparation of $[(\eta^5-C_5Me_5)(OC)_2Fe(CNCy)(B)(CNCy)_2Cr(CO)_5]$ (6)

Cyclohexylisonitrile (110.2 mg, 1.00 mmol) in 5 mL toluene was added dropwise to a solution of **5** (150 mg, 0.333 mmol) in 10 mL toluene at 0 °C. After stirring for 10 min at 0 °C the solution was allowed to warm to room temperature and was stirred for a further hour. The color of the solution changed from maroon to tawny. After removing the solvent *in vacuo*, the dark brown solid residue was extracted with hexane (20 mL). After concentration of the solution and storage at -70 °C, a yellow solid was isolated (42 mg, 24%). Crystals suitable for X-ray diffraction were obtained from a solution of **6** in toluene.

NMR: ¹H (C₆D₆, 400.1 MHz): δ = 4.64 (m, 1H, *Cy*), 3.50 (m, 1H, *Cy*), 2.84 (m, 1H, *Cy*), 2.21-1.41 (m, 20H, *Cy*), 1.33 (s, 15H, C₅*Me*₅), 1.29-0.84 (m, 10H, *Cy*) ppm. ¹³C{¹H} (C₆D₆, 100.6 MHz): δ = 226.8 (s, *CO*), 220.9 (s, *CO*), 216.5 (s, *CO*), 214.4 (s, *CO*), 100.1 (s, *C*₅Me₅), 65.7 (s, *CN-Cy*), 65.3 (s, *CN-Cy*), 62.5 (s, *CN-Cy*), 35.2 (s, *CN-Cy*), 34.9 (s, *CN-Cy*), 33.9 (s, *CN-Cy*), 33.8 (s, *CN-Cy*), 32.0 (s, *CN-Cy*), 31.9 (s, *CN-Cy*), 26.4 (s, *CN-Cy*), 25.9 (s, *CN-Cy*), 25.3 (s, *CN-Cy*), 25.3 (s, *CN-Cy*), 25.0 (s, *CN-Cy*), 25.0 (s, *CN-Cy*), 24.9 (s, *CN-Cy*), 24.4 (s, *CN-Cy*), 9.3 (s, *C*₅*Me*₅) ppm. ¹¹B{¹H} (C₆D₆, 128.4 MHz): δ = -8.8 (s) ppm.

IR (hexane): $\tilde{\nu}$ = 2048, 2014, 1966, 1928, 1913, 1762 cm⁻¹.

Elemental analysis (%) found for FeCrO₇N₃C₃₈BH₄₈: C: 59.12 H: 6.25, N: 5.38 Calcd. data: C: 58.70, H: 6.22; N: 5.40.

Crystal structure determination

The crystal data of **2**, **4** and **6** were collected on a Bruker X8-Apex 2 (Apex2 CCD-detector, Nonius FR-591 rotating anode generator) with multi-layer mirror monochromated $Mo_{K\alpha}$ radiation. The structures were solved using the intrinsic phasing method (ShelXT), expanded using Fourier techniques and refined with the ShelXL software package (see CIF files for software versions).^[5] All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were assigned to idealised geometric positions and included in structure factor calculations. Additional details on refinement can be found in the CIF files (_refine_special_details section). The ShelXL was interfaced with ShelXLe GUI for most of the refinement steps.^[6] The pictures of molecules were prepared using Pov-Ray 3.6.2.^[7]

Crystal data for **2**: $C_{41}H_{56}B_2Cl_4Fe_2N_2O_4$, $M_r = 916.00$, yellow block, $0.25 \times 0.21 \times 0.19$ mm³, monoclinic space group $P2_1/c$, a = 9.156(5) Å, b = 10.840(6) Å, c = 22.940(12) Å, $\beta = 100.259(15)^\circ$, V = 2240(2) Å³, Z = 2, $\rho_{ca/cd} = 1.358$ g·cm⁻³, m = 0.927 mm⁻¹, F(000) = 956, T = 100(2) K, $R_1 = 0.0265$, $wR^2 = 0.0592$, 4585 independent reflections [$20 \le 52.74^\circ$] and 290 parameters. CCDC: 1060845.

Crystal data for **4**: $C_{21}H_{31}BMnN_{3}O_{2}$, $M_{r} = 423.24$, yellow block, $0.43 \times 0.26 \times 0.15 \text{ mm}^{3}$, monoclinic space group $P2_{1}/c$, a = 9.5331(4) Å, b = 12.8390(6) Å, c = 18.2760(8) Å, $\beta = 97.4560(10)^{\circ}$, V = 2217.99(17) Å³, Z = 4, $\rho_{calcd} = 1.267 \text{ g} \cdot \text{cm}^{-3}$, $m = 0.615 \text{ mm}^{-1}$, F(000) = 896, T = 100(2) K, $R_{1} = 0.0316$, $wR^{2} = 0.0734$, 4370 independent reflections [$2\theta \le 52.04^{\circ}$] and 261 parameters. CCDC: 1060846.

Crystal data for **6**: $C_{38}H_{48}BCrFeN_3O_7$, $M_r = 777.45$, yellow block, $0.80 \times 0.40 \times 0.30$ mm³, monoclinic space group $P2_1$, a = 10.800(3) Å, b = 18.449(6) Å, c = 19.691(6) Å, $\beta = 96.230(9)^\circ$, V = 3900(2) Å³, Z = 4, $\rho_{calcd} = 1.324$ g·cm⁻³, m = 0.700 mm⁻¹, F(000) = 1632, T = 100(2) K, $R_1 = 0.0241$, $wR^2 = 0.0575$, 16544 independent reflections [20≤53.54°] and 929 parameters. CCDC: 1060847.

Crystallographic data have been deposited with the Cambridge Crystallographic Data Center as supplementary publication no. CCDC 1060845 (2), 1060846 (4) and 1060847 (6). These data can be obtained free of charge from The Cambridge Crystallographic Data Centre *via* www.ccdc.cam.ac.uk/data_request/cif

Computational Details

All calculations were carried out in the Gaussian 09 software suite.^[8] NBO calculations were carried out with NBO 3.1^[9] within the Gaussian software. All geometries were energetically minimized at the B3LYP/6-311+G(d,p) level of theory. For each structure in this work frequency analysis indicated no imaginary frequencies, allowing the description of each structure as a minimum on the potential energy surface. All given energies are in kcal/mol and are ZPE corrected.

Fig. S1. Reaction pathway for the insertion of *t*BuNC into a model compound of **1** (Cp swapped for Cp^{*}). All points are intermediate geometries (minima with no imaginary frequencies). The relevant transition states were not located. The listed energies are values for $\Delta G_{298.15}$ in kcal/mol. Calculations were carried out at the B3LYP/6-311+G(d,p) level of theory.

Fig. S2. The structure of the free carbene fragment and a depiction of its HOMO as determined at the B3LYP/6-311+G(d,p) level of theory.

Compound 1*

В	1.33188200	-0.00060500	-0.16428300
0	-0.26968700	-2.13072800	2.17174500
С	-0.39088200	-1.28860000	1.40500100
0	-0.26808800	2.13955200	2.16405100
С	-0.38999600	1.29493800	1.40016600
С	-0.72817300	-0.00319600	-1.92157600

0.11071400	-0.00407600	-2.60063300
-1.38953700	1.14847000	-1.41130700
-1.11984700	2.17393100	-1.61106100
-2.48474900	0.70433800	-0.60303300
-3.17577800	1.34056600	-0.07112100
-2.48401700	-0.70741500	-0.60032300
-3.17434900	-1.34229900	-0.06589800
-1.38831900	-1.15357700	-1.40679900
-1.11746600	-2.17952400	-1.60242700
-0.61419700	0.00097200	0.21005100
2.28382600	1.49546700	-0.42999400
2.28221400	-1.49847800	-0.42576600
	0.11071400 -1.38953700 -1.11984700 -2.48474900 -3.17577800 -2.48401700 -3.17434900 -1.38831900 -1.11746600 -0.61419700 2.28382600 2.28221400	0.11071400-0.00407600-1.389537001.14847000-1.119847002.17393100-2.484749000.70433800-3.175778001.34056600-2.48401700-0.70741500-3.17434900-1.34229900-1.38831900-1.15357700-1.11746600-2.17952400-0.614197000.000972002.283826001.495467002.28221400-1.49847800

Compound 1*_INT1

В	-0.16204900	-1.14837100	-0.32006700
0	-3.45686500	-1.65442600	0.55707200
С	-2.64738700	-0.85063000	0.44965000
0	-0.40210800	0.34967300	2.95970300
С	-0.82502500	0.34891000	1.89051600
С	-0.84705500	1.58225000	-1.47136500
Н	-0.08425700	1.25615100	-2.15998900
С	-0.65381800	2.35978700	-0.29883900
Н	0.28415700	2.75696200	0.05832100
С	-1.93403300	2.56103200	0.31259600
Н	-2.12247100	3.10566700	1.22534800
С	-2.89921500	1.89361800	-0.47158000
Н	-3.95730700	1.83986900	-0.26424700
С	-2.22719900	1.27338100	-1.57460600
Н	-2.68393600	0.67716400	-2.34866500
Fe	-1.47118900	0.45672900	0.25062900
Cl	-0.06104900	-2.63232000	0.84733700
Cl	-0.41742000	-1.72940800	-2.09530800
С	1.27800700	-0.54441600	-0.25599000
Ν	2.33236500	-0.07369000	-0.15842100
С	3.69633600	0.40146800	-0.00549400
С	4.37026300	-0.48596700	1.05513600
Н	4.37575900	-1.53116300	0.74129000
Н	5.40255900	-0.15685900	1.19259200
Н	3.85085400	-0.41268900	2.01226900
С	3.64219200	1.86898200	0.44929400
Н	4.65984800	2.24267000	0.58108300
Н	3.14213100	2.49077300	-0.29616700
Н	3.11409300	1.96291700	1.40007800
С	4.38948700	0.26447300	-1.37135300
Н	3.88734400	0.87057300	-2.12797800
Н	5.42305400	0.60603000	-1.28436800
Н	4.39321600	-0.77525500	-1.70311500

Compound 1*_INT2

0	0.64587700	-1.06380900	2.97312400
С	0.90639400	-0.78372200	1.89605200
В	-0.60664300	1.47231200	-0.24154400
0	2.60220900	2.15405300	0.85847200

С	2.01669400	1.20113100	0.61046600
С	1.11404300	-1.36749300	-1.70185400
Н	0.24315600	-1.24493500	-2.32520500
С	1.27217900	-2.33673100	-0.67522900
Н	0.54502200	-3.08047900	-0.39161300
С	2.55533500	-2.13185400	-0.07779200
Н	2.97288100	-2.70273600	0.73805000
С	3.16821500	-1.02940000	-0.71657400
Н	4.13553500	-0.61362700	-0.47836400
С	2.26626100	-0.54524900	-1.72070100
Н	2.43641700	0.29408300	-2.37708000
С	-0.74053100	-0.00838400	0.01337300
N	-1.51992200	-0.97824700	0.12343000
С	-2.99981700	-0.90550800	-0.05119900
Fe	1.32850300	-0.39599700	0.20833300
Cl	-0.79035400	2.65450400	1.08696800
Cl	-0.32863300	2.12081000	-1.88804000
С	-3.54215200	0.48077200	-0.42298400
Н	-3.33661800	1.21762700	0.35624500
Н	-3.11917700	0.84148400	-1.36385700
Н	-4.62716900	0.42821600	-0.54850800
С	-3.59886400	-1.36876700	1.28811200
Н	-3.34560900	-0.66846600	2.08806600
Н	-4.68856300	-1.42972400	1.21682000
Н	-3.21085600	-2.35256100	1.56054600
С	-3.34223500	-1.91997300	-1.15591000
Н	-2.94698500	-2.90698100	-0.90545100
Н	-4.42607600	-1.99986000	-1.27732900
Н	-2.91539800	-1.61115700	-2.11435300

Compound 2*

С	1.93818000	1.70745500	0.77122300
С	2.81811300	0.76918300	1.36368300
С	3.61792600	0.18464400	0.32927100
С	3.21316900	0.77043700	-0.89676100
С	2.16500700	1.70168900	-0.63169700
Н	1.17971800	2.27723000	1.28594100
Н	2.87858000	0.53875800	2.41692600
Н	4.39013600	-0.55746600	0.46056700
Н	3.61824200	0.53827200	-1.87077900
Н	1.62979500	2.28897200	-1.36158300
С	1.31627200	-1.63094000	1.09329200
С	1.33352900	-1.22725000	-1.51279400
0	1.20232500	-2.49375100	1.83585100
0	1.23337900	-1.82351200	-2.48249700
С	-0.33409700	0.18732300	-0.02030900
N	-1.55692500	-0.22333900	-0.01026700
В	-1.45450100	1.28578100	-0.01931000
С	-2.41267500	-1.43966400	0.05439700
С	-3.73652700	-1.07791900	-0.63320300
Н	-3.57519900	-0.81753400	-1.68137600
Н	-4.42299500	-1.92713700	-0.58710900
Н	-4.20781000	-0.22465000	-0.14125000
С	-2.64765900	-1.75783900	1.54110000
Н	-1.71268800	-2.01859500	2.04203300

H H C H H Fe	-3.08520400 -3.33273000 -1.73567200 -1.54302300 -0.79568600 -2.39297300 1.54365600	-0.89951000 -2.60499900 -2.61158000 -2.37352800 -2.89409900 -3.48415900 -0.26859500	2.05445600 1.63358900 -0.66359400 -1.71178700 -0.18689300 -0.63072300 -0.02625500
Cl Cl	-1.84337400 -1.87964200	2.22128600 2.21172800	-1.56006600
Compound 3			
Mn P	-1.28766400	-0.49131300	0.19250500
Б	0.23203000	-2 97603700	-0.07351800
C	-0 33639700	-2.97003700	0.32900000
0	-0.92490500	0 37450800	2 97451100
C	-1,04998900	0.02428900	1.86742500
C	-2.41382100	0.37738200	-1.49064200
H	-2.02739700	1.10355900	-2.18844900
С	-3.11287300	0.66123100	-0.29119300
Н	-3.33762000	1.63901900	0.10233000
С	-3.47875800	-0.58273200	0.30631500
Н	-4.01313200	-0.70397800	1.23632800
С	-3.02394100	-1.62654400	-0.53078900
Н	-3.14515200	-2.68430500	-0.35275800
C	-2.35324300	-1.03712600	-1.64421800
H	-1.91231400	-1.57371500	-2.47071100
C	0.4/684000	2.32501700	-0.18248700
ч	1.40551000	2.02409100	0.90658500
н	2 44703200	2 35138800	0.82885000
Н	1.07328200	2.65256900	1.91427800
C	1.08434700	2.69536300	-1.55972200
Н	0.44003100	2.38375200	-2.38791000
Н	2.07338200	2.25073300	-1.70910200
Н	1.20600500	3.78289300	-1.63638300
С	-0.82343600	3.13278800	-0.01036900
Н	-1.31025000	2.91136300	0.94210900
H 	-1.53923900	2.92989200	-0.80844700
H	-0.60646400	4.20831100	-0.03155500
N	1.08508800 2.51204200	-0.10054500	-0.1//60800
IN C	2.51504200	-0.32003900 -1.34177200	0.81301300
Н	4,25132100	-1.80458100	0.92714700
C	3.31722900	-1.40692000	-1.03592900
H	3.86296100	-1.92801700	-1.80306600
Ν	2.19663500	-0.64004900	-1.31967600
С	2.30770500	-0.33632600	2.25030500
Н	3.27650600	-0.19517000	2.73086000
Н	1.80851700	-1.20921600	2.67444300
Н	1.69350200	0.53999400	2.42692900
C	1.59503800	-0.52686500	-2.64337300
H	0.52074800	-0.38865300	-2.519/0400
H H	2.01350700	0.31377800	-3.19116400

Compound 4

Mn	-2.15660400	-0.34629000	0.08696600
В	1.29844700	0.16300800	0.50811400
0	-1.86713700	-2.14569400	2.38995800
С	-1.94478100	-1.41101700	1.49108000
0	-3.09027900	1.83490300	1.82493100
С	-2.69245700	0.98528600	1.14319400
С	-1.98253400	-0.77151000	-2.08278900
Н	-1.06301300	-0.68326300	-2.64158000
С	-2.94341600	0.25685100	-1.89484600
H	-2.90673400	1.25260700	-2.30758800
С	-3.99424400	-0.28127600	-1.09086500
H	-4.87791600	0.24866400	-0.76855300
С	-3.68688100	-1.63155500	-0.80032900
H	-4.29178400	-2.31097300	-0.21938900
С	-2.43397800	-1.93843800	-1.41735800
H	-1.93511800	-2.89516400	-1.39618800
С	-0.27007200	0.28004200	0.12693300
Ν	0.51168300	1.24823500	-0.24542800
С	0.37761900	2.57102300	-0.92736300
C	1.54322500	3.47528300	-0.50295200
H	1.56366600	3.60528500	0.58054000
H	1.42837300	4.46163700	-0.96022600
H	2.50812200	3.07736500	-0.82092300
C	0.42203100	2.33593800	-2.44760700
H 	1.34622200	1.82977300	-2.74013500
H 	0.37432100	3.28902700	-2.98271900
H	-0.41954000	1.72044700	-2.76910300
C	-0.94110900	3.24/36200	-0.53195800
H	-1./9//3300	2.63010900	-0./9333600
H	-1.02931100	4.20627600	-1.05116100
H	-0.97944300	3.43451/00	0.54263500
C	1 05222600	0.37402000	2.03549200
U U	2 31743200	-0.97720900	2.70040400
п	2.51745200	-0.83217000 -1.67129000	2 20402400
п u	0 97612000	-1.07120900	2.29402400
п С	3 28111600	1 00578800	2.04/10100
U U	3 20002100	1 00570000	1 60210800
н	4 02618100	1.37690600	1 56877100
н	3 62530100	1 13536000	3 10524900
C	0 91928400	1 28837000	2 83552400
н	-0 08557300	0 86450400	2 90135700
н	0 82518100	2 27877000	2 38149900
н	1 28950300	1 43004600	3 85872200
C	2 17435600	-0 87787200	-0 40235000
N	1 95386300	-2 21383000	-0 51250900
C	2 89370000	-2 80400700	-1 33560700
н	2 88935600	-3 85929000	-1 54716300
C	3,72097900	-1.81899400	-1.75762300
Н	4,57456400	-1.84607500	-2.41282800
N	3.27264700	-0.64753100	-1.17325600
С	0.89798000	-2.96766100	0.16751200
- H	1.28186400	-3.41030000	1.08686000
н	0.54844400	-3.75496300	-0.50056900
н	0.07898600	-2.29309300	0.39567700

С	3.91381800	0.64367300	-1.39766500
Н	3.66849000	1.02368500	-2.39117800
Н	4.99473800	0.52790700	-1.30904100
Н	3.56901000	1.34206300	-0.64441000

Free carbene [:C(NtBu){B(IMe)tBu}]

С	0.82415400	0.21592500	1.66906700
Ν	1.33272000	-0.16608800	0.55005700
В	0.03281200	0.56016900	0.26767800
С	-3.22131900	-1.43899600	0.46660000
С	-2.84602000	-1.77106900	-0.79253500
Н	-4.08095000	-1.73278400	1.04400300
Н	-3.31185200	-2.41317400	-1.52028000
С	-0.90030000	-1.24052100	-2.27957800
Н	-1.49051900	-0.86532700	-3.11728100
Н	0.00990500	-0.65524000	-2.18979000
Н	-0.64551400	-2.28802100	-2.45154100
С	-2.29242000	-0.00108600	2.30770700
Н	-1.27357100	0.25480500	2.59821000
Н	-2.91691000	0.89373200	2.30397100
Н	-2.70836100	-0.73688000	2.99678800
С	-1.27453900	-0.37733400	0.04456500
Ν	-2.25136200	-0.59006900	0.96525700
Ν	-1.65398400	-1.11224800	-1.03679000
С	2.55645600	-0.94657700	0.19586900
С	2.15151100	-2.42498100	0.07311700
Н	1.74604000	-2.78551700	1.02167200
Н	1.38900000	-2.56107200	-0.69923900
Н	3.01542900	-3.04142100	-0.19274700
С	3.10892100	-0.42928100	-1.13640500
Н	3.99336700	-1.00172800	-1.43060900
Н	2.36696800	-0.52002000	-1.93476300
Н	3.39318600	0.62235400	-1.05812200
С	3.58380100	-0.77032100	1.31824100
Н	4.46101100	-1.39599700	1.13055400
Н	3.90496900	0.27167400	1.38770100
Н	3.14450900	-1.04364800	2.27913300
С	-0.06681600	2.08547900	-0.33012500
С	-0.17270900	2.15679700	-1.87044600
Н	-0.22167500	3.19866200	-2.21593100
Н	0.69354400	1.69623200	-2.35795300
Н	-1.07531600	1.65882800	-2.24381100
С	1.17306300	2.89457500	0.09928800
Н	1.09428600	3.93671700	-0.23749400
Н	1.28969900	2.89675900	1.18665700
Н	2.09256900	2.48035200	-0.32480100
С	-1.31162400	2.79211800	0.25547300
Н	-1.26577600	2.83028800	1.34798000
Н	-1.38994300	3.82520800	-0.10876600
Н	-2.24272400	2.28484200	-0.02662200

Free IMe

С	-0.67751600	-1.21377000	0.00001500

С	0.67744700	-1.21377600	-0.00003500
Н	-1.37783100	-2.03288100	-0.00000400
Н	1.37775500	-2.03288000	0.00005600
С	2.44709200	0.57223400	-0.00000600
Н	2.97123700	0.21480300	0.89041400
Н	2.97114300	0.21504500	-0.89058000
Н	2.43850500	1.66006500	0.00014200
С	-2.44704100	0.57228100	-0.00001600
Н	-2.43842300	1.66011000	0.00007800
Н	-2.97109200	0.21506900	-0.89057500
Н	-2.97119100	0.21491000	0.89042400
С	0.00001400	0.97985700	0.00001200
N	1.06385600	0.12178200	0.00000700
N	-1.06386800	0.12176100	0.00002500

$[(\eta^{5}-C_{5}H_{5})(OC)_{2}Mn(IMe)]$

0 00 00 4 7 0 0	0 0 0 0 1 0 0 0	
0.82634700	0.00001200	0.13938100
0.91420500	2.09302900	2.20122300
0.83912300	1.26494800	1.39097300
0.91462900	-2.09389700	2.20030600
0.83931700	-1.26549000	1.39041300
1.63672500	1.15257200	-1.56437900
1.40169600	2.17853100	-1.80319900
0.99050300	0.00055000	-2.07945500
0.13977400	0.00072400	-2.74497200
1.63669600	-1.15175200	-1.56493800
1.40181100	-2.17758300	-1.80445800
2.69856200	-0.70709900	-0.71572800
3.38798100	-1.34077700	-0.17875900
2.69858500	0.70748000	-0.71537200
3.38807500	1.34086600	-0.17815000
-3.34982800	0.67550800	-0.31754300
-3.34975300	-0.67570800	-0.31765600
-4.15816300	1.37911700	-0.41856800
-4.15800600	-1.37938900	-0.41882300
-1.64416300	-2.47903200	-0.08975700
-1.63349200	-2.82485300	0.94543300
-2.35957900	-3.07084000	-0.66219200
-0.65138400	-2.60403500	-0.51161400
-1.64447700	2.47899100	-0.08940000
-1.63479400	2.82490900	0.94577200
-0.65130900	2.60400600	-0.51032500
-2.35937400	3.07070800	-0.66258200
-1.18091200	-0.00000100	-0.05592500
-2.03028800	-1.07369900	-0.16591100
-2.03040400	1.07362000	-0.16576000
	0.82634700 0.91420500 0.83912300 0.91462900 0.83931700 1.63672500 1.40169600 0.99050300 0.13977400 1.63669600 1.40181100 2.69856200 3.38798100 2.69858500 3.38807500 -3.34975300 -4.15816300 -4.15800600 -1.6349200 -2.35957900 -0.65138400 -1.63479400 -0.65130900 -2.35937400 -1.18091200 -2.03028800 -2.03040400	$\begin{array}{llllllllllllllllllllllllllllllllllll$

References

- H. Braunschweig, K. Radacki, F. Seeler and G. R. Whittell, Organometallics, 2006, 25, 4605-4610.
- [1] [2] J. Bauer, H. Braunschweig, A. Damme, J. O. C. Jimenez-Halla, T. Kramer, K. Radacki, R. Shang, E. Siedler and Q. Ye, J. Am. Chem. Soc., 2013, 135, 8726-8734.
- [3] H. Braunschweig, K. Radacki, D. Scheschkewitz and G. R. Whittell, Angew. Chem. Int. Ed., 2005, 117, 1685-1688.
- [4] [5] [6] H. Jacobsen, H. Berke, S. Döring, G. Kehr, G. Erker, R. Fröhlich and O. Meyer, Organometallics, 1999, 18, 1724-1735.
- G. M. Sheldrick, Acta Crystallogr., Sect. A Found. Crystallogr., 2008, A64, 112-122.
- C. B. Huebschle, G. M. Sheldrick and B. Dittrich, J. Appl. Crystallogr., 2011, 44, 1281-1284.
- [7] C. Cason, et al.; Persistence of Vision Pty. Ltd., 2009; http://www.povray.org/download/.
- Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. [8] Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.
- [9] NBO Version 3.1, E. D. Glendening, A. E. Reed, J. E. Carpenter and F. Weinhold.