Supporting information

Conformation driven in situ interlock: from discrete metallocycles to infinite polycatenane

Hui Xue, ${ }^{\text {a,b }}$ Feilong Jiang, ${ }^{\text {a }}$ Qihui Chen, ${ }^{* a}$ Daqiang Yuan, ${ }^{\text {a }}$ Jiandong Pang, ${ }^{\text {a,b }}$ Guangxun Lv, ${ }^{\text {a,b }}$ Xiuyan Wan, ${ }^{\text {a,b }}$ Linfeng Liang, ${ }^{\text {a,b }}$ and Maochun Hong*a
${ }^{a}$ State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China ${ }^{b}$ University of Chinese Academy of Sciences, Beijing, 10049, China

Content

(1) The synthesis process of ligand.
(2) The process of self-assembly of three different metallocycles.
(3) The synthesis process of compounds 1,2 and 3.
(4) Table S1 Crystal data and refinement results for compounds 1-4.
(5) Table S2 Selected Bond Lengths (\AA) and Bond Angles (${ }^{\circ}$) for compound 1.
(6) Table S3 Selected Bond Lengths (\AA) and Bond Angles (${ }^{\circ}$) for compound 2.
(7) Table S4 Selected Bond Lengths (\AA) and Bond Angles $\left({ }^{\circ}\right)$ for compound 3.
(8) Table S5 Selected Bond Lengths (\AA) and Bond Angles (${ }^{\circ}$) for compound 4.

Experimental methods

General: All of reagents were commercially available and used as purchased. C, H, and N microanalyses were measured using an elemental Vairo EL analyzer, ${ }^{1} \mathrm{HNMR}$ spectra were recorded at Bruker AM-400 (400 MHZ) spectrometer, IR spectra were recorded on a Shimadzu IR-440 spectrometer.

The synthesis process of ligand (L)

A solution of 1,2-bis(bromomethyl) benzene ($1.32 \mathrm{~g}, 5 \mathrm{mmol}$), pyridine-4-thiol $(1.11 \mathrm{~g}$, $10 \mathrm{mmol})$ and potassium carbonate $(1.38 \mathrm{~g}, 10 \mathrm{mmol})$ in 50 ml MeCN was heated to $60^{\circ} \mathrm{C}$ for 3 h with vigorous stirring. After cooling, the pale fuchsia solution was filtered. Removal of the solvent gave an oil, which afforded a fuchsia powder on recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}$-hexane (yield: $1.41 \mathrm{~g}, 84 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}) $\delta: 8.44$ (dd, $\left.J=4.9,1.5 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Py}-\mathrm{H}\right), 7.44(\mathrm{dd}, J=5.5,3.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}-\mathrm{H})$, 7.34 (dd, $J=5.5,3.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}-\mathrm{H}), 7.26$ (dd, $J=4.9,1.5 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Py}-\mathrm{H}), 4.41$ (s, 4H, CH_{2}). ESI-MS (m/z): $324\left(\mathrm{M}+\mathrm{H}^{+}\right)$.

Self-assembly of three different metallocycles

$\left[\mathrm{Hg}_{2} \mathrm{~L}_{2} \mathrm{Cl}_{4}\right]$ metallocycle

The ligand $\mathrm{L}(16 \mathrm{mg}, 0.04 \mathrm{mmol})$ and HgCl_{2} ($12 \mathrm{mg}, 0.04 \mathrm{mmol}$) were put into $\mathrm{CH}_{3} \mathrm{CN} /$ $\mathrm{H}_{2} \mathrm{O}$ solution, and stirring this solution at room temperature for 1 hours, the white power was obtained. ESI-MS confirmed that the metallocycle $\left[\mathrm{Hg}_{2} \mathrm{~L}_{2} \mathrm{Cl}_{4}\right]$ can be synthesized quickly, the 1154 peak corresponds to $\left[\mathrm{Hg}_{2} \mathrm{~L}_{2} \mathrm{Cl}_{3}\right]^{+}$in Fig S1.

$\left[\mathrm{Ag}_{2} \mathrm{~L}_{2}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{2}\right]$ metallocycle

The ligand L ($16 \mathrm{mg}, 0.04 \mathrm{mmol}$) and $\mathrm{AgCF}_{3} \mathrm{SO}_{3}$ ($10 \mathrm{mg}, 0.04 \mathrm{mmol}$) were put into $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}$ solution, and stirring this solution at room temperature for 1 hours, the white power was obtained. ESI-MS confirmed that the metallocycle $\left[\mathrm{Ag}_{2} \mathrm{~L}_{2}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{2}\right]$ can be synthesized quickly, the 1013 peak corresponds to $\left[\mathrm{Ag}_{2} \mathrm{~L}_{2}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)\right]^{+}$in Fig S2.

[$\left.\mathbf{Z n}_{2} \mathbf{L}_{2} \mathbf{C l}_{4}\right]$ metallocycle

The ligand L ($16 \mathrm{mg}, 0.04 \mathrm{mmol}$) and ZnCl_{2} ($6 \mathrm{mg}, 0.04 \mathrm{mmol}$) were put into $\mathrm{CH}_{3} \mathrm{CN}$ /
$\mathrm{H}_{2} \mathrm{O}$ solution, and stirring this solution at room temperature for 1 hours, the white power was obtained. ESI-MS confirmed that the metallocycle $\left[\mathrm{Zn}_{2} \mathrm{~L}_{2} \mathrm{Cl}_{4}\right]$ can be synthesized quickly, the 885 peak corresponds to $\left[\mathrm{Zn}_{2} \mathrm{~L}_{2} \mathrm{Cl}_{3}\right]^{+}$in Fig S3.

Fig. S1 Experimental (up) and simulated (down) ESI-MS spectra of $\left[\mathrm{Hg}_{2} \mathrm{~L}_{2} \mathrm{Cl}_{3}\right]^{+}$.

Fig. S2 Experimental (up) and simulated (down) ESI-MS spectra of $\left[\mathrm{Ag}_{2} \mathrm{~L}_{2}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)\right]^{+}$.

Fig. S3 Experimental (up) and simulated (down) ESI-MS spectra of $\left[\mathrm{Zn}_{2} \mathrm{~L}_{2} \mathrm{Cl}_{3}\right]^{+}$. The synthesis process of compound 1

Layering a $\mathrm{CH}_{3} \mathrm{CN}$ solution of ligand $\mathrm{L}(8 \mathrm{mg}, 0.02 \mathrm{mmol})$ with a $\mathrm{H}_{2} \mathrm{O}$ solution of $\mathrm{HgCl}_{2}(6 \mathrm{mg}, 0.02 \mathrm{mmol})$, about three days later, colorless rodlike crystal compound $\mathbf{1}$ were obtained in a 50% yield. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{C}_{12} \mathrm{HgN}_{2} \mathrm{~S}_{2}(\mathrm{Mr}=595.96) \mathrm{n}(\%)$:

C, 36.24; H, 2.68; N, 4.70; Found (\%): C, 36.10; H, 2.65; N, 4.68. IR (cm ${ }^{-1}$): 3450(w), 3056(w), 1589(s), 1483(m), 1422(m), 1221(m), 1106(m), 1068(m), 1008(m), 816(m), 779(w), 749(w), 718(s), 489(m).

The synthesis process of compound 2

Layering a $\mathrm{CH}_{3} \mathrm{CN}$ solution of ligand $\mathrm{L}(8 \mathrm{mg}, 0.02 \mathrm{mmol})$ with a $\mathrm{H}_{2} \mathrm{O}$ solution of $\mathrm{AgCF}_{3} \mathrm{SO}_{3}$ ($5 \mathrm{mg}, 0.02 \mathrm{mmol}$), about three days later, colorless rodlike crystal compound 2 were obtained in a 75% yield. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{AgN}_{2} \mathrm{O}_{3} \mathrm{~S}_{3} \mathrm{~F}_{3}(\mathrm{Mr}=$ 584.43) n(\%): C, 39.01; H, 3.25; N, 4.79; Found (\%): C, 38.97; H, 3.20; N, 4.81. IR $\left(\mathrm{cm}^{-1}\right): 3481(\mathrm{w}), 3150(\mathrm{w}), 1592(\mathrm{~s}), 1488(\mathrm{~m}), 1429(\mathrm{~m}), 1275(\mathrm{~s}), 1159(\mathrm{~m}), 1114(\mathrm{~m})$, 1033(s), 806(m), 728(m), 636(s), 568(w), 495(m).

The synthesis process of compound 3

Layering a $\mathrm{CH}_{3} \mathrm{CN}$ solution of ligand $\mathrm{L}(8 \mathrm{mg}, 0.02 \mathrm{mmol})$ with a $\mathrm{H}_{2} \mathrm{O}$ solution of ZnCl_{2} ($3 \mathrm{mg}, 0.02 \mathrm{mmol}$), about three days later, colorless rodlike crystal compound 3 were obtained in a 40% yield. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{~S}_{2} \mathrm{ZnCl}_{2}(\mathrm{Mr}=501.81) \mathrm{n}(\%)$:

C, 47.83; H, 3.79; N, 8.37; Found (\%): C, 47.79; H, 3.76; N, 8.30. IR (cm$\left.{ }^{-1}\right): 3398(w)$, 3202(w), 1669(s), 1450(w), 1407(m), 1349(s), 1255(m), 1110(m), 1008(m), 867(w), 795(m), 649(s), 470(m).

X-ray crystallography

Data collections were all performed on a Mercury CCD diffractometer with graphite monochromated Cu Ka radiation ($\lambda=0.71073 \AA$). The structures were solved by direct methods, and all calculations were performed using the SHELXL package. The structures 1-4 were refined by full matrix least-squares with anisotropic displacement parameters for non-hydrogen atoms. All hydrogen atoms were generated geometrically and treated as riding. The crystallographic data are summarized in Table S1-S5. CCDC 1054664, 1054665, 1054666, 1058370 contain the supplementary crystallographic data for 1-4. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Table S1 Crystal data and refinement results for 1-4.

Formula	$\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{~S}_{2} \mathrm{HgCl}_{2}(\mathbf{1})$	$\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{~S}_{3} \mathrm{AgO}_{3} \mathrm{~F}_{3}(\mathbf{2})$	$\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{~S}_{2} \mathrm{ZnCl}_{2}(\mathbf{3})$	$\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{~S}_{2} \mathrm{HgI}_{2}(4)$
Formula weight	595.96	584.43	501.81	774.81
Crystal system	monoclinic	monoclinic	monoclinic	monoclinic
space group	C2/c	C2/c	$P 2_{1} / \mathrm{c}$	C2/c
a (\AA)	26.6229	23.7546	8.5494	26.4973
b (\AA)	10.0005	9.6388	18.8079	10.4756
c (\AA)	13.9461	18.5295	13.9638	14.4782
a (${ }^{\circ}$)	90	90	90	90
$\beta{ }^{(}{ }^{\circ}$	93.414	93.688	99.017	94.642
$\gamma\left({ }^{\circ}\right)$	90	90	90	90
Volume (\AA^{3})	3706.45	4233.84	2217.58	4005.61
T (K)	100	100	100	100
Z	8	8	4	8
F (000)	2272.0	2320.0	1024.0	2816.0
R1 (I>2(I))	0.0358	0.0280	0.0290	0.0424
wR2 (reflections)	0.0967	0.0722	0.0722	0.1167
Goodness of fit on F2	1.066	1.027	1.053	1.041

Bond	(\AA)
$\mathrm{Hg} 1-\mathrm{Cl} 2$	$2.3708(12)$
$\mathrm{Hg} 1-\mathrm{Cl} 1$	$2.3741(13)$
$\mathrm{Hg} 1-\mathrm{N} 2^{\mathrm{i}}$	$2.393(4)$
$\mathrm{Hg} 1-\mathrm{N} 1$	$2.420(5)$
Angle	$\left({ }^{\circ}\right)$
$\mathrm{Cl} 2-\mathrm{Hg} 1-\mathrm{Cl1}$	$151.28(5)$
$\mathrm{Cl} 2-\mathrm{Hg} 1-\mathrm{N} 2^{\mathrm{i}}$	$102.12(11)$
$\mathrm{Cl1}-\mathrm{Hg} 1-\mathrm{N} 2^{\mathrm{i}}$	$98.90(10)$
$\mathrm{Cl2}-\mathrm{Hg} 1-\mathrm{N} 1$	$97.85(11)$
$\mathrm{Cl1}-\mathrm{Hg} 1-\mathrm{N} 1$	$97.42(11)$
$\mathrm{N} 2^{\mathrm{i}}-\mathrm{Hg} 1-\mathrm{N} 1$	$100.25(14)$

Table S2 Selected Bond Lengths (\AA) and Bond Angles $\left({ }^{\circ}\right)$ for compound 1.
Symmetry codes: (i) 1-x, 1-y, 1-z.
Table S3 Selected Bond Lengths (\AA) and Bond Angles $\left({ }^{\circ}\right)$ for compound 2.

Bond	(\AA)
$\mathrm{Ag} 1 — \mathrm{~N} 2^{\mathrm{i}}$	$2.127(2)$
$\mathrm{Ag} 1 — \mathrm{~N} 1$	$2.131(2)$
$\mathrm{Ag} 1 — \mathrm{Ag} 1^{\mathrm{i}}$	$3.2259(4)$
Angle	$\left({ }^{\circ}\right)$
$\mathrm{N} 2^{\mathrm{i}}-\mathrm{Ag} 1 — \mathrm{~N} 1$	$170.82(10)$
$\mathrm{N} 2^{\mathrm{i}}-\mathrm{Ag} 1 — \mathrm{Ag} 1^{\mathrm{i}}$	$82.21(7)$
$\mathrm{N} 1-\mathrm{Ag} 1-\mathrm{Ag} 1^{\mathrm{i}}$	$102.87(6)$

Symmetry codes: (i) 1-x, 1-y, 1-z.

Bond	(\AA)
$\mathrm{Zn} 1-\mathrm{N} 1$	$2.0346(19)$
$\mathrm{Zn} 1 — \mathrm{~N} 2^{\mathrm{i}}$	$2.0537(19)$
$\mathrm{Zn} 1-\mathrm{Cl2}$	$2.2275(6)$
$\mathrm{Zn} 1-\mathrm{Cl1}$	$2.2303(6)$
Angle	$\left({ }^{\circ}\right)$
$\mathrm{N} 1-\mathrm{Zn} 1-\mathrm{N} 2^{\mathrm{i}}$	$106.15(7)$
$\mathrm{N} 1 — \mathrm{Zn} 1-\mathrm{Cl} 2$	$106.60(6)$
$\mathrm{N} 2^{\mathrm{i}}-\mathrm{Zn} 1-\mathrm{Cl} 2$	$107.99(6)$
$\mathrm{N} 1-\mathrm{Zn} 1-\mathrm{Cl1}$	$107.27(5)$
$\mathrm{N} 2^{\mathrm{i}}-\mathrm{Zn} 1-\mathrm{Cl1}$	$102.10(6)$
$\mathrm{Cl2-Zn1-Cl1}$	$125.37(2)$

Table S4 Selected Bond Lengths (\AA) and Bond Angles $\left({ }^{\circ}\right)$ for compound 3.
Symmetry codes: (i) 1-x, 1-y, 1-z.
Table S5 Selected Bond Lengths (\AA) and Bond Angles $\left({ }^{\circ}\right)$ for compound 4.

Bond	(Å)
Hg1-N2	2.432 (7)
Hg1-N1 ${ }^{\text {i }}$	2.441 (7)
Hg1-I1	2.6433 (6)
Hg1-I2	2.6454 (7)
Angle	$\left({ }^{\circ}\right.$)
$\mathrm{N} 2-\mathrm{Hg} 1-\mathrm{N} 1^{\text {i }}$	103.9 (2)
N2—Hg1-I1	102.70 (16)
N1 ${ }^{\text {i }}$ - $\mathrm{Hg} 1-\mathrm{I} 1$	100.18 (17)
N2—Hg1-I2	105.65 (15)
N1 ${ }^{\text {i }}$ - $\mathrm{Hg} 1-\mathrm{I} 2$	97.76 (17)
$\mathrm{I} 1-\mathrm{Hg} 1-\mathrm{I} 2$	141.47 (2)

Symmetry codes: (i) 1-x, 1-y, 1-z.

