Adsorption of fluorinated anesthetics within the pores of a molecular crystal

Teng-Hao Chen,^a Watchareeya Kaveevivitchai,^a Allan J. Jacobson^{a,b} and Ognjen Š. Miljanić^{a,*}

^a Department of Chemistry, University of Houston, 112 Fleming Building, Houston, Texas 77204-5003, United States ^b Texas Center for Superconductivity, 202 UH Science Center, Houston, Texas 77204-5002, USA

Email: miljanic@uh.eduPhone: +1.832.842.8827Web: www.miljanicgroup.com

Supporting Information

Materials

Enflurane, isoflurane, sevoflurane, methoxyflurane, and halothane were obtained from SynQuest Labs and used without further purification. Ultrahigh purity nitrogen (99.999%) was purchased from Matheson Tri-Gas.

Thermogravimetric Analysis of Anesthetics' Vapor Adsorption

The setup for studying the adsorption of anesthetic vapors is shown in Figure S1. Colorless rod crystals of compound 6^1 were first heated on a thermobalance of the TA Instruments TGA 2050 thermogravimetric analyzer under N₂ flow to 120 °C at 2 °C/min. This temperature was held for 60 min to ensure complete activation of the material. The temperature was reduced to 25 °C at 5 °C/min and held at 25 °C. The N₂ flow was then switched (red line) to a second N₂ gas stream that was saturated with the vapor of adsorbate at 25 °C (saturation was achieved by passing the N₂ gas stream through a bubbler containing the liquid adsorbate). After the weight reached a plateau, the adsorbate vapor/N₂ flow was switched back to pure N₂ flow at the same temperature (25 °C).

Figure S1. A schematic diagram of the aparatus for TGA of anesthetic vapor adsorption.

Adsorption Results

Figure S2. TGA trace for adsorption of enflurane (1) within the pores of **6**. Red trace shows the flow of anesthetic-enriched nitrogen, black trace the flow of pure nitrogen.

Figure S3. TGA trace for adsorption of isoflurane (2) within the pores of **6**. Red trace shows the flow of anesthetic-enriched nitrogen, black trace the flow of pure nitrogen.

Figure S4. TGA trace for adsorption of sevoflurane (3) within the pores of **6**. Red trace shows the flow of anesthetic-enriched nitrogen, black trace the flow of pure nitrogen.

Figure S5. TGA trace for adsorption of methoxyflurane (4) within the pores of **6**. Red trace shows the flow of anesthetic-enriched nitrogen, black trace the flow of pure nitrogen.

Figure S6. TGA trace for adsorption of halothane (**5**) within the pores of **6**. Red trace shows the flow of anesthetic-enriched nitrogen, black trace the flow of pure nitrogen.

Reference

T.-H. Chen, I. Popov, W. Kaveevivitchai, Y.-C. Chuang, Y.-S. Chen, O. Daugulis, A. J. Jacobson and O. Š. Miljanić, *Nature Commun.*, 2014, 5, doi: 10.1038/ncomms6131.