Supporting Information

Total Synthesis of Astrosterioside A, an Anti-inflammatory Asterosaponin

Yuanwei Dai and Biao Yu*
State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai
Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China. E-mail: byu@mail.sioc.ac.cn

Table of Contents

1. General Methods: p. 1
2. Experimental Details: p. 2-21
3. Comparison of the NMR data of the synthetic $\mathbf{1}$ with those reported for the natural astrosterioside A: p. 21-23
4. References: p. 24
5. NMR spectra of the new compounds: p. 25-53

General Remarks. All reactions were carried out under nitrogen or argon with anhydrous solvents in flame-dried glassware, unless otherwise noted. All glycosylation reactions were performed in the presence of $4 \AA$ or $5 \AA$ molecular sieves, which were flame-dried immediately before use in the reaction under high vacuum. Glycosylation solvents were dried using a solvent purification system and used directly without further drying. The chemicals used were reagent grade as supplied, except where noted. Analytical thin-layer chromatography was performed using silica gel 60 F254 glass plates. Compound spots were visualized by UV light (254 nm) and by heating with a solution with $10 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ in ethanol. Flash column chromatography was performed on silica gel. NMR spectra were referenced using $\mathrm{Me}_{4} \mathrm{Si}$ (0 ppm), residual $\mathrm{CHCl}_{3}\left({ }^{1} \mathrm{H}\right.$ NMR $\delta=7.26 \mathrm{ppm},{ }^{13} \mathrm{C}$ NMR $\left.\delta=77.00 \mathrm{ppm}\right), \mathrm{CD}_{3} \mathrm{OD}\left({ }^{1} \mathrm{H}\right.$ NMR $\delta=3.30 \mathrm{ppm},{ }^{13} \mathrm{C}$ NMR $\left.\delta=49.00 \mathrm{ppm}\right)$, or $\mathrm{D}_{2} \mathrm{O}\left({ }^{1} \mathrm{H}\right.$ NMR $\left.\delta=4.67 \mathrm{ppm}\right)$. Peak and coupling constant assignments are based on ${ }^{1} \mathrm{H}$ NMR, ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY, and ${ }^{1} \mathrm{H}^{13} \mathrm{C}^{13}$ HSQC experiments. Splitting patterns are indicated as s (singlet), d (doublet), t (triplet), q (quartet), and brs (broad singlet) for ${ }^{1} \mathrm{H}$ NMR data. ESI-MS and MALDI-MS were run on an IonSpec Ultra instrument using HP5989A or VG Quattro MS. Optical rotations were measured using a Perkin-Elmer 241 polarimeter.

3及,6 α-Di-(tert-butyldimethylsiloxy)-5 α-chol-9(11),20(22)-ene-23-nitrile (15)

To a solution of n-butyllithium ($1.22 \mathrm{~mL}, 2.674 \mathrm{mmol}, 2.2 \mathrm{M}$ in cyclohexane) in THF $(3 \mathrm{~mL})$ was added dropwise diethyl cyanomethylphosphonate ${ }^{1}$ ($0.433 \mathrm{~mL}, 2.674$ mmol) at room temperature. The mixture was stirred at room temperature for 1 h . A solution of ketone $\mathbf{1 1}^{2}$ ($300 \mathrm{mg}, 0.5347 \mathrm{mmol}$) in THF (3 mL) was added dropwise, and the mixture was stirred at $50^{\circ} \mathrm{C}$ for 12 h . It was then quenched with a saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The aqueous layer was extracted with EtOAc, and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Purification of the residue by flash column chromatography on silica gel (hexane/EtOAc, 80:1) gave $\mathbf{1 5}$ $(274 \mathrm{mg}, 88 \%)$ as a white solid: $[\alpha]_{\mathrm{D}}{ }^{25}=+4.8\left(c 1.7, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 5.30(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{~s}, 1 \mathrm{H}), 3.52(\mathrm{dtd}, J=25.7,10.0,4.6 \mathrm{~Hz}, 2 \mathrm{H})$, $2.28(\mathrm{t}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.13(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}), 2.03(\mathrm{dd}, J=19.2,7.5$ $\mathrm{Hz}, 3 \mathrm{H}), 1.92-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.78(\mathrm{dd}, J=16.2,8.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.65(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H})$, $1.60-1.47(\mathrm{~m}, 2 \mathrm{H}), 1.45-1.21(\mathrm{~m}, 7 \mathrm{H}), 1.16-1.06(\mathrm{~m}, 2 \mathrm{H}), 1.01-0.95(\mathrm{~m}, 1 \mathrm{H}), 0.94(\mathrm{~s}$, $3 \mathrm{H}), 0.87(\mathrm{dd}, J=16.5,3.5 \mathrm{~Hz}, 18 \mathrm{H}), 0.50(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.06-0.05(\mathrm{~m}, 9 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.36,146.43,117.51,115.48,95.58,72.11,69.84$, 58.07, 53.31, 49.79, 43.30, 42.49, 40.42, 38.26, 35.90, 33.57, 31.77, 25.92, 25.89, $25.31,25.07,22.49,19.30,18.33,18.07,12.51,1.02,-4.05,-4.63,-4.71,-4.72$; HRMS (ESI) calcd for $\mathrm{C}_{35} \mathrm{H}_{62} \mathrm{O}_{2} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{H}]^{+} 584.4319$, found 584.4325.

3及,6 α-Di-(tert-butyldimethylsiloxy)-5 α-cholest-9(11),20(22)-ene-23-one (16)

To a solution of $\mathbf{1 5}(81 \mathrm{mg}, 0.137 \mathrm{mmol})$ in benzene $(4 \mathrm{~mL})$ at room temperature was added a solution of iso-butylmagnesium bromide ($0.35 \mathrm{~mL}, 2 \mathrm{M}$ in ether). ${ }^{3}$ The reaction mixture was brought to reflux and stirred for 4 h . After cooling to room temperature, it was quenched with a saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The aqueous layer was extracted with EtOAc, and the combined organic layers were dried over MgSO_{4} and
condensed under vacuum. Purification of the residue by flash column chromatography on silica gel (hexane/EtOAc, 60:1) gave 16 (72 mg, 82\%) as a white solid: $[\alpha]_{\mathrm{D}}{ }^{25}=$ $+0.6\left(c 1.2, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.07(\mathrm{~s}, 1 \mathrm{H}), 5.31(\mathrm{~d}, J=5.5 \mathrm{~Hz}$, 1 H), 3.54 (dd, $J=18.2,10.2 \mathrm{~Hz}, 2 \mathrm{H}$), 2.30 (d, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}$), 2.25 (dd, $J=12.0,8.2$ $\mathrm{Hz}, 1 \mathrm{H}), 2.15(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 2.13-1.97(\mathrm{~m}, 6 \mathrm{H}), 1.96-1.45(\mathrm{~m}, 14 \mathrm{H}), 1.32$ (ddd, $J=35.5,24.7,14.0 \mathrm{~Hz}, 11 \mathrm{H}), 1.13(\mathrm{t}, J=9.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.99(\mathrm{dd}, J=19.6,12.8 \mathrm{~Hz}$, $2 \mathrm{H}), 0.92(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{~d}, J=0.5 \mathrm{~Hz}, 18 \mathrm{H}), 0.50(\mathrm{~s}, 2 \mathrm{H}), 0.07(\mathrm{~s}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.03,146.26,123.83,115.87,77.32,72.16,69.94,60.03$, $53.83,53.36,49.81,43.34,42.57,40.50,38.23,35.98,35.91,33.58,31.79,29.69$, 29.61, 25.92, 25.89, 25.33, 25.29, 25.16, 22.66, 20.82, 19.28, 18.34, 18.07, 12.59, 1.00, -4.04, -4.64, -4.72, -4.73; HRMS (ESI) calcd for $\mathrm{C}_{39} \mathrm{H}_{71} \mathrm{O}_{3} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{H}]^{+}$643.4936, found 643.4938.

3及-tert-Butyldimethylsiloxy-6 α-hydroxy-5 α-cholest-9(11),20(22)-ene-23-one (2)

To a solution of $\mathbf{1 6}(170 \mathrm{mg}, 0.265 \mathrm{mmol})$ in THF (5 mL), $70 \% \mathrm{HF} \cdot$ pyridine (0.5 mL) was added dropwise. The mixture was stirred at room temperature for 10 h and was then quenched with saturated $\mathrm{NaHCO}_{3}(2 \mathrm{~mL})$ and diluted with EtOAc. The mixture was washed with saturated NaHCO_{3} solution and brine. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo.

The residue was dissolved in DMF $(4 \mathrm{~mL})$ and the solution was cooled to $0^{\circ} \mathrm{C}$. Imidazole ($68 \mathrm{mg}, 0.96 \mathrm{mmol}$), DMAP ($19 \mathrm{mg}, 0.15 \mathrm{mmol}$), and TBSCl ($49 \mathrm{mg}, 0.32$ $\mathrm{mmol})$ were added to the solution. The mixture was stirred and allowed to warm to room temperature overnight. The suspension was then diluted with EtOAc. The organic layer was washed with water, saturated NaHCO_{3} solution, and brine, respectively, and was then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by flash column chromatography (petroleum ether/EtOAc, 6:1) to afford $2(106 \mathrm{mg}, 76 \%)$ as a white solid. The diol ($27 \mathrm{mg}, 0.065 \mathrm{mmol}$) was recovered by using $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}(10: 1)$ as the eluant. 2: $[\alpha]_{\mathrm{D}}{ }^{25}=-4.1\left(c \quad 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.07(\mathrm{~s}, 1 \mathrm{H}), 5.33(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{dtd}, J=20.5,10.7$, $4.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.30(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.28-2.16(\mathrm{~m}, 3 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}), 2.13-1.99(\mathrm{~m}$, $5 \mathrm{H}), 1.96-1.19$ (m, 16H), 1.07 (ddd, $J=13.3,8.1,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 0.94(\mathrm{~d}, J=4.3 \mathrm{~Hz}$, $7 \mathrm{H}), 0.91(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 10 \mathrm{H}), 0.50(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz ,
$\left.\mathrm{CDCl}_{3}\right) \delta 201.38,157.88,145.97,123.86,116.32,77.32,71.83,69.27,59.99,53.83$, $53.37,49.82,43.31,42.20,40.49,38.21,35.95,35.75,32.96,31.70,25.92,25.33$, $25.28,25.20,22.67,20.84,19.25,18.21,12.61,-4.56,-4.58$; HRMS (ESI) calcd for $\mathrm{C}_{33} \mathrm{H}_{57} \mathrm{O}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+} 529.4071$, found 529.4073.

Tri-O-benzoyl- $\alpha / \boldsymbol{\beta}$-L-arabinofuranosyl N-phenyl trifluoroacetimidate (6)

To a solution of compound $\mathbf{S 1}{ }^{4}(0.44 \mathrm{~g}, 0.92 \mathrm{mmol})$ in acetic acid (3 mL), was added $33 \% \mathrm{HBr} \cdot \mathrm{HOAc}(2.5 \mathrm{~mL})$. The mixture was stirred for 4 h at room temperature. After TLC showed complete consumption of the starting material, the mixture was diluted with EtOAc, washed three times with brine, then with water, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and was concentrated in vacuo. The crude product was purified by flash column chromatography (hexane/EtOAc, $10: 1 \rightarrow 5: 1$) to afford the corresponding hemiacetal $(0.34 \mathrm{~g}, 80 \%)$ a pale yellow foam.

The above hemiacetal ($0.25 \mathrm{~g}, 0.54 \mathrm{mmol}$) was dissolved in acetone, $\mathrm{K}_{2} \mathrm{CO}_{3}(0.3$ $\mathrm{g}, 2.17 \mathrm{mmol}$) and 2,2,2-trifluoro- N -phenylacetimidoyl chloride ($0.15 \mathrm{~g}, 0.7 \mathrm{mmol}$) were added. The resulting suspension was vigorously stirred under argon at room temperature for 4 h . The reaction mixture was filtered through Celite. The filtrate was concentrated in vacuo, and the crude product was purified by flash chromatography (petroleum ether/EtOAc, $10: 1$ with $1 \% \mathrm{Et}_{3} \mathrm{~N}$) to afford compound $6(0.33 \mathrm{~g}, 98 \%$, $\alpha / \beta=2: 1)$ as a white foam. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.09$ (ddd, $J=4.9,2.8,1.6$ $\mathrm{Hz}, 7 \mathrm{H}), 8.07-8.03(\mathrm{~m}, 4 \mathrm{H}), 7.99(\mathrm{dd}, J=8.4,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.65-7.38(\mathrm{~m}, 19 \mathrm{H})$, 7.29 (dd, $J=8.2,7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.17$ (dd, $J=10.7,5.0 \mathrm{~Hz}, 3 \mathrm{H})$, 7.07 (t, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.00(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~s}, 2 \mathrm{H})$, $6.70(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.58(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 6.10(\mathrm{dd}, J=6.5,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.04$ $-5.96(\mathrm{~m}, 2 \mathrm{H}), 5.92(\mathrm{~s}, 2 \mathrm{H}), 5.82(\mathrm{dd}, J=6.6,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.81$ (ddd, $J=11.6,4.2$, $2.4 \mathrm{~Hz}, 3 \mathrm{H}), 4.74(\mathrm{dd}, J=11.7,6.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.69-4.58(\mathrm{~m}, 3 \mathrm{H})$.
p-Methoxyphenyl 3-O-benzyl-2,4-di-O-acetyl- α-D-fucopyranoside (S3)

To a solution of compound $\mathbf{S} \mathbf{2}^{5}(1.49 \mathrm{~g}, 5.5 \mathrm{mmol})$ in dry acetonitrile (35 mL), were added 2-aminoethyl diphenylborinate ($0.25 \mathrm{~g}, 1.1 \mathrm{mmol}$), benzyl bromide (0.9 mL , $8.3 \mathrm{mmol})$ and $\mathrm{Ag}_{2} \mathrm{O}(1.2 \mathrm{~g}, 8.3 \mathrm{mmol})$. The mixture was stirred vigorously ($750-1000$
$\mathrm{rpm})$ for 48 h at $40^{\circ} \mathrm{C}$. The resulting mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, filtered through celite and concentrated to dryness.

The resulting crude material was dissolved in dry pyridine (25 mL), DMAP (0.15 $\mathrm{g}, 1.2 \mathrm{mmol})$ and acetic anhydride ($3.0 \mathrm{~mL}, 21 \mathrm{mmol}$) were then added. After stirring for 12 h at room temperature, the solution was quenched with saturated NaHCO_{3} solution, then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and was concentrated in vacuo. The residue was purified by flash column chromatography (petroleum ether/EtOAc, 5:1) to give compound $\mathbf{S 3}(1.83 \mathrm{~g}, 75 \%$ for two steps) as a white foam: $[\alpha]_{\mathrm{D}}{ }^{25}=+154.5\left(c \quad 0.7, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.49-7.15(\mathrm{~m}, 5 \mathrm{H})$, $7.02-6.91(\mathrm{~m}, 2 \mathrm{H}), 6.88-6.75(\mathrm{~m}, 2 \mathrm{H}), 5.60(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.48(\mathrm{~d}, J=3.2 \mathrm{~Hz}$, $1 \mathrm{H}), 5.19(\mathrm{dd}, J=10.5,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~d}, J=11.7 \mathrm{~Hz}$, $1 \mathrm{H}), 4.22(\mathrm{q}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{dd}, J=10.5,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 2.18(\mathrm{~s}$, $3 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}), 1.15(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.77$, $170.44,155.13,150.75,137.79,128.32,127.66,117.98,114.58,96.07,73.45,71.69$, $70.23,69.92,65.40,55.59,20.86,20.79,16.12$; HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{O}_{8} \mathrm{Na}$ $[\mathrm{M}+\mathrm{Na}]^{+} 467.1676$, found 467.1681.

p-Methoxyphenyl 2,4-di-O-acetyl- α-D-fucopyranoside (7)

To a solution of compound $\mathbf{S 3}$ ($200 \mathrm{mg}, 0.45 \mathrm{mmol}$) in EtOAc (5 mL) and methanol $(5 \mathrm{~mL})$, was added $\mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}(20 \mathrm{wt} \% ; 80 \mathrm{mg})$. The resulting suspension was vigorously stirred under hydrogen pressure (1 atm) for 20 h at room temperature. The reaction mixture was filtered through a pad of celite. The filtrate was concentrated to dryness to give, without further purification, compound 7 ($156 \mathrm{mg}, 98 \%$) as a pale yellow foam: $[\alpha]_{\mathrm{D}}{ }^{25}=+30.8\left(c 0.6, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.03-6.92$ (m, 2H), 6.87-6.75 (m, 2H), $5.57(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.32(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.09$ (dd, $J=10.5,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{dd}, J=10.5,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{q}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H})$, $3.77(\mathrm{~s}, 3 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}), 1.15(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 171.31,171.22,155.19,150.76,117.91,114.65,95.99,73.45,71.23,67.05$, 65.57, 55.66, 20.95, 20.80, 16.14; HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{8} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$ 377.1207, found 377.1210.

A mixture of acceptor $7(0.15 \mathrm{~g}, 0.24 \mathrm{mmol})$, donor $6(0.32 \mathrm{~g}, 0.50 \mathrm{mmol})$, and $4 \AA$ molecular sieves $(0.8 \mathrm{~g})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was stirred for 30 min under an argon atmosphere. The mixture was cooled to $-30^{\circ} \mathrm{C}$, and TMSOTf ($15 \mu \mathrm{~L}, 0.05 \mathrm{mmol}$) was slowly added. After being stirred for another 3 h , the reaction was quenched with triethylamine $(0.5 \mathrm{~mL})$ and filtered through a pad of Celite. The solvent was evaporated in vacuo. The residue was purified by flash chromatography (petroleum ether/EtOAc, 5:1) to give disaccharide $4(0.32 \mathrm{~g}, 95 \%)$ as a white foam: $[\alpha]_{\mathrm{D}}{ }^{25}=$ +77.5 (c 0.8, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.11(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H})$, $8.00-7.82(\mathrm{~m}, 2 \mathrm{H}), 7.68-7.21(\mathrm{~m}, 9 \mathrm{H}), 6.95(\mathrm{dd}, J=7.4,5.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.82(\mathrm{dd}, J=$ $9.9,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.61(\mathrm{t}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.51(\mathrm{~s}, 1 \mathrm{H}), 5.44(\mathrm{~s}, 2 \mathrm{H}), 5.27(\mathrm{dd}, J=10.6$, $3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.98$ (dd, $J=12.1,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.86-4.80(\mathrm{~m}, 1 \mathrm{H}), 4.73$ (dd, $J=12.1$, $3.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{dd}, J=10.6,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{q}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H})$, $2.16(\mathrm{~s}, 3 \mathrm{H}), 1.96(\mathrm{~s}, 3 \mathrm{H}), 1.11(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $170.84,170.51,166.20,165.93,165.38,155.08,150.67,133.51,133.41,133.02$, 129.93, 129.86, 129.81, 129.70, 129.17, 128.94, 128.44, 128.43, 128.33, 117.66, $114.63,107.37,95.79,82.50,81.10,77.85,73.05,71.84,70.09,65.67,63.16,55.62$, 20.76, 20.58, 15.87; HRMS (ESI) calcd for $\mathrm{C}_{43} \mathrm{H}_{42} \mathrm{O}_{15} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 821.2416$, found 821.2415 .

2,3,5-Tri-O-benzoyl- α-L-arabinofuranosyl-($\mathbf{1 \rightarrow 3}$)-2,4-di-O-acetyl- α-D-fucopyrano syl N-phenyl trifluoroacetimidate (20)

Compound 4 ($300 \mathrm{mg}, 0.38 \mathrm{mmol}$) was dissolved in acetonitrile/water (4:1, 5 mL). Cerium ammonium nitrate ($620 \mathrm{mg}, 1.14 \mathrm{mmol}$) was added, and the mixture stirred for 3 h at room temperature. After TLC showed complete consumption of the starting material, the mixture was diluted with EtOAc. The organic layer was washed two times with brine and water, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo to give the corresponding lactol as a syrup.

The above syrup was dissolved in acetone (7 mL), then $\mathrm{K}_{2} \mathrm{CO}_{3}(300 \mathrm{mg}, 2.17$ mmol) and 2,2,2-trifluoro- N-phenylacetimidoyl chloride ($95 \mathrm{mg}, 0.46 \mathrm{mmol}$) were
added. The mixture was vigorously stirred under argon at room temperature for 4 h , and was then filtered through Celite. The filtrate was concentrated to dryness and the crude product was purified by flash chromatography (petroleum ether/EtOAc, 6:1 with $1 \% \mathrm{Et}_{3} \mathrm{~N}$) to afford compound $20(0.26 \mathrm{~g}, 80 \%$ for two steps, $\alpha / \beta=2.3: 1)$ as a white foam. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.02$ (dd, $\left.J=11.4,4.2 \mathrm{~Hz}, 7 \mathrm{H}\right), 7.89-$ 7.81 (m, 3H), 7.48 (dddd, $J=28.7,15.4,8.0,1.4 \mathrm{~Hz}, 9 \mathrm{H}), 7.31-7.16$ (m, 12H), 7.04 (dt, $J=15.0,7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.77(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.52(\mathrm{t}, J$ $=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.41-5.20(\mathrm{~m}, 6 \mathrm{H}), 4.86(\mathrm{ddd}, J=19.6,12.0,2.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.69(\mathrm{tdd}, J$ $=15.5,9.9,5.7 \mathrm{~Hz}, 4 \mathrm{H}), 4.26(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.08(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 9 \mathrm{H})$.

Benzyl

3-O-benzyl- β-D-xylopyranosyl-(1 \rightarrow 3)-2,4-di-O-benzyl-6-deoxy- β-D-glucopyranosi de (8)

Disaccharide $\mathbf{S} 4^{2}$ ($2.2 \mathrm{~g}, 2.97 \mathrm{mmol}$) was dissolved in dichloromethane (3 mL) and methanol (3 mL). The solution was treated with sodium methoxide $(160 \mathrm{mg}, 2.97$ mmol) at room temperature for 4 h . The mixture was neutralized with an ion-exchange resin (Amberlite IR 120, H^{+}) and filtrated. The filtrate was concentrated. The residue was purified by flash column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 50: 1\right)$ to give $8(1.85 \mathrm{~g}, 95 \%)$ as a white solid: $[\alpha]_{\mathrm{D}}{ }^{25}=-25.3\left(c 0.4, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.69-6.93(\mathrm{~m}, 20 \mathrm{H}), 5.02(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.97(\mathrm{dd}, J=11.1,5.5$ $\mathrm{Hz}, 2 \mathrm{H}), 4.91(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{~d}, J=11.7 \mathrm{~Hz}$, $1 \mathrm{H}), 4.60(\mathrm{dd}, J=10.9,3.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.55(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $3.93-3.86(\mathrm{~m}, 1 \mathrm{H}), 3.86-3.81(\mathrm{~m}, 1 \mathrm{H}), 3.69-3.64(\mathrm{~m}, 1 \mathrm{H}), 3.63(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H})$, $3.57-3.51(\mathrm{~m}, 1 \mathrm{H}), 3.44(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.41-3.35(\mathrm{~m}, 1 \mathrm{H}), 3.23(\mathrm{t}, J=6.7 \mathrm{~Hz}$, $1 \mathrm{H}), 3.20(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.02(\mathrm{t}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.19(\mathrm{~s}, 1 \mathrm{H}), 1.37(\mathrm{~d}, J=6.1$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.66,138.28,137.38,137.20,129.00$, $128.61,128.58,128.42,128.24,128.21,128.05,127.95,127.85,105.70,102.21$, 83.34, 83.10, 81.35, 75.86, 75.20, 75.15, 74.34, 71.29, 69.12, 65.64, 17.94; HRMS (ESI) calcd for $\mathrm{C}_{39} \mathrm{H}_{44} \mathrm{O}_{9} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 679.2883$, found 679.2877.

To a stirred solution of thiogalacoside $\mathbf{1 7}^{6}(2.0 \mathrm{~g}, 3.91 \mathrm{mmol})$ in acetone $/ \mathrm{H}_{2} \mathrm{O}(9: 1,30$ mL) was added N -bromosuccinimide (NBS, $3.49 \mathrm{~g}, 19.58 \mathrm{mmol}$). The mixture was stirred at room temperature for 1.5 h , and TLC (petroleum ether/EtOAc, 2:1) showed complete conversion of the starting material to a slower moving component. The mixture was diluted with EtOAc (150 mL) and washed with $10 \% \mathrm{NaHCO}_{3}$ solution. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to a syrup.

The crude lactol was then dissolved in acetone $(20 \mathrm{~mL}), \mathrm{K}_{2} \mathrm{CO}_{3}(2.5 \mathrm{~g}, 18.09$ mmol) was added followed by addition of $2,2,2$-trifluoro- N -phenylacetimidoyl chloride ($0.8 \mathrm{~mL}, 4.31 \mathrm{mmol}$). The mixture was stirred at room temperature for $4 \mathrm{~h} .{ }^{7,8}$ The reaction mixture was filtered through Celite. The filtrate was concentrated in vacuo, and the residue was purified by flash chromatography (petroleum ether/EtOAc, 5:1 with $1 \% \mathrm{Et}_{3} \mathrm{~N}$) to afford compound $20(1.62 \mathrm{~g}, 90 \%$ for two steps, $\alpha / \beta=1.4: 1)$ as a white foam. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.31(\mathrm{dd}, J=15.1,7.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.13(\mathrm{dt}$, $J=13.6,6.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{t}, J=8.3 \mathrm{~Hz}, 4 \mathrm{H}), 5.60-5.29(\mathrm{~m}, 5 \mathrm{H}), 5.10(\mathrm{~s}, 1 \mathrm{H}), 4.35$ $(\mathrm{s}, 1 \mathrm{H}), 4.23-4.02(\mathrm{~m}, 4 \mathrm{H}), 2.90-2.45(\mathrm{~m}, 8 \mathrm{H}), 2.16(\mathrm{dd}, J=5.7,2.2 \mathrm{~Hz}, 11 \mathrm{H})$, 2.05 (dd, $J=4.2,2.9 \mathrm{~Hz}, 10 \mathrm{H})$.

Benzyl

3,4,6-Tri-O-acetyl-2-O-levulinoyl- β-D-galactopyranosyl-($1 \rightarrow 4$)-3-O-benzyl- β-D-xy lopyranosyl-($1 \rightarrow 3$)-2,4-di-O-benzyl-6-deoxy- β-d-glucopyranoside (18)
Procedure 1:

A mixture of disaccharide $\mathbf{8}(502 \mathrm{mg}, 0.76 \mathrm{mmol})$ and $4 \AA \mathrm{MS}(1.5 \mathrm{~g})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(20 \mathrm{~mL})$ was stirred at room temperature for 20 min under an argon atmosphere. Then the solution was cooled to $-30^{\circ} \mathrm{C}$, NIS ($136 \mathrm{mg}, 0.77 \mathrm{mmol}$) and TMSOTf $(9 \mu \mathrm{~L}$, 0.026 mmol) were added. Five minutes later, a solution of thiogalacoside $\mathbf{1 7}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(260 \mathrm{mg}, 0.51 \mathrm{mmol}, 0.1 \mathrm{M})$ was slowly added. After being stirred for another 1 h , the mixture was quenched with triethylamine $(0.5 \mathrm{~mL})$ and filtered through Celite. The filtrates were concentrated in vacuo to give a residue, which was purified by flash column chromatography (toluene/EtOAc, 15:1 to 4:1) to recover acceptor 8 (250 mg ,
$0.38 \mathrm{mmol})$ and afford $\mathbf{1 8}(451 \mathrm{mg}, 85 \%$ based on $\mathbf{1 7})$ as a white solid: $[\alpha]_{\mathrm{D}}{ }^{25}=-21.9$ (c 1.1, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.78-6.93(\mathrm{~m}, 20 \mathrm{H}), 5.35(\mathrm{~d}, J=3.3$ $\mathrm{Hz}, 1 \mathrm{H}), 5.16$ (dd, $J=10.5,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.01$ (dd, $J=10.5,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.97-4.88$ (m, 3H), 4.79 (d, $J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.63(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{~d}$, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{dd}, J=11.2,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{dd}, J=11.2,6.1 \mathrm{~Hz}, 1 \mathrm{H})$, $3.90-3.85$ (m, 1H), 3.85-3.80 (m, 2H), 3.78 (dd, $J=9.3,6.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.50 (ddd, $J=$ $17.4,11.3,5.1 \mathrm{~Hz}, 3 \mathrm{H}), 3.37(\mathrm{tt}, J=12.3,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.24(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.14$ $(\mathrm{t}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.07(\mathrm{dd}, J=12.0,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{ddd}, J=14.4,8.7,5.3 \mathrm{~Hz}$, $1 \mathrm{H}), 2.61-2.48(\mathrm{~m}, 2 \mathrm{H}), 2.41-2.33(\mathrm{~m}, 1 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H})$, $1.99(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 205.80,171.49$, $170.30,170.26,170.13,138.60,138.37,137.48,137.19,129.00,128.44,128.44$, $128.28,128.23,128.06,128.02,127.89,127.84,127.83,127.64,127.58,103.84$, $102.13,100.24,82.50,81.72,81.49,80.25,77.32,76.51,74.96,74.93,73.86,73.27$, 71.17, 70.85, 70.49, 69.32, 66.91, 61.97, 61.01, 37.59, 29.61, 27.77, 20.61, 20.53, 17.83; HRMS (ESI) calcd for $\mathrm{C}_{56} \mathrm{H}_{66} \mathrm{O}_{19} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 1065.4091$, found 1065.4110.

Procedure 2:

To a stirred dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution (4 mL) containing thiogalactoside $17(97 \mathrm{mg}, 0.19$ $\mathrm{mmol})$, 1-benzenesulfinyl piperidine (BSP) ($44 \mathrm{mg}, 0.21 \mathrm{mmol}$), 2,4,6-tri-tert-butylpyrimidine (TTBP) $(92 \mathrm{mg}, 0.38 \mathrm{mmol})$, and activated $3 \AA$ powdered sieves (300 mg) at $-60{ }^{\circ} \mathrm{C}$ under an argon atmosphere, trifluoromethanesulfonic anhydride ($\mathrm{Tf}_{2} \mathrm{O}$) ($59 \mathrm{mg}, 0.21 \mathrm{mmol}$) was added. ${ }^{9}$ After 5 min , a solution of the disaccharide acceptor $\mathbf{8}(184 \mathrm{mg}, 0.28 \mathrm{mmol})$ in dichloromethane (2 mL) was added. The reaction mixture was stirred for 30 min at $-60{ }^{\circ} \mathrm{C}$ and was then warmed to room temperature. The mixture was filtered, the filtrate was washed with saturated NaHCO_{3} solution and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was purified by flash column chromatography (toluene/EtOAc, 15:1 to $4: 1$) to afford $\mathbf{1 8}(138 \mathrm{mg}, 70 \%)$ as a white solid.

Procedure 3:

A mixture of disaccharide acceptor $\mathbf{8}(250 \mathrm{mg}, 0.38 \mathrm{mmol})$ and $4 \AA \mathrm{MS}(800 \mathrm{mg})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})$ was stirred at room temperature for 20 min under an argon atmosphere. Then, the solution was cooled to $-30^{\circ} \mathrm{C}$, TMSOTf ($4 \mu \mathrm{~L}, 0.012 \mathrm{mmol}$) was added. Five minutes later, a solution of imidate $9(120 \mathrm{mg}, 0.26 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(1 \mathrm{~mL})$ was slowly added. After being stirred for another 1 h , the mixture was quenched with triethylamine $(0.5 \mathrm{~mL})$ and filtered through Celite. The filtrates were concentrated in vacuo to give a residue, which was purified by flash column chromatography (toluene/EtOAc, 15:1 to $4: 1$) to recover $8(86 \mathrm{mg}, 0.13 \mathrm{mmol})$ and afford $\mathbf{1 8}$ ($248 \mathrm{mg}, 92 \%$ based on 9) as a white solid.

Benzyl

3,4,6-tri-O-acetyl-2-O-levulinoyl- β-D-galactopyranosyl-($1 \rightarrow 4$)-2-O-benzoyl-3-O-b enzyl- β-D-xylopyranosyl-($1 \rightarrow 3$)-2,4-di-O-benzyl-6-deoxy- β-D-glucopyranoside (19)

o a solution of compound $\mathbf{1 8}(20 \mathrm{mg}, 0.019 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ were added $\mathrm{BzCl}(0.46 \mathrm{~mL}, 4.0 \mathrm{mmol})$, DMAP ($12 \mathrm{mg}, 0.08 \mathrm{mmol}$) and DIPEA ($20 \mu \mathrm{~L}, 0.15$ mmol) under an argon atmosphere. The solution was stirred for 3 h at room temperature. Solvents were evaporated in vacuo to give a residual syrup, which was diluted with EtOAc (20 mL). The solution was washed with 1 M HCl and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by flash column chromatography (petroleum ether/EtOAc, 2:1) to give compound 19 ($21 \mathrm{mg}, 96 \%$) as a white solid: $[\alpha]_{\mathrm{D}}{ }^{25}=-3.8\left(c \quad 1.3, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.00-7.86$ $(\mathrm{m}, 2 \mathrm{H}), 7.76-6.67(\mathrm{~m}, 23 \mathrm{H}), 5.33(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.27-5.15(\mathrm{~m}, 3 \mathrm{H}), 5.05-5.00$ (m, 1H), $4.98(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.86(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{~d}, J=11.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.77$ (d, $J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.59-4.49(\mathrm{~m}, 3 \mathrm{H})$, 4.44-4.33 (m, 2H), 4.06-3.97 (m, 2H), 3.96-3.90 (m, 2H), 3.85 (ddd, $J=16.1,12.8$, $7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.74(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{dd}, J=9.5,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(\mathrm{dd}, J=11.0$, $6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.21$ (dd, $J=12.1,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{t}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.74$ (ddd, $J=$ $18.2,8.2,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.64-2.51(\mathrm{~m}, 2 \mathrm{H}), 2.40$ (ddd, $J=17.2,6.6,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.11$ (s, 3H), 2.07 ($\mathrm{s}, 3 \mathrm{H}$), $2.03(\mathrm{~s}, 3 \mathrm{H}), 1.98(\mathrm{~s}, 3 \mathrm{H}), 1.27-1.24(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126
$\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 205.68,171.17,170.28,170.25,170.05,165.28,138.44,138.22$, $137.95,137.24,132.97,129.83,129.78,128.31,128.29,128.27,128.17,128.12$, 128.02, 127.93, 127.72, 127.69, 127.56, 127.52, 102.08, 101.01, 100.11, 82.89, 81.23, $79.53,77.98,77.68,75.01,74.30,73.73,71.89,71.07,71.03,70.86,70.60,69.15$, 66.92, 61.83, 61.02, 37.62, 29.63, 27.77, 20.59, 20.57, 20.53, 17.87; HRMS (ESI) calcd for $\mathrm{C}_{63} \mathrm{H}_{70} \mathrm{O}_{20} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$1169.4353, found 1169.4366.

Benzyl

3,4,6-tri-O-acetyl-2-O-levulinoyl- β-D-galactopyranosyl-($1 \rightarrow 4$)-[2,3,4-tri-O-benzo yl-6-deoxy- β-D-glucopyranosyl-($1 \rightarrow 2$)]-3-O-benzyl- β-D-xylopyranosyl-($1 \rightarrow 3$)-2,4-di-O-benzyl-6-deoxy- β-D-glucopyranoside (5)

A mixture of trisaccharide acceptor $\mathbf{1 8}(0.35 \mathrm{~g}, 0.34 \mathrm{mmol})$, donor $\mathbf{1 0}^{6}(0.27 \mathrm{~g}, 0.41$ $\mathrm{mmol})$ and $5 \AA$ molecular sieves $(1.1 \mathrm{~g})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was stirred for 30 min under an argon atmosphere. The mixture was cooled to $-30^{\circ} \mathrm{C}$, then $\operatorname{TMSOTf}(15 \mu \mathrm{~L}$, 0.05 mmol) was slowly added. After being stirred for another 3 h , the reaction mixture was quenched with triethylamine $(0.5 \mathrm{~mL})$ and filtered through a pad of Celite. The solvents were evaporated in vacuo. The residue was purified by flash chromatography (petroleum ether/EtOAc, 2:1) to give tetrasaccharide $5(0.47 \mathrm{~g}, 92 \%)$ as a white foam: $[\alpha]_{\mathrm{D}}{ }^{25}=-29.1\left(c 0.6, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.94(\mathrm{dd}, J=8.2,1.1 \mathrm{~Hz}$, $2 \mathrm{H}), 7.78$ (dd, $J=8.3,1.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.72(\mathrm{dd}, J=8.2,1.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.54-7.13(\mathrm{~m}, 30 \mathrm{H})$, $5.80(\mathrm{t}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.60(\mathrm{dd}, J=9.8,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.37(\mathrm{dd}, J=16.9,8.7 \mathrm{~Hz}, 3 \mathrm{H})$, $5.10(\mathrm{dd}, J=10.5,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.87(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H})$, 4.65 (d, $J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{dd}, J=13.0,5.2 \mathrm{~Hz}, 3 \mathrm{H})$, $4.07(\mathrm{dd}, J=11.1,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{dt}, J=11.1,7.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.88-3.73(\mathrm{~m}, 5 \mathrm{H})$, $3.71-3.64(\mathrm{~m}, 1 \mathrm{H}), 3.43(\mathrm{t}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{dt}, J=12.3,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.17(\mathrm{t}, J$ $=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{t}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.71$ (ddd, $J=19.1,9.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}$), $2.59-2.45(\mathrm{~m}, 2 \mathrm{H}), 2.36-2.25(\mathrm{~m}, 1 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}), 1.98(\mathrm{~s}$, $3 \mathrm{H}), 1.35(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.29(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 205.52,171.06,170.26,170.19,169.98,165.82,165.36,164.84,138.47,138.45$, $138.38,137.50,133.21,132.94,129.71,129.62$, 129.61, 129.05, 128.48, 128.34, $128.33,128.19,128.18,128.16,128.13,127.92,127.89,127.65,127.63,102.21$, $100.62,100.47,100.36,83.14,82.80,81.25,79.75,78.42,78.04,74.94,74.88,74.02$, $73.27,72.56,71.08,70.80,70.73,70.50,70.30,69.11,66.80,62.65,60.74,37.54$,
29.54, 27.68, 20.57, 20.53, 20.48, 17.93, 17.66; HRMS (MALDI) calcd for $\mathrm{C}_{83} \mathrm{H}_{88} \mathrm{O}_{26} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$1523.5456, found 1523.5496.

Benzyl

3,4,6-tri-O-acetyl- β-D-galactopyranosyl-($1 \rightarrow 4$)-[2,3,4-tri-O-benzoyl-6-deoxy-β-D-glucopyranosyl-($1 \rightarrow 2$)]-3-O-benzyl- β-D-xylopyranosyl-($1 \rightarrow \mathbf{3}$)-2,4-di-O-benzy l-6-deoxy- $\boldsymbol{\beta}$-D-glucopyranoside (21)

Tetrasaccharide 5 ($390 \mathrm{mg}, 0.26 \mathrm{mmol}$) was dissolved in pyridine/acetic acid (3:2, 5 $\mathrm{mL})$, then $\mathrm{N}_{2} \mathrm{H}_{2} \cdot \mathrm{H}_{2} \mathrm{O}(60 \mu \mathrm{~L}, 0.11 \mathrm{mmol})$ was added. The reaction mixture was stirred for 5 h at room temperature, and was then quenched with acetone $(0.5 \mathrm{~mL})$ and concentrated in vacuo. The residue was purified by flash chromatography (petroleum ether/EtOAc, 3:1) to give compound 21 ($346 \mathrm{mg}, 95 \%$) as a white foam: $[\alpha]_{\mathrm{D}}{ }^{25}=+6.9$ (c $0.8, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.01-7.88(\mathrm{~m}, 2 \mathrm{H}), 7.78(\mathrm{dd}, J=12.0$, $4.2 \mathrm{~Hz}, 4 \mathrm{H}), 7.52$ (dd, $J=10.6,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.47-7.27(\mathrm{~m}, 21 \mathrm{H}), 7.26-7.19(\mathrm{~m}, 7 \mathrm{H})$, $5.77(\mathrm{t}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.56(\mathrm{dd}, J=9.8,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.39-5.31(\mathrm{~m}, 2 \mathrm{H}), 5.21(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.91-4.83(\mathrm{~m}, 2 \mathrm{H}), 4.73(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H})$, $4.65(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~d}$, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{dd}, J=11.1,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.01-3.85$ (m, 4H), 3.80 (dd, $J=14.7,7.7 \mathrm{~Hz}, 2 \mathrm{H}$), 3.69 (ddd, $J=20.5,11.5,6.5 \mathrm{~Hz}, 3 \mathrm{H}$), $3.46-3.37(\mathrm{~m}, 2 \mathrm{H}), 3.17(\mathrm{t}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.03(\mathrm{dd}, J=11.5,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.08(\mathrm{~s}$, $3 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 1.98(\mathrm{~s}, 3 \mathrm{H}), 1.32(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.29(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.31,170.27,170.02,165.89,165.39,164.91,138.65$, $138.48,138.08$, 137.51, 133.28, 133.01, 132.96, 129.75, 129.70, 129.68, 129.35, $129.18,128.93,128.81,128.39,128.29,128.23,128.00,127.98,127.85,127.71$, 127.66, 127.50, 102.27, 101.23, 100.67, 100.48, 83.17, 81.78, 81.50, 79.68, 78.21, $75.61,74.84,73.95,74.42,73.95,73.19,72.74,72.42,71.14,70.90,70.84,70.43$, 68.70, 66.97, 61.95, 61.00, 20.71, 20.62, 20.56, 17.98, 17.68; HRMS (MALDI) calcd for $\mathrm{C}_{78} \mathrm{H}_{82} \mathrm{O}_{24} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 1425.5088$, found 1425.5066 .

Benzyl 2,3,5-tri-O-benzoyl- α-L-arabinofuranosyl-(1 \rightarrow 3)-2,4-di-O-acetyl- β-D-fuco pyranosyl-($1 \rightarrow 2$)-3,4,6-tri-O-acetyl- β-D-galactopyranosyl-($1 \rightarrow 4$)-[2,3,4-tri-O-ben zoyl-6-deoxy- β-D-glucopyranosyl-($1 \rightarrow 2$)]-3-O-benzyl- β-D-xylopyranosyl-($1 \rightarrow 3$)-2 ,4-di-O-benzyl-6-deoxy- β-D-glucopyranoside (22)

A mixture of tetrasaccharide acceptor $21(0.17 \mathrm{~g}, 0.122 \mathrm{mmol})$, disaccharide donor 20 $(0.14 \mathrm{~g}, 0.16 \mathrm{mmol})$ and molecular sieves $(5 \AA ; 0.6 \mathrm{~g})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$ was stirred for 30 min under an argon atmosphere. The mixture was cooled to $-30^{\circ} \mathrm{C}$, and TMSOTf ($6 \mu \mathrm{~L}, 0.02 \mathrm{mmol}$) was slowly added. After being stirred for another 3 h at room temperature, the reaction mixture was quenched with triethylamine (0.5 mL) and filtered through a pad of Celite. The solvents were evaporated in vacuo. The residue was purified by flash chromatography (petroleum ether/EtOAc, 2:1) to give hexasaccharide $22(0.23 \mathrm{~g}, 91 \%)$ as a white foam: $[\alpha]_{\mathrm{D}}{ }^{25}=-21.9\left(c 0.4, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.12-8.07(\mathrm{~m}, 2 \mathrm{H}), 7.98-7.87(\mathrm{~m}, 6 \mathrm{H}), 7.81-7.74(\mathrm{~m}, 2 \mathrm{H})$, $7.70-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.59-7.49(\mathrm{~m}, 5 \mathrm{H}), 7.46-7.17(\mathrm{~m}, 36 \mathrm{H}), 7.13(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $5.76(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.63(\mathrm{dd}, J=9.8,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.58(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.38$ (dd, $J=11.8,5.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.31-5.24$ (m, 2H), $5.23-5.12$ (m, 3H), 5.07 (dd, $J=8.9$, $7.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.04-4.98(\mathrm{~m}, 2 \mathrm{H}), 4.98-4.77(\mathrm{~m}, 5 \mathrm{H}), 4.76-4.71(\mathrm{~m}, 2 \mathrm{H}), 4.67$ (dd, $J=$ $11.0,7.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.52$ (dd, $J=13.1,9.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.43(\mathrm{t}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.28$ (dd, J $=12.0,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.98-3.86(\mathrm{~m}, 3 \mathrm{H}), 3.85-3.80(\mathrm{~m}, 1 \mathrm{H}), 3.80-3.73(\mathrm{~m}, 2 \mathrm{H}), 3.70$ (dd, $J=14.3,6.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.57-3.51(\mathrm{~m}, 1 \mathrm{H}), 3.48(\mathrm{dd}, J=10.4,5.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.45-3.36(\mathrm{~m}, 2 \mathrm{H}), 3.30(\mathrm{dd}, J=9.4,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.18(\mathrm{t}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.06-2.95$ $(\mathrm{m}, 1 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}), 1.90(\mathrm{~s}, 3 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{t}, J=$ $6.1 \mathrm{~Hz}, 6 \mathrm{H}), 0.90(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.72,170.08$, 169.96, 169.81, 169.48, 166.20 (s), 165.91, 165.83, 165.48, 165.40, 164.84, 138.65, $138.47,137.58,133.49,133.32,133.24,133.04,133.00,132.93,129.87,129.81$, 129.76, 129.73, 129.66, 129.28, 128.93, 128.80, 128.49, 128.43, 128.39, 128.38, 128.36, 128.34, 128.21, 12817, 127.90, 127.74, 127.72, 127.61, 127.39, 126.80, $107.56,102.78,102.26,100.69,100.46,100.39,84.27,82.69,81.43,79.52,79.38$, $78.32,77.56,76.32,75.34,75.01,74.66,74.42,74.07,73.32,72.74,72.61,71.82$, $71.26,71.11,71.02, \quad 70.73,70.45,69.28,66.97,63.27,60.51,20.77,20.61,20.52$, 18.01, 17.72, 15.98; HRMS (MALDI) calcd for $\mathrm{C}_{114} \mathrm{H}_{116} \mathrm{O}_{37} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$2099.7087, found 2099.7071.

2,3,5-Tri-O-benzoyl- α-L-arabinofuranosyl-($1 \rightarrow \mathbf{3}$)-2,4-di-O-acetyl- β-D-fucopyrano syl-($1 \rightarrow 2$)-3,4,6-tri-O-acetyl- β-D-galactopyranosyl-($1 \rightarrow 4$)-[2,3,4-tri-O-benzoyl-6-deoxy- β-D-glucopyranosyl- $(1 \rightarrow 2)$ |-3-O-benzoyl- β-D-xylopyranosyl-($1 \rightarrow 3$)-2,4-di-O-benzoyl-6-deoxy- β-D-glucopyranosyl benzoate (23)

To a solution of $22(260 \mathrm{mg}, 0.125 \mathrm{mmol})$ in EtOAc/ethanol (1:1, 14 mL$)$ at room temperature was added $\operatorname{Pd}(\mathrm{OH})_{2}(20 \mathrm{wt} . \% ; 75 \mathrm{mg})$. The suspension was stirred under hydrogen pressure (1 atm) for 24 h , and was then filtered through Celite. The filtrate was concentrated in vacuo to give a residue.

The residue was dissolved in dry pyridine (6 mL). DMAP ($110 \mathrm{mg}, 0.9 \mathrm{mmol}$) was added. The mixture was stirred and cooled to $0{ }^{\circ} \mathrm{C}$, then $\mathrm{BzCl}(0.55 \mathrm{~mL}, 4.5$ $\mathrm{mmol})$ was slowly added. The mixture was allowed to warm to room temperature. After being stirred for 14 h , the mixture was diluted with EtOAc, washed with 1 M HCl , saturated NaHCO_{3} solution, and brine, respectively. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and then concentrated in vacuo. The residue was purified by flash column chromatography (petroleum ether/EtOAc, 2.5:1 to $1.5: 1$) to give compound $\mathbf{2 3}$ as a white solid ($250 \mathrm{mg}, 94 \%$ for two steps; $\alpha / \beta=2.5: 1$). 23 $\boldsymbol{\alpha}$: $[\alpha]_{\mathrm{D}}{ }^{25}=$ $+18.0\left(c\right.$ 1.1, $\left.\mathrm{CHCl}_{3}\right)$) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.21-8.14(\mathrm{~m}, 2 \mathrm{H}), 8.13-8.02(\mathrm{~m}$, 8H), 7.98-7.91 (m, 2H), 7.88-7.80 (m, 2H), 7.72-7.41 (m, 22H), 7.41-7.11 (m, 14H), $6.74(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.59(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.42(\mathrm{dd}, J=9.9,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.38$ $(\mathrm{d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.36-5.33(\mathrm{~m}, 1 \mathrm{H}), 5.31-5.23(\mathrm{~m}, 3 \mathrm{H}), 5.15-5.05(\mathrm{~m}, 3 \mathrm{H}), 4.97$ (d, $J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.90(\mathrm{dd}, J=11.7,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.76$ (ddd, $J=15.8,9.4,4.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.69(\mathrm{dd}, J=10.3,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H})$, 4.57-4.44 (m, 3H), 4.26 (dd, $J=9.9,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.91$ (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.80$ (dd, J $=7.7,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{dt}, J=8.1,4.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.68-3.58(\mathrm{~m}, 2 \mathrm{H}), 3.55-3.45(\mathrm{~m}$, $4 \mathrm{H}), 3.44-3.38(\mathrm{~m}, 1 \mathrm{H}), 3.16(\mathrm{dd}, J=13.0,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{tt}, J=7.3,3.7 \mathrm{~Hz}, 2 \mathrm{H})$, $2.08(\mathrm{~s}, 3 \mathrm{H}), 1.98(\mathrm{~s}, 6 \mathrm{H}), 1.94(\mathrm{~s}, 3 \mathrm{H}), 1.88(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.26(\mathrm{~d}$, $J=3.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.09(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.62$, $170.12,169.85,169.40,166.20,165.89,165.57,165.55,165.46,165.40,165.14$, 164.77, 164.67, 164.53, 133.71, 133.66, 133.56, 133.50, 133.48, 133.12, 132.98, 132.53, 129.97, 129.81, 129.76, 129.73, 129.65, 129.56, 129.51, 129.48, 129.40, $129.23,129.14,129.05,128.99,128.96,128.65,128.48,128.32,128.22,128.08$, $127.99,109.99,107.81,102.56,101.08,100.92,100.58,90.08,82.70,81.26,77.90$, 77.67, 75.33, 74.51, 74.19, 74.14, 73.19, 73.06, 72.65, 72.31, 72.11, 71.55, 70.23,

2,3,5-Tri-O-benzoyl- α-L-arabinofuranosyl-($1 \rightarrow 3$)-2,4-di-O-acetyl- α-D-fucopyrano

 syl- $(\mathbf{1} \rightarrow \mathbf{2})$-3,4,6-tri-O-acetyl- β-D-galactopyranosyl-($1 \rightarrow 4$)-[2,3,4-tri-O-benzoyl-6-deoxy- β-D-glucopyranosyl-($1 \rightarrow 2$)]-3-O-benzoyl- β-D-xylopyranosyl-($1 \rightarrow 3$)-2,4-di-O-benzoyl-6-deoxy- β-D-glucopyranosyl ortho-cyclopropylethynylbenzoate (3)

HOAc ($0.34 \mathrm{~mL}, 5.5 \mathrm{mmol}$) was added dropwise and with stirring to a solution of ethylenediamine ($0.72 \mathrm{~mL}, 11.0 \mathrm{mmol}$) in THF (1.2 mL) under an argon atmosphere. ${ }^{10}$ Then compound $23(102 \mathrm{mg}, 0.0477 \mathrm{mmol})$ in THF (1.5 mL) was added. The mixture was stirred at room temperature for 24 h , and was then quenched with water (2 mL). The resulting mixture was extracted with EtOAc. The organic phase, after being washed sequentially with 1 M HCl , saturated NaHCO_{3} solution, and brine, was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The residue was purified by flash column chromatography (petroleum ether/EtOAc, 1.5:1) to give the corresponding lactol ($69 \mathrm{mg}, 72 \%$) as a white foam and recover $23(17 \mathrm{mg})$.

The above lactol ($69 \mathrm{mg}, 0.034 \mathrm{mmol}$), ortho-cyclopropylethynylbenzoic acid (14 $\mathrm{mg}, 0.07 \mathrm{mmol}), \mathrm{EDC} \cdot \mathrm{HCl}(27 \mathrm{mg}, 0.11 \mathrm{mmol})$, and DMAP ($16 \mathrm{mg}, 0.12 \mathrm{mmol}$) were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$, then DIPEA ($20 \mu \mathrm{~L}, 0.26 \mathrm{mmol}$) was added under an argon atmosphere. ${ }^{11,12}$ The mixture was stirred overnight, then diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with water and brine. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The residue was purified by flash column chromatography (petroleum ether/EtOAc, 2:1) to give 3 ($72 \mathrm{mg}, 96 \% ; \alpha / \beta=4.2: 1$, which are inseparable) as a white foam: 3: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.21-8.14(\mathrm{~m}, 2 \mathrm{H})$, 8.14-8.02 (m, 10H), $7.95(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.85-7.81(\mathrm{~m}, 2 \mathrm{H}), 7.74-7.28(\mathrm{~m}, 47 \mathrm{H})$, $7.25-7.15$ (m, 5H), 6.77 (d, $J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.11$ (d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.59$ (d, $J=4.7$ $\mathrm{Hz}, 2 \mathrm{H}), 5.45-5.32(\mathrm{~m}, 4 \mathrm{H}), 5.27(\mathrm{dt}, J=9.6,3.0 \mathrm{~Hz}, 4 \mathrm{H}), 5.16-5.03(\mathrm{~m}, 4 \mathrm{H})$, $4.95-4.87(\mathrm{~m}, 3 \mathrm{H}), 4.84(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.80-4.66(\mathrm{~m}, 5 \mathrm{H}), 4.63-4.47(\mathrm{~m}, 5 \mathrm{H})$, $4.36(\mathrm{dd}, J=10.0,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{t}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$,
$3.83-3.40(\mathrm{~m}, 15 \mathrm{H}), 3.13(\mathrm{dd}, J=11.9,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.08(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 3 \mathrm{H}), 2.04$ (s, $2 \mathrm{H}), 1.98(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 6 \mathrm{H}), 1.93(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.87(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.60$ (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}$), 1.39 (ddd, $J=15.8,13.0,10.0 \mathrm{~Hz}, 4 \mathrm{H}), 1.32$ (d, $J=6.2 \mathrm{~Hz}, 3 \mathrm{H})$, 1.25 (d, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.06$ (d, $J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.90-0.79$ (m, 5H); HRMS (MALDI) calcd for $\mathrm{C}_{119} \mathrm{H}_{112} \mathrm{O}_{41} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 2219.6571$, found 2219.6566.

2,3,5-Tri-O-benzoyl- α-L-arabinofuranosyl-($1 \rightarrow \mathbf{3}$)-2,4-di-O-acetyl- β-D-fucopyrano

 syl- $(1 \rightarrow 2)$-3,4,6-tri-O-acetyl- β-D-galactopyranosyl-($1 \rightarrow 4$)-[2,3,4-tri-O-benzoyl-6-deoxy- β-D-glucopyranosyl-($1 \rightarrow 2$)]-3-O-benzoyl- β-D-xylopyranosyl-($1 \rightarrow 3$)-2,4-di-O-benzoyl-6-deoxy-D-glucopyranosyl N-phenyl trifluoroacetimidate (24)

HOAc ($0.34 \mathrm{~mL}, 5.5 \mathrm{mmol}$) was added dropwise and with stirring to a solution of ethylenediamine ($0.72 \mathrm{~mL}, 11.0 \mathrm{mmol}$) in THF (2 mL) under an argon atmosphere. Then compound 23 ($102 \mathrm{mg}, 0.0477 \mathrm{~mol}$) in THF (1.5 mL) was added. The mixture was stirred at room temperature for 24 h , then quenched with water (2 mL). The resulting mixture was extracted with EtOAc. The organic phase, after being washed sequentially with 1 M HCl , saturated NaHCO_{3} solution, and brine, was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The residue was purified by flash column chromatography (petroleum ether-EtOAc, 1.5:1) to give the corresponding lactol as a white foam ($69 \mathrm{mg}, 72 \%$) and recover $23(17 \mathrm{mg})$.

The above lactol ($69 \mathrm{mg}, 0.034 \mathrm{mmol}$) was dissolved in acetone (3 mL), then $\mathrm{K}_{2} \mathrm{CO}_{3}(200 \mathrm{mg}, 1.45 \mathrm{mmol})$ and 2,2,2-trifluoro- N-phenylacetimidoyl chloride (0.1 $\mathrm{mL}, 0.25 \mathrm{mmol}$) were added under an argon atmosphere. ${ }^{7,8}$ After being stirred for 4 h , the mixture was diluted with EtOAc, filtered, and concentrated in vacuo. The residue was purified by flash column chromatography (petroleum ether/EtOAc, 4:1, with 1% $\mathrm{Et}_{3} \mathrm{~N}$) to give $24(74 \mathrm{mg}, 98 \% ; \alpha / \beta=1.5: 1)$ as a white foam, which was used without further detailed characterization.

3 β-tert-Butyldimethylsilyloxy-5 α-cholest-9(11),20(22)-ene-23-on-6 $\alpha-0 x y l$
2,3,5-tri-O-benzoyl- α-L-arabinofuranosyl-($1 \rightarrow 3$)-2,4-di- O-acetyl- β-D-fucopyrano syl-($1 \rightarrow 2$)-3,4,6-tri-O-acetyl- β-D-galactopyranosyl-($1 \rightarrow 4$)-[2,3,4-tri-O-benzoyl-6-

deoxy- β-D-glucopyranosyl-($1 \rightarrow 2$)]-3-O-benzoyl- β-D-xylopyranosyl-($1 \rightarrow 3$)-2,4-di-O-benzoyl-6-deoxy- β-D-glucopyranoside (25)

Procedure 1:

$\mathrm{PPh}_{3} \mathrm{AuNTf}_{2}(2 \mathrm{mg}, 0.003 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.2 \mathrm{~mL})$ was added to a mixture of donor $3(21 \mathrm{mg}, 0.0092 \mathrm{mmol})$, acceptor $2(15 \mathrm{mg}, 0.028 \mathrm{mmol})$, and $5 \AA$ molecular sieves (100 mg) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ under an argon atmosphere. ${ }^{11,13,14}$ After stirring at room temperature for another 5 h , the mixture was filtered through a pad of celite. The filtrate was concentrated in vacuo. The residue was purified by flash column chromatography (petroleum ether/EtOAc, 6:1 to 2:1) to recover acceptor $2(10 \mathrm{mg}$, $0.189 \mathrm{mmol})$ and afford compound $\mathbf{2 5}(19 \mathrm{mg}, 83 \%)$ as a white solid: $[\alpha]_{\mathrm{D}}{ }^{25}=+6.0(c$ $0.3, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.13-8.03(\mathrm{~m}, 9 \mathrm{H}), 7.93(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $2 \mathrm{H}), 7.88(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.79(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.72(\mathrm{t}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H})$, $7.66-7.36(\mathrm{~m}, 21 \mathrm{H}), 7.33-7.20(\mathrm{~m}, 10 \mathrm{H}), 6.07(\mathrm{~s}, 1 \mathrm{H}), 5.59(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.40$ (t, $J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.35(\mathrm{~s}, 1 \mathrm{H}), 5.29(\mathrm{~s}, 1 \mathrm{H}), 5.25(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.17$ (ddd, $J=$ 27.3, 19.3, $8.7 \mathrm{~Hz}, 5 \mathrm{H}$), $5.08-5.03(\mathrm{~m}, 1 \mathrm{H}), 5.00(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.88-4.73(\mathrm{~m}$, $7 \mathrm{H}), 4.69(\mathrm{dd}, J=11.9,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H})$, $4.13(\mathrm{t}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.89-3.60(\mathrm{~m}, 9 \mathrm{H}), 3.60-3.49(\mathrm{~m}$, $4 \mathrm{H}), 3.32$ ($\mathrm{s}, 1 \mathrm{H}$), 3.16 (dd, $J=9.6,6.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.10 (dd, $J=11.6,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.30$ (d, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.29-2.21$ (m, 2H), 2.14 (s, 6H), 2.11 (d, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.06$ (s, $4 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H}), 1.98(\mathrm{~s}, 3 \mathrm{H}), 1.93(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 6 \mathrm{H}), 1.86(\mathrm{dd}, J=14.5,5.3 \mathrm{~Hz}$, $2 \mathrm{H}), 1.79-1.63(\mathrm{~m}, 6 \mathrm{H}), 1.62-1.53(\mathrm{~m}, 2 \mathrm{H}), 1.47-1.33(\mathrm{~m}, 4 \mathrm{H}), 1.31(\mathrm{~d}, J=6.0 \mathrm{~Hz}$, $3 \mathrm{H}), 1.30-1.20(\mathrm{~m}, 8 \mathrm{H}), 1.15(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.09(\mathrm{dd}, J=24.1,11.4 \mathrm{~Hz}, 2 \mathrm{H})$, 0.98 (d, $J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.92$ (d, $J=6.6 \mathrm{~Hz}, 6 \mathrm{H}$), $0.91-0.87$ (m, 2H), 0.84 (s, 3H), $0.80(\mathrm{~s}, 11 \mathrm{H}), 0.49(\mathrm{~s}, 3 \mathrm{H}),-0.08(\mathrm{~s}, 3 \mathrm{H}),-0.12(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 201.31,170.73,170.20,170.15,169.99,169.47,166.14,165.87,165.57,165.55$, $165.45,164.95,164.91,164.78,164.51,157.82,145.52,133.51,133.40$, 133.24, 133.03, 132.92, 132.74, 129.95, 129.91, 129.87, 129.74, 129.64, 129.57, 129.54, 129.19, 129.16, 129.08, 128.88, 128.45, 128.37, 128.24, 128.08, 126.88, 123.86, $116.26,107.70,101.38,101.36,101.28,100.57,100.32,82.75,80.88,79.37,77.69$,
$75.16,74.57,73.14,72.86,72.38,72.05,71.77,71.61,71.45,70.35,70.12,70.06$, 69.36, 66.92, 63.41, 60.59, 59.91, 53.79, 53.22, 47.69, 43.27, 40.41, 39.89, 38.13, 35.69, 32.25, 31.51, 29.65, 25.94, 25.22, 22.64, 22.57, 20.77, 20.75, 20.61, 20.54, 20.46, 20.40, 19.20, 18.06, 17.34, 16.10, 12.58, -4.49, -5.09; HRMS (MALDI) calcd for $\mathrm{C}_{140} \mathrm{H}_{158} \mathrm{O}_{42} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+} 2563.0031$, found 2563.0068 .

Procedure 2:

2 $24 \xrightarrow{\text { 4A MS,DCM },-30^{\circ} \mathrm{C}} \underset{52 \%}{\text { TBSOTf }(0.3 \text { equiv. })}$

A mixture of donor $24(12 \mathrm{mg}, 0.0077 \mathrm{mmol})$, acceptor $2(8 \mathrm{mg}, 0.015 \mathrm{mmol})$ and $4 \AA$ molecular sieves (50 mg) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was stirred for 30 min under an argon atmosphere. The mixture was cooled to $-30^{\circ} \mathrm{C}$, and $\operatorname{TBSOTf}\left(2 \mu \mathrm{~L}\right.$, in $\left.0.2 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ was slowly added. After being stirred for another 3 h , the reaction was quenched with triethylamine (0.1 mL) and filtered through a pad of Celite. The solvents were evaporated in vacuo. The residue was purified by flash chromatography (petroleum ether/EtOAc, 6:1 to 2:1) to give compound $\mathbf{2 5}(7 \mathrm{mg}, 52 \%)$ as a white solid. Meanwhile, the $6 \alpha-O-$ TBS derivative $\mathbf{1 6}(1.8 \mathrm{mg}, 19 \%)$ was isolated as a byproduct.

3β-Hydroxy- 5α-cholest-9(11),20(22)-en-23-on-6 α-oxyl

2,3,5-tri- O-benzoyl- α-L-arabinofuranosyl-($1 \rightarrow 3$)-2,4-di- O-acetyl- α-D-fucopyrano syl-($1 \rightarrow 2$)-3,4,6-tri-O-acetyl- β-D-galactopyranosyl-($1 \rightarrow 4$)-[2,3,4-tri-O-benzoyl-6-deoxy- β-D-glucopyranosyl-($1 \rightarrow 2$)]-3-O-benzoyl- β-D-xylopyranosyl-($1 \rightarrow 3$)-2,4-di-O-benzoyl-6-deoxy- β-D-glucopyranoside (26)

Compound 25 ($37 \mathrm{mg}, 0.0146 \mathrm{mmol}$) was dissolved in $\mathrm{HOAc} / \mathrm{THF} / \mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL}$, 3:1:1). ${ }^{15}$ The solution was stirred at room temperature for 20 h , then concentrated in vacuo. The residue was purified by flash column chromatography (petroleum ether/EtOAc, 1.5:1) to afford $26(33 \mathrm{mg}, 91 \%)$ as a white solid: $[\alpha]_{\mathrm{D}}{ }^{25}=+6.7(c 0.5$, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.26(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 8.07(\mathrm{t}, J=6.8 \mathrm{~Hz}$, $6 \mathrm{H}), 7.93(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.78(\mathrm{t}, J=7.3 \mathrm{~Hz}, 4 \mathrm{H}), 7.68(\mathrm{t}, J=7.5 \mathrm{~Hz}, 5 \mathrm{H}), 7.61$ (dd, $J=13.5,6.9 \mathrm{~Hz}, 4 \mathrm{H}), 7.56-7.36(\mathrm{~m}, 13 \mathrm{H}), 7.31$ (dd, $J=13.7,7.8 \mathrm{~Hz}, 6 \mathrm{H})$, $7.25-7.20(\mathrm{~m}, 3 \mathrm{H}), 6.06(\mathrm{~s}, 1 \mathrm{H}), 5.59(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.37(\mathrm{dd}, J=15.7,6.1 \mathrm{~Hz}$, $1 \mathrm{H}), 5.33$ (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}$), 5.27 (dd, $J=16.5,5.0 \mathrm{~Hz}, 3 \mathrm{H}$), 5.14 (dt, $J=17.7,9.4$ $\mathrm{Hz}, 3 \mathrm{H}), 5.01(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.93(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.86(\mathrm{t}, J=11.6 \mathrm{~Hz}, 2 \mathrm{H})$, $4.77(\mathrm{dd}, J=10.1,4.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.74-4.65(\mathrm{~m}, 3 \mathrm{H}), 4.57(\mathrm{dd}, J=17.1,7.9 \mathrm{~Hz}, 2 \mathrm{H})$, $4.19(\mathrm{t}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{dd}, J=13.0,8.7 \mathrm{~Hz}, 5 \mathrm{H})$, $3.60-3.50(\mathrm{~m}, 4 \mathrm{H}), 3.49-3.40(\mathrm{~m}, 2 \mathrm{H}), 3.32(\mathrm{dd}, J=9.5,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.13-3.00(\mathrm{~m}$, $2 \mathrm{H}), 2.34(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.27-2.21(\mathrm{~m}, 1 \mathrm{H}), 2.13(\mathrm{~s}$, $3 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}), 2.07-2.04(\mathrm{~m}, 2 \mathrm{H}), 2.01(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.99(\mathrm{~s}, 3 \mathrm{H}), 1.97(\mathrm{~s}$, $3 \mathrm{H}), 1.94(\mathrm{~s}, 3 \mathrm{H}), 1.90(\mathrm{~s}, 3 \mathrm{H}), 1.90-1.67(\mathrm{~m}, 7 \mathrm{H}), 1.60(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.40(\mathrm{dd}$, $J=18.4,5.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.29(\mathrm{dt}, J=25.1,6.9 \mathrm{~Hz}, 13 \mathrm{H}), 1.22(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.13$ (dd, $J=22.1,11.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.02(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{t}, J=6.8 \mathrm{~Hz}, 8 \mathrm{H}), 0.88(\mathrm{~s}$, $3 \mathrm{H}), 0.49(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 201.35,170.69,170.14,170.12$, $169.92,169.45,166.17,165.88,165.58$, $165.53,165.45,165.09,164.77,164.65$, $164.42,157.92,145.25,133.59,133.35,133.08,133.03,132.96,132.64,130.13$, $130.02,129.96,129.85,129.82,129.77,129.75,129.71,129.64,129.61,129.52$, $129.20,129.13,129.06,128.65,128.47,128.43,128.29,128.08,128.02,123.86$, $116.40,107.73,102.49,101.94,101.08,100.94,100.43,82.73,81.14,80.44,75.26$, 74.66, 74.31, 73.75, 73.37, 73.19, 72.31, 72.15, 71.60, 70.32, 70.28, 70.17, 70.06, $69.36,66.81,63.39,61.05,60.47,59.90,53.80,53.27,47.63,43.29,40.40,38.11$, $35.83,35.24,32.63,31.60,29.67,29.64,25.31,25.19,25.14,22.65,20.82,20.76$, 20.66, 20.62, 20.48, 20.39, 19.06, 17.86, 17.16, 16.19, 12.62; HRMS (MALDI) calcd for $\mathrm{C}_{134} \mathrm{H}_{144} \mathrm{O}_{42} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 2447.9030$, found 2448.9067 .

Astrosterioside A (1)

Compound 26 ($30 \mathrm{mg}, 0.0124 \mathrm{mmol}$) was dissolved in dry DMF (2 mL). Sulfur trioxide-pyridine complex ($15 \mathrm{mg}, 0.124 \mathrm{mmol}$) was added. The mixture was stirred at room temperature for 5 h , then quenched with methanol $(0.5 \mathrm{~mL})$. The mixture was stirred for 15 min and concentrated in vacuo. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The solution was washed with ice-water, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and then concentrated in vacuo. The residue was purified by flash column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 10: 1\right)$ to give a white solid ($29 \mathrm{mg}, 95 \%$).

The above white solid ($29 \mathrm{mg}, 0.0115 \mathrm{mmol}$) was dissolved in $\mathrm{MeOH} / \mathrm{THF} / \mathrm{H}_{2} \mathrm{O}$ (1:1:1, 3 mL) and treated with potassium hydroxide $(50 \mathrm{mg}, 0.89 \mathrm{mmol})$ at room temperature for 24 h . The mixture was neutralized with the weakly acidic ion-exchange resin (amberlite IRC 76, H^{+}form). The resin was filtered and the filtrate was concentrated in vacuo. The residue was dissolved in methanol (5 mL). The solution was passed through an ion-exchange resin (amberlite IR $120, \mathrm{Na}^{+}$form) to give a solid. The solid was purified by RP-18 column chromatography (methanol/water, $1.5: 1$) to afford astrosterioside A (1) $(12.6 \mathrm{mg}, 80 \%)$ as a white solid: $[\alpha]_{\mathrm{D}}{ }^{25}=-3.7(c 0.5, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR (500 MHz , pyridine-d5) $\delta 6.30(\mathrm{~s}, 1 \mathrm{H}), 6.08(\mathrm{~s}$, $1 \mathrm{H}), 5.23(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.96$ (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.93(\mathrm{~s}, 1 \mathrm{H}), 4.92-4.82(\mathrm{~m}, 3 \mathrm{H}), 4.79(\mathrm{dd}, J=4.9,2.9 \mathrm{~Hz}, 1 \mathrm{H})$, 4.46 (ddd, $J=29.5,15.0,8.8 \mathrm{~Hz}, 4 \mathrm{H}$), 4.36-4.16 (m, 6H), 4.07 (tdd, $J=24.9,16.3$, $8.4 \mathrm{~Hz}, 5 \mathrm{H}), 3.95(\mathrm{dd}, J=15.5,8.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.88-3.80(\mathrm{~m}, 2 \mathrm{H}), 3.79-3.68(\mathrm{~m}, 2 \mathrm{H})$, $3.64-3.53(\mathrm{~m}, 2 \mathrm{H}), 3.40(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.85-2.61(\mathrm{~m}, 3 \mathrm{H}), 2.40(\mathrm{dd}, J=12.7$, $6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.39-2.29(\mathrm{~m}, 3 \mathrm{H}), 2.28-2.19(\mathrm{~m}, 2 \mathrm{H}), 2.16-1.88(\mathrm{~m}, 5 \mathrm{H}), 1.85(\mathrm{t}, J=$ $9.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.73(\mathrm{dd}, J=25.8,13.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.62(\mathrm{dd}, J=13.1,8.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.45(\mathrm{t}$, $J=10.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.41-1.10(\mathrm{~m}, 10 \mathrm{H}), 1.06-0.73(\mathrm{~m}, 10 \mathrm{H}), 0.57(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (151 MHz, pyridine-d5) $\delta 200.95,157.64,146.02,124.26,116.19,110.84,106.73$, $105.41,104.64,104.03,102.05,89.34,87.10,82.92,82.70,82.58,80.88,79.84,78.72$, $78.51,77.52,76.81,76.14,75.53,74.64,74.07,73.77,72.42,71.97,71.80,71.54$, 69.26, 64.25, 62.85, 61.86, 59.89, 53.67, 53.46, 49.10, 43.37, 41.35, 40.48, 38.28,
$35.93,35.86,32.00,30.64,29.85,29.79,29.48,29.29,25.33,25.21,22.82,22.62$, 22.53, 20.89, 19.15, 18.50, 18.07, 16.98, 12.80; HRMS (ESI, negative) calcd for $\mathrm{C}_{61} \mathrm{H}_{97} \mathrm{O}_{31} \mathrm{~S}[\mathrm{M}-\mathrm{Na}]^{+}$1357.5740, found 1357.5730.

Table 1. Comparison of the NMR data of the synthetic 1 with those reported for natural astrosterioside A. ${ }^{16, a}$

position	$\delta^{1} \mathrm{H}$ natural	$\delta{ }^{1} \mathrm{H}$ synthetic	Δ	$\begin{gathered} \delta^{13} \mathrm{C} \\ \text { natural } \end{gathered}$	$\delta{ }^{13} \mathrm{C}$ synthetic	Δ
1	$\begin{aligned} & 1.35, \mathrm{~m} \\ & 1.68, \mathrm{~m} \end{aligned}$	$\begin{aligned} & 1.33, \mathrm{~m} \\ & 1.67, \mathrm{~m} \end{aligned}$	$\begin{aligned} & -0.02 \\ & -0.01 \end{aligned}$	35.9	35.9	0.0
2	$\begin{aligned} & 1.83, \mathrm{~m} \\ & 2.75, \mathrm{~m} \end{aligned}$	$\begin{aligned} & 1.83, \mathrm{~m} \\ & 2.75, \mathrm{~m} \end{aligned}$	0.00	29.4	29.5	+0.1
3	4.85, m	4.86, m	+0.01	77.7	77.6	-0.1
4	$\begin{aligned} & 1.68, \mathrm{~m} \\ & 3.42, \mathrm{~m} \end{aligned}$	$\begin{aligned} & 1.67, \mathrm{~m} \\ & 3.42, \mathrm{~m} \end{aligned}$	-0.01	30.7	30.7	0.0
5	1.45, m	1.44, m	-0.01	49.3	49.2	-0.1
6	3.79, m	3.78, m	-0.01	80.1	79.9	-0.2
7	$\begin{aligned} & 1.27, \mathrm{~m} \\ & 2.68, \mathrm{~m} \end{aligned}$	$\begin{aligned} & 1.27, \mathrm{~m} \\ & 2.68, \mathrm{~m} \end{aligned}$	0.00	41.6	41.4	-0.2
8	2.10, m	2.08, m	-0.02	36.1	36.0	-0.1
9	-	-	-	146.2	146.1	-0.1
10	-	-	-	38.4	38.3	-0.1
11	5.22, d (4.5)	5.24, d (4.5)	+0.02	116.3	116.2	-0.1
12	1.98, m	1.98, m	0.00	40.6	40.5	-0.1
13	-	-	-	43.4	43.4	0.0
14	1.33, m	1.33, m	0.00	53.6	53.5	-0.1
15	1.30, m	1.31, m	+0.01	25.4	25.4	0.0

	1.80, m	1.80, m				
16	$\begin{aligned} & 1.65, \mathrm{~m} \\ & 1.93, \mathrm{~m} \end{aligned}$	$\begin{aligned} & 1.65, \mathrm{~m} \\ & 1.92, \mathrm{~m} \end{aligned}$	-0.01	25.4	25.4	0.0
17	2.19, m	2.18, m	-0.01	59.9	59.9	0.0
18	0.57, s	0.54, s	-0.03	13.1	12.8	-0.3
19	0.91, s	0.92, s	+0.01	19.3	19.2	-0.1
20	-	-	-	157.4	157.7	+0.3
21	2.28, s	2.26, s	-0.02	20.9	20.9	0.0
22	6.23 , s	6.24 , s	+0.01	124.4	124.3	-0.1
23	-	-	-	200.6	201.0	+0.3
24	2.37, m	2.37, m	0.00	53.8	53.7	-0.1
25	2.25, m	2.26, m	+0.01	25.4	25.3	-0.1
26	0.92, d (6.0)	0.92, d (6.0)	0.00	22.7	22.7	0.0
27	0.92, d (6.0)	0.92, d (6.0)	0.00	22.7	22.7	0.0
Qui I						
1	4.80, d (7.0)	4.81, d (7.0)	+0.01	105.0	104.7	-0.3
2	$4.00{ }^{\text {b }}$	$4.00{ }^{\text {b }}$	0.00	74.5	74.3	-0.2
3	$3.85{ }^{\text {b }}$	$3.85{ }^{\text {b }}$	0.00	89.8	89.4	-0.4
4	$3.57{ }^{\text {b }}$	$3.57{ }^{\text {b }}$	0.00	74.2	74.1	-0.1
5	$3.70{ }^{\text {b }}$	$3.69{ }^{\text {b }}$	-0.01	72.0	72.0	0.0
6	1.59, d (6.0)	1.59, d (6.0)	0.00	18.6	18.5	-0.1
Xyl						
1	5.07, d (7.5)	5.05, d (7.5)	-0.02	104.2	104.1	-0.1
2	$4.05{ }^{\text {b }}$	$4.05{ }^{\text {b }}$	0.00	82.5	82.6	+0.1
3	$4.21{ }^{\text {b }}$	$4.21{ }^{\text {b }}$	0.00	75.7	75.7	0.0
4	$4.21{ }^{\text {b }}$	$4.22{ }^{\text {b }}$	+0.01	79.1	78.9	-0.2
5	$3.78 / 4.45{ }^{\text {b }}$	$3.78 / 4.44{ }^{\text {b }}$		64.5	64.3	-0.2
Qui II						
1	5.22, d (7.0)	5.24, d (7.0)	+0.02	105.3	105.4	+0.1
2	$4.05{ }^{\text {b }}$	$4.05{ }^{\text {b }}$	0.00	76.3	76.2	-0.1
3	$4.10^{\text {b }}$	$4.08{ }^{\text {b }}$	-0.02	76.9	76.9	0.0
4	$3.97{ }^{\text {b }}$	$3.98{ }^{\text {b }}$	+0.01	75.6	75.6	0.0
5	$3.70{ }^{\text {b }}$	$3.69{ }^{\text {b }}$	-0.01	73.7	73.6	-0.1
6	1.77 d (6.0)	1.76 d (6.0)	-0.01	18.0	18.1	+0.1
Gal						
1	4.97, d (7.5)	4.95, d (7.5)	-0.02	102.3	102.1	-0.2
2	$4.43{ }^{\text {b }}$	$4.42{ }^{\text {b }}$	-0.01	83.3	83.0	-0.3

3	4.15^{b}	4.14^{b}	-0.01	74.9	74.7	-0.2
4	4.47^{b}	4.47^{b}	0.00	69.4	69.3	-0.1
5	4.07^{b}	4.07^{b}	0.00	76.8	76.9	+0.1
6	$4.32 / 4.40^{\mathrm{b}}$	$4.31 / 4.40^{\mathrm{b}}$	-0.01	62.0	61.9	-0.1
Fuc						
1	$4.85, \mathrm{~d}(7.0)$	$4.86, \mathrm{~d}(7.0)$	+0.01	107.0	106.8	-0.2
2	4.47^{b}	4.47^{b}	0.00	72.5	72.4	-0.1
3	4.08^{b}	4.07^{b}	-0.01	80.9	80.9	0.0
4	4.20^{b}	4.19^{b}	-0.01	72.0	72.0	0.0
5	3.53^{b}	3.53^{b}	0.00	71.6	71.6	0.0
6	$1.38 \mathrm{~d}(6.0)$	$1.39 \mathrm{~d}(6.0)$	+0.01	17.1	17.0	-0.1
Ara(f)						
1	$6.07, \mathrm{br} \mathrm{s}^{\mathrm{b}}$	$6.07, \mathrm{~s}$	0.00	110.9	110.9	0
2	4.87^{b}	4.86^{b}	-0.01	82.4	82.6	+0.2
3	4.79^{b}	4.79^{b}	0.00	78.8	78.8	0.0
4	4.85^{b}	4.85^{b}	0.00	87.5	87.1	-0.4
5	$4.21 / 4.28^{\mathrm{b}}$	$4.22 / 4.28^{\mathrm{b}}$	+0.01	63.0	62.9	-0.1

${ }^{a}$ All the spectra were measured in pyridine- d_{5}, with 500 MHz for ${ }^{1} \mathrm{H}$ NMR and 151 MHz for ${ }^{13} \mathrm{C}$ NMR; listed in parentheses are coupling constants in Hz. ${ }^{b}$ Overlapped signals.

References:

1. D. Comins, A. Jacobine, J. Marshall and M. Turnbull, Synthesis, 1978, 4, 309-311.
2. G. Xiao and B. Yu, Chem. Eur. J., 2013, 19, 7708-7712.
3. P. Canonne, S. Foscolos and F. Lemay, Tetrahedron Lett., 1980, 155-160.
4. P. I. Abronina, K. G. Fedina, N. M. Podvalnyy, A. I. Zinin, A. O. Chizhov, N. N. Kondakov, V. I. Torgov and L. O. Kononov, Carbohydr. Res., 2014, 396, 25-36.
5. D. B. Werz and P. H. Seeberger, Angew. Chem. Int. Ed., 2005, 44, 6315-6318.
6. J. Xiong, Z. Lu, N. Ding, S. Ren and Y. Li, Eur. J. Org. Chem., 2013, 2013, 6158-6166.
7. B. Yu and H. Tao, Tetrahedron Lett., 2001, 42, 2405-2407.
8. B. Yu and H. Tao, J. Org. Chem., 2002, 67, 9099-9102.
9. D. Crich and M. Smith, J. Am. Chem. Soc., 2001, 123, 9015-9020.
10. J. Zhang and P. Kováč, J. Carbohydr. Chem., 1999, 18, 461-469.
11. Y. Li, Y. Yang and B. Yu, Tetrahedron Lett., 2008, 49, 3604-3608.
12. Y. Ma, Z. Li, H. Shi, J. Zhang and B. Yu, J. Org. Chem., 2011, 76, 9748-9756.
13. Y. Yang, Y. Li and B. Yu, J. Am. Chem. Soc., 2009, 131, 12076-12077.
14. Y. Zhu and B. Yu, Angew. Chem. Int. Ed., 2011, 50, 8329-8332.
15. Z. H. Jiang, X. B. Han and R. R. Schmidt, Liebigs Ann. Chem., 1993, 1179-1184.
16. N. P. Thao, N. X. Cuong, B. T. Luyen, N. V. Thanh, N. X. Nhiem, Y. S. Koh, B. M. Ly, N. H. Nam, P. V. Kiem, C. V. Minh and Y. H. Kim, J. Nat. Prod., 2013, 76, 1764-1770.

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{1 6}\left(400 \mathrm{~Hz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of compound $16\left(101 \mathrm{~Hz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of compound $2\left(400 \mathrm{~Hz}, \mathrm{CDCl}_{3}\right)$

COSY of compound 2

HSQC of compound 2

NOESY of compound 2

${ }^{1} \mathrm{H}$ NMR of compound $6\left(500 \mathrm{~Hz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{S 3}\left(500 \mathrm{~Hz}, \mathrm{CDCl}_{3}\right)$

COSY of compound $\mathbf{S 3}$

${ }^{13} \mathrm{C}$ NMR of compound $7\left(126 \mathrm{~Hz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{8}\left(500 \mathrm{~Hz}, \mathrm{CDCl}_{3}\right)$

COSY of compound $\mathbf{8}$

${ }^{1} \mathrm{H}$ NMR of compound $9\left(400 \mathrm{~Hz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of compound $4\left(126 \mathrm{~Hz}, \mathrm{CDCl}_{3}\right)$

HSQC of compound 4

${ }^{1} \mathrm{H}$ NMR of compound $20\left(400 \mathrm{~Hz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{1 8}\left(500 \mathrm{~Hz}, \mathrm{CDCl}_{3}\right)$

COSY of compound $\mathbf{1 8}$

HSQC of compound 18

${ }^{1} \mathrm{H}$ NMR of compound $19\left(500 \mathrm{~Hz}, \mathrm{CDCl}_{3}\right)$

COSY of compound 19

HSQC of compound 19

${ }^{1} \mathrm{H}$ NMR of compound $5\left(500 \mathrm{~Hz}, \mathrm{CDCl}_{3}\right)$

COSY of compound 5

HSQC of compound 5

HMBC of compound 5

${ }^{13} \mathrm{C}$ NMR of compound $21\left(101 \mathrm{~Hz}, \mathrm{CDCl}_{3}\right)$

COSY of compound $\mathbf{2 2}$

HSQC of compound 22

HSQC of compound $\mathbf{2 3 \boldsymbol { \alpha }}$

${ }^{1} \mathrm{H}$ NMR of compound $3\left(400 \mathrm{~Hz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of compound $25\left(500 \mathrm{~Hz}, \mathrm{CDCl}_{3}\right)$

COSY of compound $\mathbf{2 5}$

HSQC of compound 25

${ }^{13} \mathrm{C}$ NMR of compound $26\left(126 \mathrm{~Hz}, \mathrm{CDCl}_{3}\right)$

COSY of compound 26

HSQC of compound 26

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{1}$ (500 MHz , pyridine-d5)

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{1}$ (126 MHz , pyridine-d5)

