Supporting Information for

Neutral branched platinum-acetylide complex possessing a tetraphenylethylene core: preparation of luminescent organometallic gelator and its unexpected spectroscopic behaviour during sol-to-gel transition

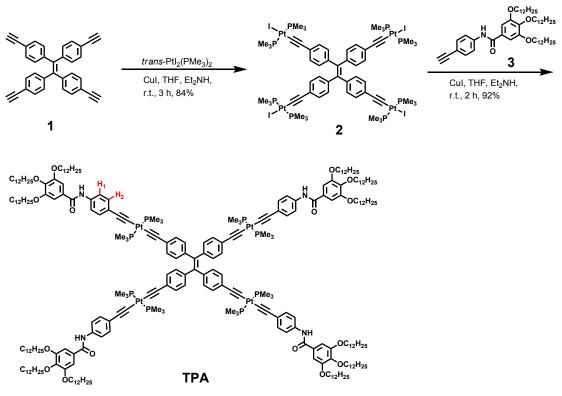
Yuan-Yuan Ren,^{*a*} Nai-Wei Wu,^{*a*} Junhai Huang,^{*b*} Zheng Xu,^{*c*} Dan-Dan Sun,^{*a*} Cui-Hong Wang^{**a*} and Lin Xu^{**a*}

^aShanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, China. E-mail: lxu@chem.ecnu.edu.cn (L. X.)

^bZhangjiang Institute, China State Institute of Pharmaceutical Industry, 1599 Zhangheng Road, Shanghai, China.

^cChongqing Key Laboratory of Environmental Materials and Remediation Technology, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Chongqing, China.

Contents:


- 1. General information
- 2. The synthesis of complex TPA
- 3. The AIEE behavior of complex 2 in CH_2Cl_2/n -hexane
- 4. Fluorescence spectra of complexes 2 and TPA in CH_2Cl_2 and *n*-hexane
- 5. SEM images of xerogel of TPA
- 6. Concentration-dependent ¹H NMR spectra of TPA
- 7. Temperature-depended emission spectra of TPA
- 8. The emission spectra of TPA in different solvents
- 9. The normalized absorption spectra of **TPA** in CH_2Cl_2/n -hexane
- 10. The ¹H, ³¹P, and ¹³C NMR spectra of **TPA**
- 11. The partial ³¹P NMR spectra of **2** and **TPA**
- 12. MALDI-TOF-MS of TPA
- 13. IR spectra of the xerogel TPA
- 14. X-ray diffraction diagrams of the xerogel TPA

1. General information

All reagents were analytical reagents and used without further treatment. THF used were dried according to standard procedures and degassed under N_2 for 30 minutes. Column chromatography was conducted by using silica-gel column .

¹H NMR, ³¹P NMR and ¹³C NMR spectra were recorded on Bruker 400 MHz Spectrometer (¹H: 400 MHz; ³¹P: 161.9 MHz; ¹³C: 100 MHZ) at 298 K. The ¹H and ¹³C NMR chemical shifts were reported relative to residual solvent signals, and ³¹P NMR resonances were referenced to an internal standard sample of 85% H₃PO₄ (δ 0.0). Coupling constants (*J*) were denoted in Hz and chemical shifts (δ) in ppm. Multiplicities were denoted as follows: s = singlet, d = doublet, m = multiplet, br = broad. Fluorescence spectra were recorded on Varian Cary Eclipse.

2. The synthesis of complex TPA

Scheme S1 The synthesis of complex TPA.

Compound **2**: A solution of *trans*-PtI₂(PMe₃)₂ (639 mg, 1.02 mmol) and CuI (4 mg, 10 mol%) in a mixture of THF/Et₂NH (40 mL THF and 45 mL Et₂NH) was stirred at room temperature. Then compound **1** (91 mg, 0.21 mmol) dissolved in THF was added dropwise to the reaction mixture under an atmosphere of nitrogen. The reaction was stirred at room temperature for 3 hours. The solvent was then removed in vacuo, the resulting residue was separated by column chromatography on silica gel and the yellow solid **2** was obtained (417 mg, 84%). ¹H NMR (CDCl₃, 400 MHz,): δ 7.02-7.04 (m, 9H), 6.85-6.83 (m, 9H), 1.80-1.78 ppm (m, 72H). ³¹P NMR (CDCl₃, 161.9 MHz): δ = -22.49 (s, *J*_{Pt-P} = 1128.44 Hz). ¹³C NMR (CDCl₃, 100 MHz): δ 141.31, 139.98, 131.17, 130.10, 125.57, 99.77, 91.14, 90.99, 16.47, 16.26, 16.06, 15.86, 15.67. MALDI-MS: calcd for [M + H]⁺: 2320.96, found: 2320.08. HRMS (ESI): calcd for [M + 2Na]²⁺: 1182.9666, found: 1182.9639.

Compound **TPA**: A solution of compound **2** (150mg, 0.07 mmol) and CuI (2 mg, 10 mol%) in a mixture of THF/Et₂NH (10 mL THF and 10

4

mL Et₂NH) was stirred at room temperature. Then compound **3** (200 mg, 0.07 mmol) dissolved in THF was added dropwise to the reaction mixture under an atmosphere of nitrogen. The reaction was stirred at room temperature for 2 hours. The solvent was then removed in vacuo, the resulting residue was separated by column chromatography on silica gel and the yellow solid **TPA** was obtained (266 mg, 92%). ¹H NMR (CDCl₃, 400 MHz,): δ 7.63 (s, 4H), 7.48 (d, *J* = 8.4 Hz 8H), 7.20 (d, *J* = 7.6 Hz 8H), 7.02 (br, 17H), 6.84-6.82 (m, 8H), 4.03-4.01 (m, 24H), 1.80-1.78 (m, 96H), 1.47 (br, 24H), 1.26 (m, 216H), 0.90-0.86 (m, 36H). ³¹P NMR (CDCl₃, 161.9 MHz): δ = -20.21 (s, *J*_{Pt-P} = 1148 Hz). ¹³C NMR (CDCl₃, 100 MHz): δ 165.38, 153.12, 141.46, 135.50, 131.65, 131.21, 130.48, 129.95, 119.72, 105.80, 73.51, 69.43, 31.88, 30.28, 29.61, 29.34, 26.04, 22.64, 15.60, 15.40, 15.21, 14.00. MALDI-MS: calcd for [M + H]⁺: 4905.84, found: 4905.80.

3. The AIEE behavior of complex 2 in CH₂Cl₂/*n*-hexane

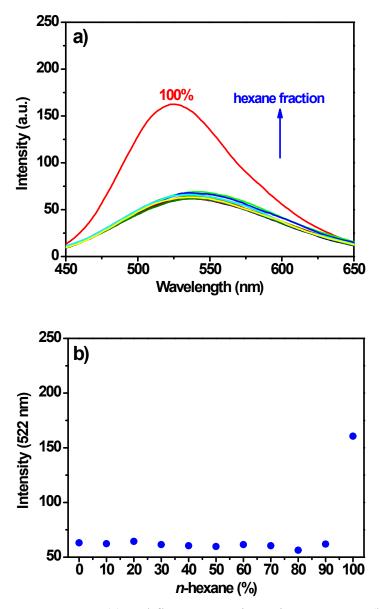


Fig. S1 Fluorescence spectra (a) and fluorescence intensity at 522 nm (b) of complex 2 in the CH_2Cl_2/n -hexane mixtures with different *n*-hexane fractions.

4. Fluorescence spectra of complexes 2 and TPA in CH₂Cl₂ and *n*-

hexane

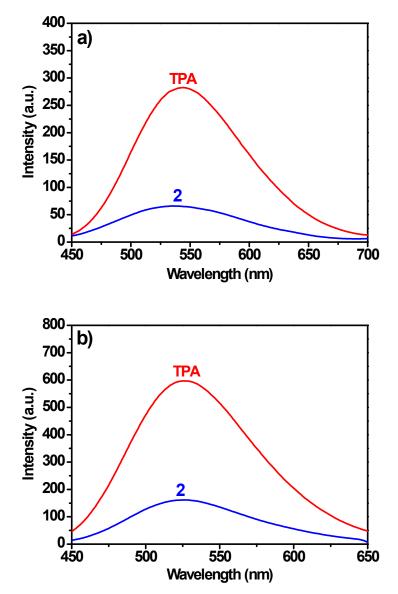


Fig. S2 Fluorescence spectra of complexes 2 and TPA in CH₂Cl₂ (a) and *n*-hexane (b).

5. SEM images of xerogel of TPA

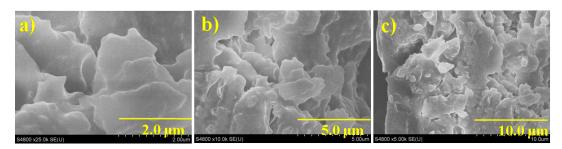


Fig. S3 SEM images of xerogel of TPA in ethyl acetate.

6. Concentration-dependent ¹H NMR spectra of TPA

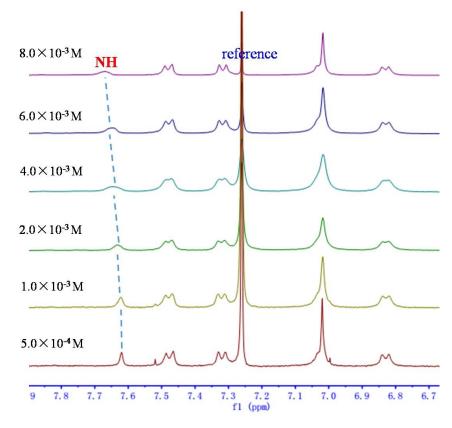


Fig. S4 The ¹H NMR spectra of TPA in CDCl₃ with different concentrations.

7. Temperature-depended emission spectra of TPA

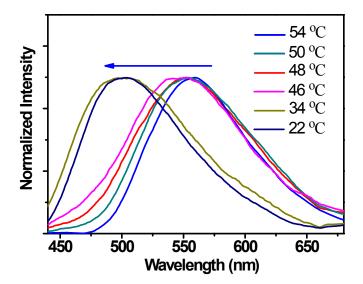
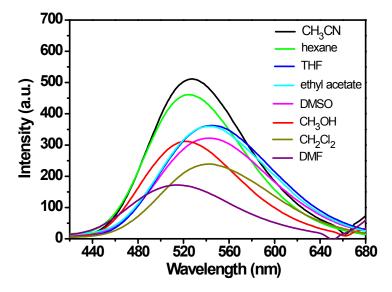



Fig. S5 The emission spectra of TPA in ethyl acetate with different temperatures.

8. The emission spectra of TPA in different solvents

Fig. S6 The emission spectra of **TPA** in different solvents such as hexane, toluene, dichloromethane, tetrahydrofuran, ethyl acetate, acetonitrile, methanol, and dimethyl sulfoxide.

9. The normalized absorption spectra of TPA in CH₂Cl₂/*n*-hexane

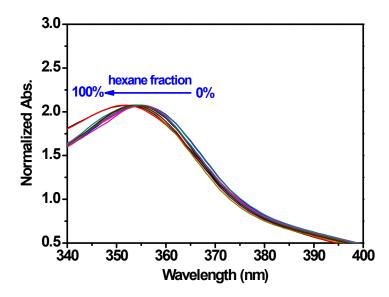
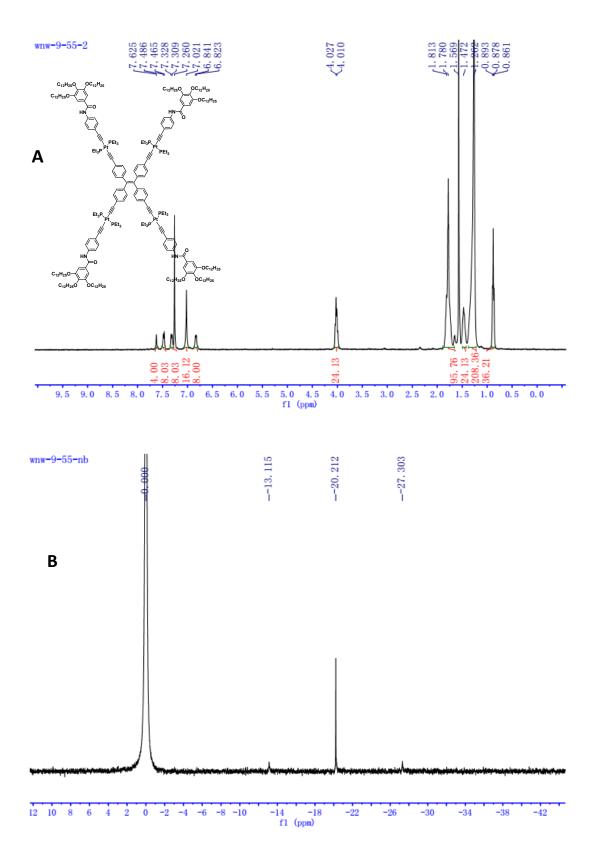



Fig. S7 The normalized absorption spectra of TPA in the CH_2Cl_2/n -hexane mixtures with different *n*-hexane fractions.

10. The ¹H, ³¹P, and ¹³C NMR spectra of TPA

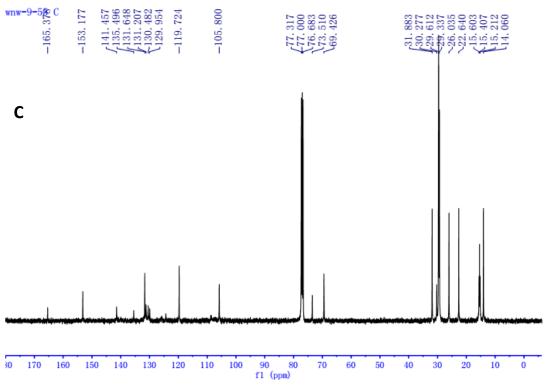


Fig. S8 The ¹H NMR (a), ³¹P NMR (b), and ¹³C NMR (c) spectra of TPA in CDCl₃.

11. The partial ³¹P NMR spectra of 2 and TPA



Fig. S9 The partial ³¹P NMR spectra of 2 and TPA in CDCl₃.

12. MALDI-TOF-MS of TPA

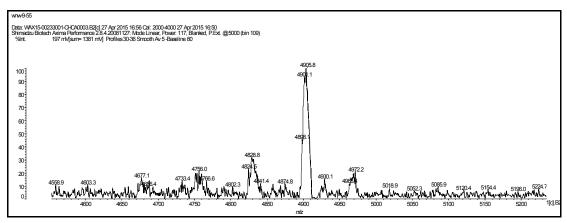


Fig. S10 MALDI-TOF-MS of TPA.

13. IR spectra of the xerogel TPA

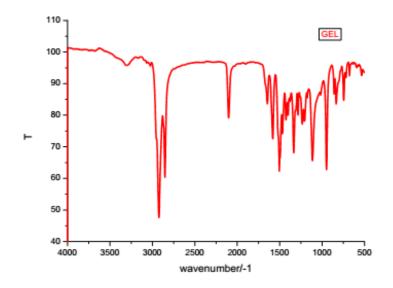


Fig. S11 IR spectra of the xerogel TPA.

14. X-ray diffraction diagrams of the xerogel TPA

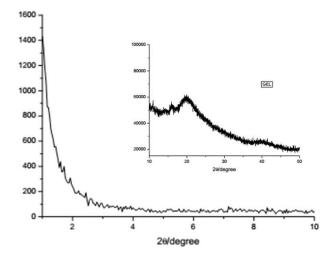


Fig. S12 X-ray diffraction diagrams of the xerogel **TPA**. The inset for the diffraction in wide-angle region.