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1. General Information:

NMR spectra were recorded either on a Bruker 400/500 MHz. All *H NMR spectra were
reported in units of parts per million (ppm) and measured relative to the signals for residual
chloroform (7.26 ppm) in CDCls/ and for residual CH3CN in CD3sCN at 1.96 ppm, unless
otherwise stated. All *3C NMR spectra were reported in ppm relative to CDCl; (77.23 ppm),
unless otherwise stated and were obtained with *H decoupling. ESI-MS spectra were recorded in
Bruker QTOF ESI-MS instrument. EPR spectra were recorded on JES - FA200 ESR
Spectrometer with X and Q band (Standard Frequency (X band) - 8.75-9.65 GHz) at 77 K. UV-
vis Kkinetics studies were performed in Agilent 8453 diode array based UV-vis
Spectrophotometer. Synthesis of complex 1 and iron(IV)-oxo complexes (2) were done inside
the glove box. Acetonitrile, cyclobutanol, CDsCN, Fe'(OTf), , cumene were bought from Sigma
Aldrich. Ethyl benzene was bought from SDFCL. 2-phenyl-2-propanol was bought from Alfa
Aesar whereas 1-phenyl ethanol was bought from Sigma Aldrich. H,™®0 was bought from ICON
isotope. 2-(chloromethyl)-4-methoxy-3, 5-dimethylpyridine hydrochloride and di(2-pyridyl)
ketone were bought from alfa aeser. Single crystal of complex 1 was diffracted in Rigaku X-ray
single crystal diffractometer. All GCMS analysis were carried out by Agilent 7890A GC system
connected with 5975C inert XL EI/CI MSD (with triple axis detector). The electrochemical
experiment was done out under a dinitrogen atmosphere at 298 K. The half-wave potential Ey
was set equal to 0.5 (Epa + Epc), where E, 2 and E, ¢ are anodic and cathodic cyclic voltammetry
peak potentials, respectively. The supporting electrolyte was Et;NCIO4, and the complex
concentration was in order of ~10°% M. All the kinetics data are carried out both under N, and
air. Air has no effect on the kinetics of the reaction. Kinetics isotope effect was studied in air.
Second order rate constant remain same for substrates both in air and N , atmosphere. First order

rate constant (ki) were calculated based on non-linear exponential fit in OriginPro8 software.

Computational Details:

Full geometry optimization was performed by using the density functional theory method at
(U)B3LYP levels for 2. Except iron all other elements were assigned the 6-31G* basis set. The
LANL2DZ basis set with effective core potential was employed for the iron atom.? The
vibrational frequency calculation was done to ensure that the optimized geometries represent the
local minima and there are only positive eigen values. All calculations were performed with

Gaussian 09 program package.® Optimized structure was visualized with ChemCraft.*



2. Synthesis of ligand:

2.1 Preparation of Oxime:

HO.
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Schemel. Synthesis of oxime
Hydroxylamine hydrochloride (750.5 mg, 10.8mmol) and sodium acetate (NaOAc) (886mg,
10.8 mmol) were heated at 60 °C in H,O (10 mL) for 1 hour. To the above, Di(2-pyridyl)ketone
(19, 5.43 mmol) in 2 mL MeOH was then added. The resulting mixture was stirred at 60 °C
overnight. The oxime solidified upon cooling the reaction mixture to room temperature. The
product oxime was washed with MeOH and the solvent was dried under vacuum. The crude
oxime, a pink solid, was used in the next step without further purification.

2.2 Reduction of oxime to amine:

HO.
|N NH,
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Scheme 2. Reduction of oxime to amine

The above prepared oxime (1 g, 5mmol), NH,OAc (655 mg, 8.5mmol), NH3; (25% aqueous, 15
ml), EtOH (20 mL) and H,O (10 ml) were mixed and heated at 80 °C. Activated Zn dust (1.47 g,
22.5mmol) was then added to the reaction mixture in small amounts for over 30 mins. The
resulting mixture was refluxed for 3 hour and then stirred at 25 °C overnight. The mixture was
filtered and the residue was washed with MeOH and water. The filtrate was concentrated and the
resulting aqueous solution was made strongly alkaline with 10 (M) NaOH solution. The amine
was then extracted with ethyl acetate and the organic phase was then washed with brine, dried
over Na,SO, and concentrated under vacuum to afford brown oil.> *H NMR (400 MHz, CDCls,
8): 8.48 (m, 2H, Py), 7.55 (m, 2H, Py), 7.31 (d, 2H), 7.04(m, 2H), 5.25 (s, 1H, CH), 2.43 (s, 2H,
NH,).
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Figure S1. *H NMR of dipyridin-2-ylmethanamine

2.3 Synthesis of electron rich ligand N4Pyo'\"e' Me.
Me
N/ A OMe
Cl.HCI Q —
2 Me
NaOH Z>N > N s NN -Me
X — N |
OMe

Me
Scheme 3. Synthesis of electron-rich (N4Py)°™® ™ Jigand
2-(chloromethyl)-4-methoxy-3, 5-dimethylpyridine hydrochloride (9.866 mmol) was added to an
aqueous solution of NaOH (2 mL, 5 M) at 0 °C. After stirring for 10 minutes, the solution was
added to bis(2-pyrimidyl) methylamine (0.969 g; 5.23 mmol) and another portion of aqueous
solution of NaOH (5 M, 2 mL). The solution was allowed to stir for 48 hrs at 25 °C and then
concentrated HCIO,4 was added to precipitate a yellow solid, which was recrystallized from hot
water. Treatment of this perchlorate salt with 2.5 (M) NaOH solution and extraction with

OMeMe i 35% yield.® Subsequently, the ligand was

dichloromethane yielded brownish solid N4Py
characterized by NMR analysis and HRMS. *H NMR (500 MHz, CDCls, 8): 8.20-8.69 (m, 4H,
Py), 7.04-7.65 (m, 6H, Py), 5.24 (s, 1H, CH), 3.78 (s, 4H, CH,), 3.64 (s, 6H, OCH3), 2.12 (s, 6H,
CHj3), 1.98 (s, 6H, CH3). 13C NMR (000 MHz, CDCly): 10.72, 13.31, 54.21, 60.02, 72.75,

123.02, 124.58, 124.76, 125.08, 136.82, 149.97, 150.26, 155.84, 158.47, 164.12.



2.4 Characterization spectra of N4py°MeMe -

'H NMR spectra of N4py©MeMe
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13C NMR of the N4py©MeMe
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Figure S2. *H and **C NMR of ligand N4py©°MeMe

HRMS data:

Adduct: M+H, Charge: 1, Chemical Formula: C29H34N502, Average Mass: 484.612

Monoisotopic Mass: 484.2707 (Calculated); 484.270 (Experimental)
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Figure S3. ESI-MS spectra of (N4Py)°M#M¢ |igand
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3. Synthesis and characterization of [Fe' (N4Py°M® OM&)(CH;CN)](OTH)2(CH3CN), (1):

The solution of N4Py°™*M¢ (0.57 mmol) in 3 mL of CH3CN, was slowly added to a solution of
Fe'(OTf),.2CH3CN (0.57 mmol, 248 mg) [Fe"(OTf), was also used] in acetonitrile and the
resulting solution was stirred overnight. Reddish-orange powder was obtained after addition of a
large volume of Et,O (5-6 times of the complex was dissolved in acetonitrile and then diethyl
ether was added to get a precipitate of the complex) to the resulting solution. Yield was ~65%.
Deep red crystals were obtained by slow diffusion with acetonitrile/diethyl ether conducted
inside the glove box.” The complex was characterized by X-ray crystal study and UV-Vis study
(Amax=459 nm, € ~ 6000 molem™L).° It was further characterized by ESI-MS and *H NMR in
CDsCN. *H NMR (500 MHz, CD;sCN, 8): 8.85 (d, 2H, Py), 8.68 (s, 2H, Py), 7.95 (m, 2H, Py),
7.91 (m, 2H, Py), 7.33 (m, 2H, Py), 6.32 (s, 1H, CH), 4.35 (q, 4H, CH,), 3.71 (s, 6H, OCHj3),
2.31 (s, 6H, CHs), 1.98 (s, 3H, CHs of CHsCN), 1.93 (s, 6H, CHs). *C NMR (101 MHz,
CDsCN) 5 11.6, 13.5, 60.9, 65.5, 77.5, 118.3, 124.4, 125.3, 125.3, 129.0, 139.2, 154.4, 158.3,
163.0, 163.1, 165.6.
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Figure S4. UV-vis spectra of complex [Fe' (N4Py)°M&Me (CH;CN)](CHSCN),(OTH), (1)



3.1 ESI-MS spectra of complex 1
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Figure S5. ESI-MS data for complex 1, [(N4Py) °MeMeFe!(OTH)]* (Calculated m/z=688.150)

3.2 NMR data and spectrum of complex 1:
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Figure S6. *H NMR spectrum for complex 1 in CDsCN
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Figure S7. *C NMR spectrum for complex 1 in CDsCN
3.3 X-ray Crystallography data of Complex 1

Ortep diagram of Fe-complex with 50% probability (after removal of solvents and anions for

clarity)

Figure S8: ORTEP diagram of [Fe'(N4Py)°MMe)(CH;CN)](OTH), (1)



3.4 Electrochemical study of complex 1 and 2 in acetonitrile
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CV diagram of Fe'(N4Py)- complex
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Figure S9. Cyclic voltammetry diagrams of complex 1 and 2 and 3

4. Synthesis of complex [Fe'(N4Py)°MeM¢)(0)](OTf), (2)

Initially, 25 mg of the red-solid complex was dissolved in 5-8 mL of acetonitrile in a 20 mL
glass vial. 3 equiv. of solid PhlO ® was added to it and stirred (5-10 min) until the green color
appeared.”® The resulting solution was kept overnight in deep freeze at -40 °C in order to get a
clear/transparent solution (excess PhlO gets precipitated at the bottom of the vial). After that,
measured volume of the transparent solution of iron(IV)-oxo was taken and 50-100 equiv. of
substrates were added. The resulting samples were then subjected to *H-NMR and ESI-MS and
for EPR study.

4.1. ESI-MS spectra for species detected during reaction between 2 and ethyl benzene (S10)
and cumene (S11)

After synthesizing complex 2 as described in section 4 250-500 equiv. of H,*20 was added to the
solution of 2 and stirred for 5-10 minutes (under nitrogen atmosphere). The resulting solution
was kept at -40 °C inside the glove box for 1 hour and then it was kept at room temperature.
Then ESI-MS was recorded and found that complex 2 got 18-O labeled. Subsequently 100 equiv.
of substrates were added to the labeled 2 and ESI-MS were recorded after 5-10 minutes stirring
of the reaction. The Figure d and g (Figure S10) were obtained from the reaction between 18-O

labeled 2 and ethyl benzene
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Figure S10. ESI-MS of the intermediates during reaction of 2 and ethylbenzene (red line,
experimental and black line, simulated, spectra were recorded after 5 min of addition). ESI-MS
of 2 (10a), 3 (10b), 18-0O-2 (10c), 18-0-3 (10d), 5 (10e), 18-0-5 (10f), 4 and 18-O-4 (10g). Fig
10d/10g obtained from reaction mixture 2 and ethyl benzene under labeling condition (with

H,*20).
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Figure S11. ESI-MS of the intermediates, 5a (11a) and 18-O labeled 5a (11b) during reaction of

2 and cumene (red line, experimental and black line, simulated)



4.2 UV-vis spectrum and ESI-MS spectrum of Complex 2:
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Figure S12. UV-vis and ESI-MS spectra of complex 2 (red line is experimentally obtained,

black line is simulated)

4.3 DFT optimization of complex 2 and 4 using B3LYP level of theory and LANL2DZ basis set
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Figure S14. DFT optimized structure and HOMO, LUMO diagram of Fe'’(N4Py)(Oxo)

complex

— — 2+
Me
— o
<\:>N | /N/ N\ OMe

4 NEeV Y= . 2.07766 A
RN Me . 1.97206 A
ZONT N SN Me Fe-N3 2.01028 A
= U Fe-N4 201055 &
OMe Fe-N5 1.97107 A
L 2 Me i Fe-O1 1.62372 A




Alpha Molecular Orbital
LUMO

Beta Molecular Orbital
LUMO

Beta Molecular Orbital
HOMO

Figure S15. DFT optimized structure and HOMO, LUMO diagram 2

4.4. Half-life study of complex 2 in acetonitrile

Half life of complex 2 was determined from 0.46 mM solution of complex 2 prepared by using
PhlO. The UV-vis was recorded after different time to check the absorbance. It was found that
after ~50 hours the absorbance of the parent solution decayed to half in air at ambient
temperature (30 °C).



4.5. NMR Data and Spectrum of Complex 2:
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Figure S16. *H NMR spectrum for complex 2 in CD3sCN prepared by adding PhlO



4.6. EPR data from the reaction mixture of 2 and benzyl alcohol:

All spectra were recorded at liquid nitrogen temperature (77 K). Samples were prepared as
described in section 4. Different substrates (100 equiv.) were added to the clear and transparent

solution of 2 at room temperature and subsequently EPR spectra were recorded after 5 minutes.
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Figure S17
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Figure S18. EPR spectra (acetonitrile, 77 K) obtained from reaction between 2 and (a) ethyl
benzene (b) cumene

5. Kinetics study with benzylic substrates: Ethyl benzene and Cumene

Initially, 15 mg of the red-solid complex was dissolved in 10 mL of acetonitrile in a 20 mL glass
vial. 5 equiv. of solid Ph10 & was added to it and stirred (5-10 min) until the green color appeared
and then another 30 mL of acetonitrile was added to it.”® The resulting solution was kept

overnight in deep freeze at -40 °C in order to get a clear/transparent solution (excess PhlO gets



precipitated at the bottom of the vial). After that, 0.5 mL (0.52 mM) of clear solution of 2 was

taken in 1 mL UV cuvette and subsequently different conc. of the substrates were added and

kinetics was followed by UV-vis study.

5.1 Kinetics study with ethyl benzene as substrate:

Conc. of ethyl benzene (mM) | Rate constant (k;)(s™)
81.56 0.002
163.134 0.00345
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Figure S19. Second order plot for ethyl benzene



5.2 Kinetics study with cumene as substrate:

Conc. of substrate (mM)

Rate constant (ki) (s7)

71.88 0.00849
143.77 0.016
215.65 0.0236
287.54 0.03
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Figure S20. Second order plot for cumene




5.3 Second order plot of ethylbenzene and cumene based on pseudo-first order reaction

monitored by UV-vis (Amax= 692 nm)
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Figure S21. UV-vis change at 692 nm for 2, in presence of cumene, (b) second order rate

kinetics plot for ethyl benzene and cumene (c) spectral change during reaction between 2 and

ethyl benzene (d) spectral change during reaction between 2 and benzyl alcohol.

5.4 Kinetic Isotope effect study for benzyl alcohol oxidation:
PhCD,0OH was prepared following the literature report from PhCH,OH in D,O under microwave

condition."” The resulting reaction mixture was extracted with DCM (2x10 mL) and

subsequently it was purified by column chromatography. Approximately (~95%) deuterium rich
PhCD,0OH was obtained as evident from the NMR study. The resulting product was also
characterized by GC-MS. After that kinetic studies were performed with this PhCD,OH. Initially



1.2 (mM) iron(IV)-oxo (2) solution was prepared and then second order plot were constructed by
varying different conc. of PhCH,OH and PhCD,OH.
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Figure S22. 'H and **C NMR of PhCD20H
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Figure S23. GC-MS spectra of PhCD,0H and PhCDO



5.4.1 Kinetics study with PhCH,OH

Conc. of PhCH,OH (mM) | Rate constant (ki)(s™)
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Figure 24
5.4.2 Kinetics study with PhCD,0OH

Conc. of PhCD,OH (mM) | Rate constant (ki)(s™)
96.68 0.00037
193.37 0.0008
290.04 0.00123
386.72 0.0016
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Figure 25
KIE for benzyl alcohol oxidation ki /kp = 0.0451/0.00415= 11

6. Cyclobutanol oxidation to cyclobutanone by iron (IV)-oxo (complex 2):
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OH — OH 7
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7 Fe3+ ) i transfer |:/r

”/ _ / / \ Me )
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- N = | (L)Fe product

(2) 3)

Scheme 4. Cyclobutanol Oxidation by complex 2

The reaction of cyclobutanol was carried out in CD3CN. Initially, 50 mg of the complex was
dissolved in 5 mL of CD3;CN; PhlO was added to it and then stirred for 5-10 minutes for
complete formation of 2. It was then kept in -40 °C deep freeze for overnight. The resulting
transparent green solution was taken and excess 200 equiv. of cyclobutanol was added to it. The
reaction was stirred for 24 hour. Subsequently, the, cyclobutanone product was confirmed by *H

NMR analysis.
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Figure S26. *H NMR of the reaction mixture of 2 and cyclobutanol in CDsCN

7. C-H oxidation by iron (I1V)-oxo (2):

20 mg of the complex 1 was dissolved in 5 mL of acetonitrile in a 20 ml vial. Subsequently, 5
equiv. of PhlO was added and stirred for 5 minutes to ensure complete formation of iron(1V)-oxo
(2). 1t was kept in deep freeze (-40 °C) for overnight to get a clear green colored solution of 2.
Then, 50 equiv. of substrates were added and the reaction mixture was stirred for 24 h. Notably,
in case of cyclohexane, 500 equivalents of starting material were used. Yields of the
hydroxylated products were measured by using standard product as standard. Similarly, after
preparation of 2, 250 equiv. of H,'°O was added to it and stirred for 5 minutes. It was kept at -
40 °C in deep freeze for 2 hour and subsequently 50-100 equivalent of substrates were added.

The reactions were carried out inside the glove box for 24 hour stirring.
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Scheme 5. C-H oxidations by complex 2
7.1 Radical Trap experiment for cyclohexane oxidation by 2 using CCI;Br:

Complex 2 was prepared by using 20 mg of complex 1 and solid PhlO. After that, solution of 2
was kept at -40 °C in deep freeze for overnight. The resulting clear green solution (4 mL) was
taken in reaction tube and subsequently 500 equiv. of cyclohexane and 500 equiv. of CCl3Br
were added and the reaction was stirred for 24 hour. Only bromocyclohexane was obtained as

sole product. Similar experiment was carried out with cumene using CBr, as radical trap.

+
CCI,Br/CBr,

CH,CN sole product not obtained
Me OH
Me
Me 2 Me no radical trap/
brominated product
CBr,/CCI;Br obtained
CH3CN product
obtained

Scheme 6. Radical trap experiment of cyclohexane and cumene with complex 2



8. GC-MS Spectra for O-18 labeling study:
Benzaldehyde Standard Spectra
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ahundance Sean 1502 (12.687 min): DM-SR4-45-6.0\data.ms
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Scan 307 (5.162 min): DM-SR4-51-2 Dhdata.ms
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SCAN S8 (2,458 MIN). UM-SH4E-01-2. Lhadata.ms
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9. ESI-MS spectra obtained from reaction between 2 and ethyl benzene and cumene both

labeling and without labeling condition
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