Electronic Supplementary Information

AgNO₂-Mediated Cleavage of the N–N Bond of Sulfonylhydrazones and Oxygen Transfer: Access to Fulleroisoxazolines via Radical Cyclization with [60]Fullerene

Tong-Xin Liu,* Jinliang Ma, Di Chao, Pengling Zhang, Qingfeng Liu, Lei Shi, Zhiguo Zhang and Guisheng Zhang*

Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China.

E-mail: liutongxin_0912@126.com and zgs6668@yahoo.com

Table of Contents

1. Screening of the Reaction Conditions	S2-S3
2. Radical-Trapping Experiments	S 3
3. Experimental Procedures	S3-S6
4. Spectral data for Compounds 2a, 2e-z, 2aa and 2bb	S6-S19
5. ¹ H NMR and ¹³ C NMR Spectra of Compounds 2a, 2e–z, 2aa and 2bb	S20-S63

			o N					
			+N-NH	$\frac{\text{MNO}_2, \text{ additive}}{7, \text{ ODCB/DMSO}}$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
entry	1	MNO ₂	additive	molar ratio ^b	$T(^{o}C)^{c}$	yield $(\%)^d$		
1	1a	AgNO ₂	_	1:2:2:0	25	12 (84)		
2	1a	AgNO ₂	_	1:2:2:0	120	27 (73)		
3	1b	AgNO ₂	-	1:2:2:0	120	23 (70)		
4	1c	AgNO ₂	_	1:2:2:0	120	23 (62)		
5	1d	AgNO ₂	_	1:2:2:0	120	NR		
6	1 a	AgNO ₂	-	1:2:1:0	120	12 (76)		
7	1 a	AgNO ₂	_	1:2:3:0	120	26 (87)		
8	1a	NaNO ₂	_	1:2:2:0	120	15 (25)		
9	1a	KNO_2	_	1:2:2:0	120	11 (34)		
10	1a	AgNO ₂	Cs_2CO_3	1:2:2:2	120	28 (82)		
11	1 a	AgNO ₂	CF ₃ CO ₂ H	1:2:2:2	120	37 (73)		
12	1 a	AgNO ₂	CF ₃ CO ₂ H	1:2:2:2	25	46 (90)		
13	1 a	AgNO ₂	HOAc	1:2:2:2	25	18 (71)		
14	1 a	AgNO ₂	CF ₃ SO ₃ H	1:2:2:2	25	36 (85)		
15^{e}	1 a	AgNO ₂	CF ₃ CO ₂ H	1:2:2:2	25	47 (88)		
16	1a	AgNO ₂	CF ₃ CO ₂ H	1:2:2:3	25	40 (80)		
17 ^f	1 a	AgNO ₂	CF ₃ CO ₂ H	1:2:2:2	25	41 (91)		
18	1a	NaNO ₂	CF ₃ CO ₂ H	1:2:2:2	25	9 (73)		
19	1a	NaNO ₂	CF ₃ CO ₂ H	1:2:2:2	40	21 (79)		
20^g	1a	NaNO ₂	CF ₃ CO ₂ H	1:2:2:2	25	15 (72)		
21^h	1a	NaNO ₂	CF ₃ CO ₂ H	1:2:2:2	25	28 (73)		

Table S1: Screening of the Reaction Conditions^a

^{*a*}All reactions were carried out with $C_{60}/1/MNO_2/additive$ in a designated molar ratio in co-solvent of anhydrous ODCB (5 mL) and DMSO (1 mL) for 2 h under air unless specified otherwise. ^{*b*}Molar ratio refers to $C_{60}/1/MNO_2/additive$. ^{*c*}Oil temperature. ^{*d*}Yields in parentheses were based on consumed C_{60} . ^{*e*}The reaction was carried out for 3 h. ^{*f*}The reaction was carried out under nitrogen atmosphere. ^{*g*}2 equiv of AgOAc was added. ^{*h*}2 equiv of AgOOCCF₃ was added.

Radical-Trapping Experiments:

General Procedure for the Synthesis of Products 2a, 2e–z, 2aa and 2bb from AgNO₂-Mediated Reaction of C₆₀ with Substrates 1a, 1e–z, 1aa and 1bb: To a 15-mL tube equipped with a magnetic stirrer was charged with C₆₀ (36.0 mg, 0.05 mmol), AgNO₂ (15.4 mg, 0.10 mmol), CF₃CO₂H (7.4 μ L, 0.10 mmol) and 1a (1e–z and 1aa, 0.10 mmol; for 1bb, 0.05 mmol). After they were dissolved in co-solvent of anhydrous ODCB (5 mL) and DMSO (1 mL) by sonication, and then the sealed mixture was stirred under room temperature for a desired time (monitored by TLC). The reaction mixture was filtered through a silica gel plug to remove any insoluble material. After the solvent was evaporated in vacuo, the residue was separated on a silica gel column with CS₂ as the eluent to give unreacted C₆₀, then with CS₂/DCM as the eluent to give product 2a (2e–v, 2z, 2aa and 2bb; for 2w–y, with CS₂/DCM/EtOAc as the eluent). Among these compounds 2a, 2e, 2k, 2n, 2q, 2r and

2t are known compounds.

Researches on Intermediate Experiment: A mixture of C_{60} (36.0 mg, 0.05 mmol), AgNO₂ (15.4 mg, 0.10 mmol), CF₃CO₂H (7.4 µL, 0.10 mmol) and 4-methylbenzaldehyde oxime (13.5 mg, 0.10 mmol) in co-solvent of anhydrous ODCB (5 mL) and DMSO (1 mL) by sonication, and then the sealed mixture was stirred under room temperature for 2 h. The reaction mixture was filtered through a silica gel plug to remove any insoluble material. After the solvent was evaporated in vacuo, the residue was separated on a silica gel column with carbon disulfide as the eluent to give unreacted C₆₀ (34.1 mg, 94%), then with CS₂/DCM as the eluent to give product **2a** (2.0 mg, 5%).

Carben or Metal Carben Experiments: A mixture of C_{60} (36.0 mg, 0.05 mmol), AgNO₂ (15.4 mg, 0.10 mmol), **1a** or **1r** (0.05 mmol), CF₃CO₂H (7.4 µL, 0.10 mmol) and ethyl 2-diazoacetate (0.05 mmol) in co-solvent of anhydrous ODCB (5 mL) and DMSO (1 mL) by sonication, and then the sealed mixture was stirred under room temperature for 2 h. The reaction mixture was filtered through a silica gel plug to remove any insoluble material. After the solvent was evaporated in vacuo, the residue was separated on a silica gel column with carbon disulfide as the eluent to give unreacted C₆₀ (23.2 mg, 64% for **1a**; 22.1 mg, 62% for **1r**), then with CS₂/DCM as the eluent to give product **2a** (10.0 mg, 23%) or **2b** (6.1 mg, 15%), and other byproducts.

[H₂¹⁸O]-Labeling Experiment: A mixture of C_{60} (36.0 mg, 0.05 mmol), AgNO₂ (15.4 mg, 0.10 mmol), 1a (30.4 mg, 0.10 mmol), CF₃CO₂H (7.4 µL, 0.10 mmol) and H₂¹⁸O (0.10 mmol) in co-solvent of anhydrous ODCB (5 mL) and DMSO (1 mL) by sonication, and then the sealed mixture was stirred under room temperature for 2 h. The reaction mixture was filtered through a silica gel plug to remove any insoluble material. After the solvent was evaporated in vacuo, the residue was separated on a silica gel column with carbon disulfide as the eluent to give unreacted C₆₀ (21.5 mg,

60%), then with CS₂/DCM as the eluent to give product 2a (13.7 mg, 32%).

[Na¹⁵N¹⁸O₂]-Labeling Experiment: A mixture of C₆₀ (36.0 mg, 0.05 mmol), ¹⁵N,¹⁸O-labeled NaNO₂ (90% ¹⁸O, 95% ¹⁵N specified by Sigma-Aldrich) (7.4 mg, 0.10 mmol), **1a** (30.4 mg, 0.10 mmol) and CF₃CO₂H (7.4 μ L, 0.10 mmol) in co-solvent of anhydrous ODCB (5 mL) and DMSO (1 mL) by sonication, and then the sealed mixture was stirred at 40 °C for 2 h. The reaction mixture was filtered through a silica gel plug to remove any insoluble material. After the solvent was evaporated in vacuo, the residue was separated on a silica gel column with carbon disulfide as the eluent to give unreacted C₆₀ (26.7 mg, 74%), then with CS₂/DCM as the eluent to give product **2a** (9.4 mg, 22%). The ¹⁸O was determined in product **2a** by HRMS. HRMS *m*/*z* (ESI) calcd. for C₆₈H₇N¹⁸O [M]⁺ 885.0565, found 885.0591.

Radical-Trapping Experiments: A mixture of C_{60} (36.0 mg, 0.05 mmol), AgNO₂ (15.4 mg, 0.10 mmol), **1a** (30.4 mg, 0.10 mmol), CF₃CO₂H (7.4 µL, 0.10 mmol) [and without CF₃CO₂H] and DPE or TEMPO (0.10 mmol) in co-solvent of anhydrous ODCB (5 mL) and DMSO (1 mL) by sonication, and then the sealed mixture was stirred under room temperature [120 °C in the absence of CF₃CO₂H] for 2 h. The

reaction mixture was filtered through a silica gel plug to remove any insoluble material. After the solvent was evaporated in vacuo, the residue was separated on a silica gel column with carbon disulfide as the eluent to give the following results:

For DPE, unreacted C₆₀: 32.6 mg, 92%, (33.6 mg, 93%, in the absence of CF₃CO₂H), then with CS₂/DCM = 5/1 as the eluent to give trace product **2a** (1.6 mg, 4%) (2.3 mg, 5%, in the absence of CF₃CO₂H).

For TEMPO, unreacted C₆₀: 34.8 mg, 97%, (35.1 mg, 98%, in the absence of CF₃CO₂H), then with CS₂/DCM = 5/1 as the eluent to give trace product **2a**.

These results confirmed that DPE or TEMPO could severely retarded or almost completely suppressed the formation of **2a**, respectively.

Spectral data for Compounds:

Spectral data of **2a**: ^{[1] 1}H NMR (400 MHz, CDCl₃/CS₂) δ 8.18 (d, J = 8.0 Hz, 2H), 7.33 (d, J = 8.0 Hz, 2H), 2.44 (s, 3H). ¹³C NMR (100 MHz, CS₂/CDCl₃ with Cr(acac)₃ as relaxation reagent, all 2C unless indicated) δ 153.49 (1C), 147.67 (1C), 147.16 (1C), 146.29, 146.17, 146.14, 145.89, 145.84, 145.79, 145.50, 145.32, 145.12, 145.05, 144.73, 144.70, 144.41, 144.30, 144.00, 142.88, 142.74 (4C), 142.37 (4C), 142.22, 142.19, 141.98, 141.60, 140.87 (1C), 140.23, 140.17, 136.90, 136.63, 129.74, 129.72, 126.02 (1C), 103.95 (1C, sp³-*C* of C₆₀), 79.21 (1C, sp³-*C* of C₆₀), 21.54 (1C).

Spectral data of **2e**: ^[2] ¹H NMR (400 MHz, CDCl₃/CS₂) δ 8.08 (d, J = 8.8 Hz, 2H), 6.97 (d, J = 8.8 Hz, 2H), 3.85 (s, 3H).

Spectral data of **2f**: ¹H NMR (400 MHz, CDCl₃/CS₂) δ 8.12 (d, J = 8.4 Hz, 2H), 7.36–7.32 (m, 2H), 7.15–7.11 (m, 1H), 7.07–7.02 (m, 4H). ¹³C NMR (150 MHz, CS₂/CDCl₃ with Cr(acac)₃ as relaxation reagent, all 2C unless indicated) δ 159.92 (1C), 155.43 (1C), 152.21 (1C), 147.46 (1C), 146.98 (1C), 146.12, 145.98, 145.96, 145.71, 145.66, 145.55, 145.35, 145.12, 144.95, 144.86, 144.52, 144.50, 144.39, 144.16, 143.81, 142.73, 142.59 (4C), 142.22 (4C), 142.07, 142.01, 141.84, 141.44, 140.06, 140.04, 136.79, 136.35, 130.25, 129.79, 128.08 (1C), 124.14 (1C), 119.77, 118.00, 103.84 (1C, sp³-*C* of C₆₀), 80.98 (1C, sp³-*C* of C₆₀). FT-IR v/cm-1 (KBr) 1585, 1504, 1486, 1428, 1301, 1243, 1199, 1167, 1105, 981, 906, 873, 843, 770, 749, 727, 689, 635, 566, 527. λ_{max} /nm (CHCl₃) 256, 316, 427, 680. MALDI-TOF MS m/z calcd for C₇₃H₁₀NO₂ [M+H]⁺ 932.0706, found 932.0707.

Spectral data of **2g**: ¹H NMR (400 MHz, CDCl₃/CS₂) δ 8.11 (d, J = 8.8 Hz, 2H), 7.41–7.31 (m, 5H), 7.08 (d, J = 8.8 Hz, 2H), 5.11 (s, 2H). ¹³C NMR (100 MHz, CS₂/CDCl₃ with Cr(acac)₃ as relaxation reagent, all 2C unless indicated) δ 160.38 (1C), 152.56 (1C), 147.56 (1C), 147.06 (1C), 146.20, 146.07, 146.04, 145.79, 145.74, 145.71, 145.42, 145.22, 145.03, 144.95, 144.75, 144.61, 144.57, 144.24, 143.90, 142.81, 142.66 (4C), 142.30 (4C), 142.16, 142.11, 141.92, 141.52, 140.13, 140.11, 136.83, 136.46, 136.13 (1C), 130.22, 128.54, 128.01 (1C), 127.20 (1C), 121.45, 115.23, 103.80 (1C, sp³-C of C₆₀), 79.01 (1C, sp³-C of C₆₀), 69.94 (1C). FT-IR v/cm⁻¹ (KBr) 2925, 2864, 1604, 1509, 1453, 1425, 1378, 1311, 1245, 1175, 1105, 1000, 974, 900, 866, 827, 770, 748, 728, 691, 651, 565, 527. λ_{max} /nm (CHCl₃) 256, 316, 424, 678. MALDI-TOF MS m/z calcd for C₇₄H₁₂NO₂ [M+H]⁺ 946.0863, found 946.0853.

Spectral data of **2h**: ¹H NMR (400 MHz, CDCl₃/CS₂) δ 8.08 (d, J = 8.4 Hz, 2H), 7.31 (d, J = 8.4, 2H), 2.52 (s, 3H). ¹³C NMR (100 MHz, CS₂/CDCl₃ with Cr(acac)₃ as relaxation reagent, all 2C unless indicated) δ 152.97 (1C), 147.67 (1C), 147.17 (1C), 146.30, 146.18, 146.15, 146.08, 145.90, 145.84, 145.71, 145.53, 145.30, 145.14, 145.05, 144.66, 144.60, 144.40, 144.32, 143.98, 142.90, 142.76 (4C), 142.62 (1C), 142.38 (4C), 142.19, 141.96, 141.60, 140.23, 140.20, 136.96, 136.60, 128.98, 125.95, 125.09 (1C), 104.09 (1C, sp³-C of C₆₀), 78.96 (1C, sp³-C of C₆₀), 15.12 (1C). FT-IR

 ν/cm^{-1} (KBr) 2913, 1592, 1493, 1431, 1399, 1307, 1188, 1097, 1014, 981, 907, 865, 808, 770, 725, 607, 565, 527. λ_{max}/nm (CHCl₃) 255, 317, 425, 679. MALDI-TOF MS m/z calcd for C₆₈H₈NOS [M+H]⁺ 886.0321, found 886.0325.

Spectral data of **2i**: ¹H NMR (400 MHz, CDCl₃/CS₂) δ 7.69 (dd, J = 7.6, 2.0 Hz, 1H), 7.58 (dd, J = 8.0, 1.2 Hz, 1H), 7.50–7.39 (m, 2H). ¹³C NMR (150 MHz, CS₂/CDCl₃ with Cr(acac)₃ as relaxation reagent, all 2C unless indicated) δ 150.98 (1C), 147.35 (1C), 146.80 (1C), 145.92, 145.90, 145.83, 145.57, 145.46, 145.19, 144.98, 144.93, 144.76, 144.71, 144.42, 143.93, 143.75, 143.67, 143.56, 142.58, 142.40, 142.36, 142.05, 141.99, 141.90, 141.82, 141.75, 141.32, 140.19, 139.77, 136.51, 136.34, 134.78 (1C), 131.23 (1C), 130.98 (1C), 130.25 (1C), 127.30 (1C), 126.47 (1C), 102.77 (1C, sp³-*C* of C₆₀), 80.62 (1C, sp³-*C* of C₆₀). FT-IR ν /cm⁻¹ (KBr) 2921, 1621, 1587, 1512, 1474, 1429, 1302, 1186, 1108, 1080, 1036, 971, 897, 854, 772, 758, 749, 725, 693, 648, 603, 572, 527. λ_{max} /nm (CHCl₃) 255, 316, 425, 682. MALDI-TOF MS m/z calcd for C₆₇H₅CINO [M+H]⁺ 874.0054, found 874.0049.

Spectral data of **2j**: ¹H NMR (400 MHz, CDCl₃/CS₂) δ 8.16 (t, J = 2.0 Hz, 1H), 8.07 (dt, J = 7.2, 2.0 Hz, 1H), 7.53–7.44 (m, 2H). ¹³C NMR (100 MHz, CS₂/CDCl₃ with Cr(acac)₃ as relaxation reagent, all 2C unless indicated) δ 151.97 (1C), 147.52 (1C),

147.03 (1C), 146.17, 146.03 (4C), 145.76, 145.71, 145.45, 145.33, 145.11, 145.01, 144.91, 144.44, 144.16, 143.98, 143.91, 143.82, 142.76, 142.63 (4C), 142.24 (4C), 142.04 (4C), 141.82, 141.51, 140.20, 140.10, 136.92, 136.39, 135.23 (1C), 130.62 (1C), 130.53(1C), 130.04 (1C), 128.81 (1C), 126.44 (1C), 104.27 (1C, sp³-*C* of C₆₀), 78.48 (1C, sp³-*C* of C₆₀). FT-IR *v*/cm⁻¹ (KBr) 2920, 1592, 1562, 1426, 1302, 1267, 1180, 1168, 1098, 972, 881, 866, 786, 764, 748, 723, 695, 685, 652, 604, 573, 554, 527. λ_{max}/nm (CHCl₃) 255, 317, 425, 679. MALDI-TOF MS m/z calcd for C₆₇H₅CINO [M+H]⁺ 874.0054, found 874.0052.

Spectral data of $2\mathbf{k}$:^{[1] 1}H NMR (400 MHz, CDCl₃/CS₂) δ 8.13 (d, J = 8.4 Hz, 2H), 7.49 (d, J = 8.4 Hz, 2H).

Spectral data of **21**: ¹H NMR (400 MHz, CDCl₃/CS₂) δ 8.20 (d, J = 8.8 Hz, 2H), 7.25 (d, J = 8.8 Hz, 2H), 2.31 (s, 3H). ¹³C NMR (100 MHz, CDCl₃/CS₂ with Cr(acac)₃ as relaxation reagent, all 2C unless indicated) δ 168.55 (1C), 152.80 (1C), 152.40 (1C), 147.72 (1C), 147.21 (1C), 146.34, 146.22, 146.19, 145.94, 145.89, 145.65, 145.60, 145.32, 145.18, 145.09, 144.66, 144.41, 144.33, 144.24, 144.02, 142.93, 142.79 (4C), 142.40 (4C), 142.23 (4C), 141.98, 141.66, 140.34, 140.23, 137.03, 136.65, 130.00, 126.48 (1C), 122.27, 104.29 (1C, sp³-*C* of C₆₀), 78.88 (1C, sp³-*C* of C₆₀), 21.07 (1C). FT-IR ν /cm⁻¹ (KBr) 2948, 1765, 1595, 1505, 1429, 1362, 1309, 1188, 1166, 1015, 981,

909, 866, 845, 770, 680, 565, 527. λ_{max} /nm (CHCl₃) 255, 316, 424, 678. MALDI-TOF MS m/z calcd for C₆₉H₈NO₃ [M+H]⁺ 898.0499, found 898.0489.

CN

Spectral data of **2m**: ¹H NMR (400 MHz, CDCl₃/CS₂) δ 8.37 (d, J = 8.8 Hz, 2H), 7.80 (d, J = 8.8 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃/CS₂ with Cr(acac)₃ as relaxation reagent, all 2C unless indicated) δ 152.17 (1C), 147.68 (1C), 147.20 (1C), 146.33, 146.18 (4C), 145.93, 145.87, 145.59, 145.19, 145.17 (4C), 145.05, 144.44, 144.29, 143.89, 143.64, 143.60, 142.92, 142.80, 142.78, 142.36 (4C), 142.12(4C), 141.84, 141.61, 140.33, 140.27, 137.16, 136.51, 133.33 (1C), 132.61, 129.20, 117.64 (1C), 114.42 (1C), 104.92 (1C, sp³-*C* of C₆₀), 78.13 (1C, sp³-*C* of C₆₀). FT-IR *v*/cm⁻¹ (KBr) 2227, 1582, 1510, 1425, 1303, 1181, 1106, 982, 909, 864, 843, 830, 768, 610, 586, 566, 552, 526. λ_{max} /nm (CHCl₃) 255, 315, 424, 678. MALDI-TOF MS m/z calcd for C₆₈H₅N₂O [M+H]⁺ 865.0396, found 865.0391.

Spectral data of **2n**:^{[1] 1}H NMR (400 MHz, DMSO- d_6 /CS₂) δ 8.44 (d, J = 9.2 Hz, 2H), 8.37 (d, J = 9.2 Hz, 2H).

Spectral data of **20**: ¹H NMR (400 MHz, CDCl₃/CS₂) δ 8.54 (d, J = 8.8 Hz, 1H), 8.00 (d, J = 8.2 Hz, 1H), 7.93–7.89 (m, 2H), 8.54 (dt, J = 6.8, 1.2 Hz, 1H), 7.66–7.56 (m, 2H). ¹³C NMR (100 MHz, CDCl₃/CS₂ with Cr(acac)₃ as relaxation reagent, all 2C unless indicated) δ 152.30 (1C), 147.59 (1C), 147.03 (1C), 146.14 (4C), 146.08, 145.80 145.71, 145.45, 145.39, 145.15, 145.00, 144.94, 144.64, 144.32, 144.13, 143.93, 143.87, 142.78, 142.64, 142.58, 142.27, 142.25, 142.07, 142.04, 141.98, 141.52, 140.40, 140.05, 136.54, 136.42, 133.81 (1C), 132.09 (1C), 130.69 (1C), 128.46 (1C), 127.70 (1C), 127.51 (1C), 126.72 (1C), 125.39 (1C), 125.33 (1C), 124.73 (1C), 102.94 (1C, sp³-*C* of C₆₀), 81.47 (1C, sp³-*C* of C₆₀). FT-IR ν /cm⁻¹ (KBr) 2911, 1506, 1427, 1295, 1250, 1188, 1124, 1005, 972, 928, 896, 860, 796, 773, 657, 603, 573, 554, 526. λ_{max} /nm (CHCl₃) 256, 317, 424, 680. MALDI-TOF MS m/z calcd for C₇₁H₈NO [M+H]⁺ 890.0600, found 890.0607.

Spectral data of **2p**: ¹H NMR (400 MHz, CDCl₃/CS₂) δ 8.78 (d, J = 9.2 Hz, 1H), 8.38 (d, J = 7.6 Hz, 1H), 8.29–8.23 (m, 4H), 8.16 (d, J = 8.8 Hz, 1H), 8.09 (d, J = 8.8 Hz, 1H), 8.06 (t, J = 8.0 Hz, 1H). ¹³C NMR (150 MHz, CS₂/CDCl₃ with Cr(acac)₃ as relaxation reagent, all 2C unless indicated) δ 152.41 (1C), 147.38 (1C), 146.82 (1C), 145.97, 145.95, 145.89, 145.61, 145.50, 145.28, 145.22, 144.98, 144.81, 144.74, 144.53, 144.21, 143.97, 143.91, 143.68, 142.60, 142.46, 142.38, 142.11, 142.09,

141.93, 141.92, 141.77, 141.32, 140.20, 139.90, 136.39, 136.32, 132.32 (1C), 130.86 (1C), 130.56 (1C), 130.51 (1C), 129.10 (1C), 128.92 (1C), 127.30 (1C), 127.02 (1C), 126.42 (1C), 126.40 (1C), 125.91 (1C), 128.83 (1C), 124.79 (1C), 124.31 (1C), 124.22 (1C), 121.88 (1C), 102.83 (1C, sp³-*C* of C₆₀), 81.69 (1C, sp³-*C* of C₆₀). FT-IR ν/cm^{-1} (KBr) 2926, 1596, 1512, 1430, 1329, 1268, 1179, 1125, 1074, 1025, 972, 900, 865, 846, 820, 769, 716, 696, 554, 526. $\lambda_{\text{max}}/\text{nm}$ (CHCl₃) 255, 335, 424, 680. MALDI-TOF MS m/z calcd for C₇₇H₁₀NO [M+H]⁺ 864.0757, found 864.0758.

Spectral data of 2q:^{[3] 1}H NMR (400 MHz, CDCl₃/CS₂) δ 7.63 (d, J = 1.6 Hz, 1H), 7.36 (d, J = 3.6 Hz, 1H), 6.63 (dd, J = 3.6, 1.6 Hz, 1H).

Spectral data of **2r**: ^{[3] 1}H NMR (400 MHz, CDCl₃/CS₂) δ 8.03 (d, J = 3.6 Hz, 1H), 7.54 (dd, J = 5.2, 0.8 Hz, 1H), 6.63 (dd, J = 5.2, 3.6 Hz, 1H).

Spectral data of **2s**: ¹H NMR (400 MHz, CDCl₃/CS₂) δ 9.44 (d, J = 2.4 Hz, 1H), 8.76

(dd, *J* = 4.8, 1.2 Hz, 1H), 8.49 (dt, *J* = 8.0, 2.0 Hz, 1H), 7.47 (dd, *J* = 8.0, 4.8 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃/CS₂ with Cr(acac)₃ as relaxation reagent, all 2C unless indicated) δ 151.23 (1C), 150.99 (1C), 148.96 (1C), 147.48 (1C), 146.98 (1C), 146.12, 145.99 (4C), 145.72, 145.66, 145.42, 145.13, 145.01, 144.96, 144.84, 144.33, 144.09, 143.74, 143.59 (4C), 142.71, 142.58, 142.57, 142.17 (4C), 141.96 (4C), 141.72, 141.45, 140.21, 140.04, 136.99, 136.37, 135.37 (1C), 125.19 (1C), 123.45 (1C), 104.28 (1C, sp³-*C* of C₆₀), 78.30 (1C, sp³-*C* of C₆₀). FT-IR *v*/cm⁻¹ (KBr) 2924, 1710, 1583, 1428, 1411, 1304, 1187, 1107, 1063, 1020, 982, 906, 865, 805, 770, 703, 656, 604, 571, 554, 527. λ_{max} /nm (CHCl₃) 255, 317, 424, 678. MALDI-TOF MS m/z calcd for C₆₆H₅N₂O [M+H]⁺ 841.0396, found 841.0393.

Spectral data of **2t**:^{[4] 1}H NMR (400 MHz, CDCl₃/CS₂) δ 7.96 (d, J = 16.4 Hz, 1H), 7.53–7.51 (m, 2H), 7.37–7.29 (m, 3H), 7.25–7.23 (m, 1H).

Spectral data of **2u**: ¹H NMR (400 MHz, CDCl₃/CS₂) δ 4.55 (q, J = 6.8 Hz, 2H), 1.51 (t, J = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃/CS₂ with Cr(acac)₃ as relaxation reagent, all 2C unless indicated) δ 159.40 (1C), 147.59 (1C), 146.99 (1C), 146.72, 146.17, 146.15 (3C), 146.14, 145.78 (4C), 145.51, 145.09, 144.99, 144.97, 144.35, 143.99, 143.97, 143.42, 142.68 (4C), 142.63, 142.36, 142.28 (4C), 142.19, 141.97, 141.64, 141.58, 140.07, 140.01, 136.77, 136.29, 105.88 (1C, sp³-*C* of C₆₀), 75.34 (1C, sp³-*C* of C₆₀), 62.76 (1C), 14.21 (1C). FT-IR *v*/cm⁻¹ (KBr) 2980, 2932, 1744, 1720,

1591, 1430, 1370, 1328, 1292, 1174, 1141, 1097, 1065, 1016, 981, 909, 877, 821, 807, 769, 747, 725, 670, 606, 564, 554, 526. λ_{max}/nm (CHCl₃) 254, 316, 424, 676. MALDI-TOF MS m/z calcd for C₆₄H₆NO₃ [M+H]⁺ 836.0342, found 836.0338.

Spectral data of **2v**: ¹H NMR (400 MHz, CDCl₃/CS₂) δ 10.22 (s, 1H), 8.60 (dd, J = 8.4, 1.2 Hz, 1H), 7.41–7.36 (m, 1H), 7.18 (dd, J = 8.4, 1.2 Hz, 1H), 6.95–6.91 (m, 1H). ¹³C NMR (100 MHz, CD₃OD/CS₂ with Cr(acac)₃ as relaxation reagent, all 2C unless indicated) δ 158.23 (1C), 152.32 (1C), 147.86 (1C), 147.40 (1C), 146.55, 146.44, 146.37, 146.11, 146.08, 145.99, 145.85, 145.48, 145.36, 145.25, 144.80, 144.73, 144.59 (4C), 144.20, 143.13, 143.02 (4C), 142.64, 142.61, 142.51, 142.47, 142.10, 141.75, 140.51, 140.17, 137.33, 136.78, 132.35 (1C), 128.47 (1C), 119.78 (1C), 118.36 (1C), 114.23 (1C), 102.85 (1C, sp³-C of C₆₀), 78.96 (1C, sp³-C of C₆₀). FT-IR ν /cm⁻¹ (KBr) 3156, 2920, 1711, 1614, 1585, 1510, 1489, 1456, 1425, 1301, 1251, 1221, 1157, 993, 872, 822, 769, 745, 680, 666, 652, 604, 573, 554, 526. λ_{max} /nm (CHCl₃) 255, 319, 424, 676. MALDI-TOF MS m/z calcd for C₆₇H₆NO₂ [M+H]⁺ 856.0393, found 856.0391.

Spectral data of **2w**: ¹H NMR (400 MHz, CD₃OD/CS₂) δ 8.04 (d, J = 8.4 Hz, 2H), 7.41 (d, J = 8.4 Hz, 2H). ¹³C NMR (100 MHz, CD₃OD/CS₂ with Cr(acac)₃ as relaxation reagent, all 2C unless indicated) δ 152.35 (1C), 147.35 (1C), 146.85 (1C), 146.01, 145.88 (4C), 145.61, 145.57, 145.54, 145.27, 145.05, 144.84, 144.75, 144.50, 144.43, 144.27, 144.06, 143.74, 142.64, 142.49 (4C), 142.13 (5C), 141.99 (4C), 141.80, 141.37, 139.95 (4C), 136.65, 136.26, 128.52, 127.37 (1C), 126.87, 103.69 (1C, sp³-*C* of C₆₀), 78.82 (1C, sp³-*C* of C₆₀), 63.62 (1C). FT-IR ν/cm^{-1} (KBr) 3588, 2920, 1702, 1588, 1510, 1428, 1411, 1301, 1182, 1106, 1045, 1015, 981, 865, 769, 750, 727, 602, 566, 554, 527. $\lambda_{\text{max}}/\text{nm}$ (CHCl₃) 256, 315, 425, 675. MALDI-TOF MS m/z calcd for C₆₈H₈NO₂ [M+H]⁺ 870.0550, found 856.0543.

Spectral data of **2x**: ¹H NMR (400 MHz, CD₃OD/CS₂) δ 8.09 (d, J = 8.0 Hz, 2H), 7.71 (d, J = 8.0 Hz, 2H). ¹³C NMR (100 MHz, CD₃OD/CS₂ with Cr(acac)₃ as relaxation reagent, all 2C unless indicated) δ 152.35 (1C), 147.44 (1C), 146.94 (1C), 146.10, 145.96 (4C), 145.68 (4C), 145.64 (4C), 145.35, 145.13, 144.93, 144.84, 144.56, 144.50, 144.32, 144.13, 143.81, 142.72, 142.57 (4C), 142.20 (4C), 142.08, 142.03, 141.87, 141.46, 140.04 (4C), 136.76, 136.34, 134.14 (1C), 129.89 (1C), 127.66, 103.97 (1C, sp³-C of C₆₀), 78.74 (1C, sp³-C of C₆₀). FT-IR *v*/cm⁻¹ (KBr) 3455, 2950, 2920, 1607, 1511, 1400, 1341, 1302, 1108, 1017, 981, 864, 829, 769, 747, 724, 659, 565, 554, 527. λ_{max} /nm (CHCl₃) 255, 316, 424, 680. MALDI-TOF MS m/z calcd for C₆₇H₇BNO₃ [M+H]⁺ 884.0514, found 884.0511.

Spectral data of **2y**: ¹H NMR (400 MHz, DMSO- d_6 /CS₂) δ 12.80 (s, 1H), 8.19 (d, J =

7.6 Hz, 2H), 8.07 (d, J = 7.6 Hz, 2H). ¹³C NMR (100 MHz, DMSO- d_6 /CS₂ with Cr(acac)₃ as relaxation reagent, all 2C unless indicated) δ 166.56 (1C), 152.56 (1C), 147.85 (1C), 147.33 (1C), 146.49, 146.38, 146.34, 146.08, 146.05, 145.90, 145.79, 145.50, 145.34, 145.24, 144.81, 144.65, 144.50, 144.45, 144.21, 143.11, 142.97 (4C), 142.58 (4C), 142.44 (4C), 142.23, 141.88, 140.53, 140.43, 137.22, 136.79, 133.72 (1C), 132.65 (1C), 130.57, 128.79, 104.54 (1C, sp³-*C* of C₆₀), 78.99 (1C, sp³-*C* of C₆₀). FT-IR ν /cm⁻¹ (KBr) 2961, 2926, 2854, 1729, 1690, 1604, 1454, 1420, 1289, 1262, 1224, 1075, 971, 861, 803, 708, 668, 605, 553, 525. λ_{max} /nm (CHCl₃) 255, 314, 425, 682. MALDI-TOF MS m/z calcd for C₆₈H₆NO₃ [M+H]⁺ 884.0342, found 884.0338.

Spectral data of **2z**: ¹H NMR (400 MHz, CDCl₃/CS₂) δ 7.73–7.69 (m, 2H), 7.69–7.44 (m, 4H), 7.15 (d, *J* = 8.0 Hz, 2H), 2.36 (s, 3H). ¹³C NMR (100 MHz, CDCl₃/CS₂ with Cr(acac)₃ as relaxation reagent, all 2C unless indicated) δ 153.06 (1C), 147.51(1C), 146.90 (1C), 146.00 (4C), 145.97, 145.68, 145.58, 145.27, 145.24, 145.06, 144.86, 144.85, 144.58, 144.16, 143.99, 143.82 (4C), 142.65, 142.50, 142.47, 142.14, 142.10, 141.94, 141.92, 141.84, 141.46, 140.31, 139.83, 138.71 (1C), 136.61, 136.43, 132.57 (1C), 131.81, 130.10 (1C), 130.05 (1C), 129.49 (1C), 129.03, 127.85 (1C), 124.71 (1C), 119.66 (1C), 102.85 (1C, sp³-*C* of C₆₀), 95.07 (1C), 87.19 (1C), 81.13 (1C, sp³-*C* of C₆₀), 21.57 (1C). FT-IR *v*/cm⁻¹ (KBr) 2913, 2214, 1612, 1589, 1509, 1300, 1180, 1111, 1029, 971, 897, 859, 849, 813, 771, 759, 677, 648, 604, 573, 554, 526. λ_{max} /nm (CHCl₃) 255, 319, 424, 675. MALDI-TOF MS m/z calcd for C₇₆H₁₂NO [M+H]⁺ 954.0913, found 954.0904.

Spectral data of **2aa**: ¹H NMR (400 MHz, DMSO-*d₆*/CS₂) δ 8.80 (d, J = 8.0 Hz, 1H), 8.64 (d, J = 8.0 Hz, 2H), 8.36 (d, J = 8.0 Hz, 2H), 8.27 (d, J = 8.0 Hz, 1H), 7.93–7.89 (m, 6H), 7.69–7.60 (m, 4H), 4.73 (t, 2H), 2.01 (bs, 2H), 1.30 (bs, 6H), 0.91 (bs, 3H). ¹³C NMR (100 MHz, DMSO-*d₆*/CS₂ with Cr(acac)₃ as relaxation reagent, all 2C unless indicated) δ 152.51 (1C), 151.65 (1C), 147.85 (1C), 147.35 (1C), 146.52, 146.38, 146.35, 146.10, 146.05 (4C), 145.79, 145.53, 145.35, 145.26, 144.94, 144.88, 144.75, 144.54, 144.23, 143.14, 143.00 (4C), 142.61 (4C), 142.51, 142.44, 142.28, 141.88, 140.51, 140.46, 138.68 (1C), 137.23, 136.78, 131.24 (1C), 130.93, 129.74, 129.25 (1C), 128.64 (1C), 128.17 (1C), 128.00, 127.86 (1C), 127.55, 127.41 (1C), 127.03 (1C), 126.52 (1C), 125.75, 125.01 (1C), 124.84 (1C), 123.74 (1C), 123.28, 121.06, 104.40 (1C, sp³-C of C₆₀), 79.20 (1C, sp³-C of C₆₀), 47.36 (1C), 31.82 (1C), 30.88 (1C), 26.66 (1C), 23.33 (1C), 14.67 (1C). FT-IR ν /cm⁻¹ (KBr) 2923, 1608, 1471, 1449, 1424, 1359, 1305, 1185, 1156, 1090, 1005, 982, 865, 824, 751, 723, 606, 572, 527. λ_{max} /nm (CHCl₃) 258, 320, 362, 424, 688. MALDI-TOF MS m/z calcd for C₉₄H₃₀N₃O [M+H]⁺ 1216.2383, found 1216.2371.

Spectral data of **2bb**: ¹H NMR (400 MHz, CDCl₃/CS₂) δ 8.28 (d, J = 8.8 Hz, 4H),

S-18

7.79 (d, J = 8.8 Hz, 4H), 7.75 (d, J = 8.8 Hz, 2H), 7.60 (d, J = 8.8 Hz, 2H), 7.56 (s, 2H), 2.04–2.00 (m, 4H), 1.15–1.03 (m, 20H), 0.76 (t, J = 6.8 Hz, 6H), 0.67 (bs, 4H). ¹³C NMR (100 MHz, CDCl₃/CS₂ with Cr(acac)₃ as relaxation reagent, all 4C unless indicated) δ 152.79 (2C), 151.63 (2C), 147.54 (2C), 147.06 (2C), 146.20, 146.06 (8C), 145.79, 145.73, 145.69, 145.43, 145.20, 145.02, 144.94, 144.57 (8C), 144.33, 144.22, 143.88, 143.50 (2C), 142.80, 142.66 (8C), 142.28 (8C), 142.15, 142.09, 141.89, 141.52, 140.36 (2C), 140.13 (8C), 138.80 (2C), 136.89, 136.48, 129.14, 127.58 (2C), 127.49, 126.12 (2C), 121.24 (2C), 120.31 (2C), 104.63 (2C, sp³-C of C₆₀), 78.92 (2C, sp³-C of C₆₀), 55.09 (1C), 40.44 (2C), 31.82 (2C), 30.15 (2C), 29.34 (2C), 29.31 (2C), 23.94 (2C), 22.77 (2C), 14.17 (2C). FT-IR v/cm⁻¹ (KBr) 2919, 2848, 1710, 1602, 1463, 1429, 1300, 1181, 1104, 981, 863, 812, 769, 647, 604, 571, 553, 526. λ_{max}/nm (CHCl₃) 255, 339, 422, 682. MALDI-TOF MS m/z calcd for C₁₆₃H₄₉N₂O₂ [M+H]⁺ 2065.3789, found 2065. 3781.

References

- [1] H.-T. Yang, X.-J. Ruan, C.-B. Miao and X.-Q. Sun, *Tetrahedron Lett.* 2010, 51, 6056.
- [2] M. S. Meier, Tetrahedron 1996, 52, 5043.
- [3] F. Langa, P. de la Cruz, E. Espíldora, A. González-Cortés, A. de la Hoz and V. López-Arza, J. Org. Chem. 2000, 65, 8675.
- [4] H. Irngartinger, P. W. Fettel, T. Escher, P. Tiniefeld, S. Nord and M. Sauer, *Eur. J. Org. Chem.* 2000, 455.

S-20

¹H NMR (400 MHz, CDCl₃/CS₂) of compound 20

¹H NMR (400 MHz, CDCI₃/CS₂) of compound 2t

¹H NMR (400 MHz, CDCl₃/CS₂) of compound 2v

¹³C NMR (100 MHz, DMSO-d₆/CS₂) of compound 2aa

S-62

