Pd(II)-Catalyzed Formal [4+1] Cycloadditions of Diazoacetates and Aryl Propargyl Alcohols to Form 2, 5-Dihydrofurans

Taoda Shi^{#a}, Xin Guo^{#a}, Wenhao Hu*^{a,b}

^aInstitute of Drug Discovery and Development, East China Normal University, Shanghai Engineering Research Center for Molecular Therapeutics and New Drug Development, Shanghai, 200062 (China)

E-mail: whu@chem.ecnu.edu.cn

^bDepartment of Chemistry, East China Normal University, Shanghai 200062, P.R. (China.) Fax: (+86) 21-62233176

[#]*The authors contributed equally.*

Supporting Information

General Information	2
General Procedure for the synthesis of aryl propargyl alcohols	2
General Procedure for the synthesis of diazoacetates	2
Procedure for Cu(OTf) ₂ -catalyzed reaction of diazoesters and alkynes	2-3
Procedure for Complex of [PdCl(ŋ ³ -C ₃ H ₅)] ₂ and <i>t</i> -Bu-Box-catalyzed rea	ction of
1a and 2a	3-4
Procedure for AgSbF ₆ -activated [Ir(COD)Cl] ₂ catalyzed cyclopropenation	ı of 1a
and 2a	4
Synthesis of 2, 5-Dihydrofurans	4-9
Procedure for hydrolysis of 2, 5-Dihydrofuran 3a	9-10
Procedure for PCC oxidation of 2, 5-Dihydrofuran 3a	10
Procedure for reduction of 2, 5-Dihydrofuran 3a	10-11
References	11
NMR Spectra	12-36
X-ray Crystal Structure Data	37

General Information All reactions were carried out under nitrogen atmosphere with magnetic stirring. All ¹H NMR, and ¹³C NMR spectra were recorded using a Brucker-400 MHz spectrometer in CDCl₃unless otherwise noted. Tetramethylsilane (TMS) served as an internal standard ($\delta = 0$) for ¹H NMR. Chemical shifts are reported in parts per million as follows: chemical shift, multiplicity (s =singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br =broad). HRMS (ESI) Mass spectrawere recorded on Ion Spec FT-ICR mass spectrometer.

General Procedure for the synthesis of aryl propargyl alcohols

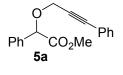
All the aryl propargyl alcohols are prepared as the reported procedures.¹ To a 50 mL three-necked flask equipped with a condenser and a nitrogen balloon, was added aryl bromide (5.0 mmol, 1.0 eq), $Pd(PPh_3)_2Cl_2(0.05 \text{ mmol}, 0.01 \text{ eq})$, CuI (0.5 mmol, 0.1 eq), 25 mL Et₃N and propargyl alcohol (6.0 mmol, 1.2 eq.). Then the mixture was heated up to 80 °C overnight. After the reaction finished, the mixture was poured into cold ammonia solution, stirred for 5 mins, and extracted with ethyl acetate for 3 times (15 mL/per run). The combined organic phase was washed with NH₄Cl and brine, dried with anhydrous MgSO₄, filtered and evaporated. All the alcohols were purified on Silicon gel column chromatography with petrol ether and ethyl acetate as elution.

General Procedure for the synthesis of diazoacetates

All the diazoascetates were prepared as reported procedures.² Methyl arylacetates (10 mmol, 1.0 eq) and *p*-ABSA (11 mmol, 1.1eq.) was dissolved in a 100 mL flask with 40 mL CH₃CN. After the flask was fixed in ice bath for 10 min, 20 mL solution of DBU (1.1 mmol, 1.1 eq.) in CH₃CN was added drop wise. The starting material disappeared in 2 hours, monitored by TLC. Then the reaction mixture was dumped down to saturated aqueous NH₄Cl at 0 °C and stirred for 10 min. The resulting mixture was extracted with diethyl ether for 3 times (20 mL for each run). The combined organic phase was washed with 60 mL brine, dried with anhydrous Na₂SO₄, filtered and evaporated. The crude product, mixed with 5 g silica gel, was loaded on the chromatography column, using pure petrol ether as the elution, and the pure products were obtained.

Procedure for Cu(OTf)₂-catalyzed reaction of 1a and 2a

A 2-necked flask was dried with heat gun, and cooled down in the Nitrogen


atmosphere. To the flask, 200 mg 4 Å MS, Cu(OTf)₂ (0.04mmol, 0.1 eq.), 2a (0.4mmol, 1.0 eq.) and 8 mL anhydrous dichloromethane was added, and then 1a(0.6mmol, 1.5 eq.) dissolved in 4 mL anhydrous dichloromethane was added via a syringe pump over 1 hr at rt. To the crude product, 0.3g Silicon gel and 1 mL anhydrous dichloromethane was added, and then the solvent was vaporized via vacuum rotator. The pure products were obtained by column chromatography with petrol ether and ethyl acetate (v/v = 50 : 1-20 : 1) as eluent.

CO₂Me Column chromatography afforded the desired product 6a in 14% yield as Ph OH colorless liquid (solidified when stored in freeze for several days): Ph 6a ¹HNMR(400 MHz, CDCl₃): δ 7.36 (dd, J_1 = 8.4 Hz, J_2 = 1.6 Hz, 1H), 7.29 – 7.23 (m, 5H), 7.22-7.18 (m, 2H), 3.72 (s, 3H).¹³CNMR (100 MHz, CDCl3): 175.2, 140.3, 129.8, 129.5, 129.0, 128.2, 128.1,126.6, 125.7, 113.5, 110.9, 56.7, 52.4, 36.7. HRMS: calcd for $C_{18}H_{16}O_{3}Na[M+Na]^{+}$, 303.0997, found 303.1002.

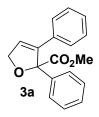
Column chromatography afforded the desired product 4a in 28% yield as CO₂Me colorless liquid: ¹HNMR(400 MHz, CDCl₃): δ 7.34 (dd, J_1 = 16 Hz, 2H), 7.29 Ph OH 3H).¹³CNMR (100 MHz, CDCl3): 209.18, 174.42, 139.5, 133.3, 131.8, 128.1, 128.0, 127.9, 127.2,

126.9, 108.8, 81.3, 79.7, 53.3 HRMS: calcd for $C_{18}H_{16}O_3Na [M+Na]^+$, 303.0997, found 303.0983.

Column chromatography afforded the desired product 5a in 5% yield as colorless liquid: ¹HNMR(400 MHz, CDCl₃): δ 7.34 (dd, J_1 = 16 Hz, 2H), 7.29 (d, J₁= 7.6 Hz, 2H), 7.28-7.13 (m, 6H), 5.12 (s, 2H), 4.23 (s, 1H), 3.70 (s,

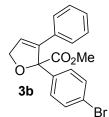
3H).¹³CNMR (100 MHz, CDCl3): 209.18, 174.42, 139.5, 133.3, 131.8, 128.1, 128.0, 127.9, 127.2, 126.9, 108.8, 81.3, 79.7, 53.3. HRMS: calcd for C₁₈H₁₆O₃Na [M+Na]⁺, 303.0997, found 303.0998.

Procedure for Complex of [PdCl(ŋ³-C₃H₅)]₂ and *t*-Bu-Box-catalyzed reaction of 1a and 2a.

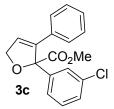

A 2-necked flask was dried with heat gun, and cooled down in the Nitrogen atmosphere. To the flask, 200 mg 4 Å MS, $[PdCl(\eta^3-C_3H_5)]_2(0.008 \text{ mmol}, 0.02 \text{ eq.})$, t-Bu-Box(0.016mmol, 0.04eq.) and 1 mL anhydrous dichloromethane was added was added and the reaction mixture was stirred at room temperature for 2 hours before phenyl propargyl alcohol **2a** (0.4mmol, 1.0 eq.) and 8 mL anhydrous dichloromethane was added. Methyl phenyldiazoacetate **1a** (0.6mmol, 1.5 eq.) dissolved in 4 mL anhydrous dichloromethane was added via a syringe pump over 1 hour at rt. To the crude product, 0.3 g Silicon gel and 1 mL anhydrous dichloromethane was added, and the solvent was vaporized via a vacuum rotator. The pure products were obtained by column chromatography with petrol ether and ethyl acetate (v/v = 20 : 1) as eluent.

Procedure for AgSbF₆-activated [Ir(COD)Cl]₂ catalyzed cyclopropenation of 1a and 2a:

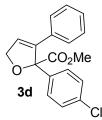
A 2-necked flask was dried with heat gun, and cooled down in the Nitrogen atmosphere. To the flask, 200 mg 4 Å MS, [Ir(COD)CI]₂(0.01mmol, 0.05 equiv), AgSbF₆(0.02 mmol, 0.1 equiv), *R*-BINAP (0.01 mmol, 0.05equiv) and 1 mL anhydrous dichloromethane was added, and stirred at room temperature for 2 hours. **2a** (0.2 mmol, 1.0 eq.) and 8 mL anhydrous dichloromethane was added, and then **1a** (0.3mmol, 1.5 eq.) dissolved in 4 mL anhydrous dichloromethane was added via a syringe pump over 1 hour at rt. Then 4 Å MS was removed via flash column chromatography. To the crude product, 0.2 g Silicon gel and 1 mL anhydrous dichloromethane was added, and then the solvent was vaporized via vacuum rotator. The pure products were obtained by column chromatography with petrol ether and ethyl acetate (v/v = 3:1) as elution.


General Procedure for Pd(II)-catalyzed auto-tandem reaction of diazoesters and arylpropargyl alcohols

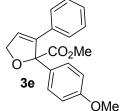
A 2-necked flask was dried with heat gun, and cooled down in the Nitrogen atmosphere. To the flask, 200 mg 4 Å MS, $[PdCl(\eta^3-C_3H_5)]_2$ (0.004mmol, 0.02equiv), aryl propargyl alcohol **2**(0.2 mmol, 1.0 eq.) and 8 mL anhydrous dichloromethane was added and stirred. Then diazoacetate **1**(0.3mmol, 1.5 eq.) dissolved in 4 mL anhydrous dichloromethane was added via a syringe pump over 1 hr at rt. To the crude product, 0.2 g Silicon gel and 1 mL anhydrous dichloromethane was added, and the solvent was vaporized via vacuum rotator. The pure products were obtained by column chromatography with petrol ether and ethyl acetate (v/v = 20:1) as elution.


Column chromatography afforded the desired product **3a** in 70% yield as colorless liquid: ¹HNMR(400 MHz, CDCl₃): δ 7.35 – 7.20 (m, 10H), 6.47 (t, *J* = 2 Hz, 1H), 4.99 (dd, *J*₁= 5.2 Hz, *J*₂= 2 Hz, 1H), 4.93 (dd, *J*₁= 5.2 Hz, *J*₂= 2 Hz, 1H), 3.78 (s, 3H).¹³CNMR(100 MHz, CDCl3): 172.0, 141.2, 139.4, 132.6,

128.3, 128.2, 128.0, 127.9, 127.4, 126.8, 94.8, 74.8, 52.5. HRMS: calcd for $C_{15}H_{13}N_3O_4Na$ $[M+Na]^+$, 322.0804, found 322.0813.

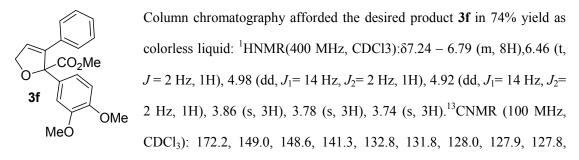

Column chromatography afforded the desired product **3b** in 60% yield as colorless liquid: ¹HNMR(400 MHz, CDCl₃): δ 7.44 (d, *J* = 8.8 Hz, 2H), 7.26 – 7.24 (m, 7H), 6.47 (t, *J* = 2 Hz, 1H), 4.96 (dd, *J*₁= 5.2 Hz, *J*₂= 2 Hz, 1H), 4.92 (dd, *J*₁= 5.2 Hz, *J*₂= 2 Hz, 1H), 3.78 (s, 3H).¹³CNMR (100 MHz, CDCl₃):

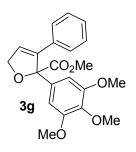
171.7, 141.0, 138.4, 132.3, 131.3, 129.2, 128.2, 128.1, 127.8, 127.1, 122.5, 94.1, 75.0, 52.7. HRMS: calcd for $C_{15}H_{13}N_3O_4Na$ [M+Na]⁺, 322.0804, found 322.0813.


Column chromatography afforded the desired product **3c** in 54%yield as colorless liquid: ¹HNMR(400 MHz, CDCl₃): δ 7.39 (s, 1H), 7.29 – 7.22 (m, 8H), 6.45 (t, *J* = 2 Hz, 1H), 4.99 (dd, *J*₁= 13.6 Hz, *J*₂= 1.6 Hz, 1H), 4.93 (dd, *J*₁= 13.6 Hz, *J*₂= 1.6 Hz, 1H), 3.78 (s, 3H).¹³CNMR (100 MHz, CDCl₃):

171.5, 141.3, 141.0, 134.2, 132.3, 129.3, 128.4, 128.1, 128.0, 127.9, 127.6, 127.1, 125.6, 94.1, 75.0, 52.7. HRMS: calcd for C₁₈H₁₅ClO₃Na [M+Na]⁺, 337.0607, found 337.0616.

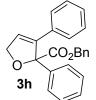
Column chromatography afforded the desired product **3d** in 69% yield as colorless liquid: ¹HNMR(400 MHz, CDCl3): δ 7.30 – 7.21 (m, 9H), 6.48 (t, *J* = 2 Hz, 1H), 4.99 (dd, *J*₁= 12 Hz, *J*₂= 4 Hz, 1H), 4.93 (dd, *J*₁= 12 Hz, *J*₂= 4 Hz, 1H), 3.78 (s, 3H).¹³CNMR (100 MHz, CDCl3): 171.8, 140.9, 137.8,


131.3, 128.9, 128.8, 128.1, 127.8, 127.0, 91.1, 75.0, 52.7. HRMS: calcd for $C_{18}H_{15}ClO_3Na$ $[M+Na]^+$, 337.0607, found 337.0619.

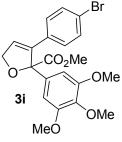

Column chromatography afforded the desired product **3e** in 72% yield as colorless liquid: ¹HNMR(400 MHz, CDCl3): δ 7.20 – 7.14 (m, 6H), 6.85-6.38 (m, 3H), 6.38 (t, J = 2 Hz, 1H), 4.91 (dd, $J_1 = 14$ Hz, $J_2 = 2$ Hz, 1H), 4.86 (dd, $J_1 = 14$ Hz, $J_2 = 2$ Hz, 1H), 3.70 (s, 3H), 3.66 (s,

3H).¹³CNMR (100 MHz, CDCl₃): 171.9, 159.4, 141.3, 140.8, 132.7, 128.0, 127.9, 126.9, 119.7,

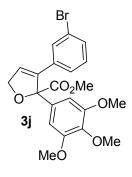
113.8, 113.2, 94.7, 74.8, 55.2, 52.6. HRMS: calcd for $C_{19}H_{18}O_4Na \ [M+Na]^+$, 333.1103, found 333.1093



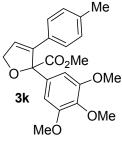
126.8, 119.9, 110.9, 110.6, 94.5, 74.6, 55.8, 55.7, 52.5. HRMS: calcd for $C_{20}H_{20}O_5Na$ [M+Na]⁺, 363.1208, found 363.1217.


Column chromatography afforded the desired product **3g** in 78% yield as colorless liquid: ¹HNMR(400 MHz, CDCl3): δ 7.28 – 7.25 (m, 5H), 6.57 (s, 2H), 6.41 (t, *J* = 1.6 Hz, 1H), 5.00 (dd, *J*₁= 13.8 Hz, *J*₂= 1.6 Hz, 1H), 4.92 (dd, *J*₁= 13.8 Hz, *J*₂= 1.6 Hz, 1H), 3.83 (s, 3H), 3.79 (s, 3H), 3.70 (s, 6H).¹³CNMR (100 MHz, CDCl3): 172.0, 152.8, 141.4, 137.9, 134.5, 132.9,

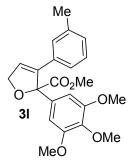
128.2, 128.0, 127.9, 127.1, 104.7, 94.5, 74.9, 60.8, 56.0, 52.6. HRMS: calcd for $C_{21}H_{22}O_6Na$ $[M+Na]^+$, 393.1314, found 393.1328.


Column chromatography afforded the desired product **3h** in 59% yield as colorless liquid: ¹HNMR(400 MHz, CDCl₃): δ 7.41 – 7.18 (m, 15H),6.53 (t, *J* = 1.6 Hz, 1H), 5.26 (s, 2H), 5.00 (dd, *J*₁= 14 Hz, *J*₂= 1.6 Hz, 1H), 4.92 (dd, *J*₁= 14 Hz, *J*₂= 1.6 Hz, 1H).¹³CNMR (100 MHz, CDCl₃): 171.3, 141.0,

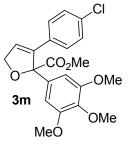
139.3, 135.5, 132.7, 128.4, 128.3, 128.2, 128.1 128.0, 127.9, 127.8, 127.5, 127.1, 94.8, 74.9, 67.1. HRMS: calcd for $C_{24}H_{20}O_3Na [M+Na]^+$, 379.1310, found 379.1312.


Column chromatography afforded the desired product **3i** in 58% yield as colorless liquid: ¹HNMR(400 MHz, CDCl₃): δ 7.37 (d, J = 6.8 Hz, 2H),7.14 (d, J = 6.8 Hz, 2H),6.54(s, 2H), 6.44 (t, J = 2 Hz, 1H), 4.97 (dd, J_1 = 14.2 Hz, J_2 = 1.6 Hz, 1H), 4.92 (dd, J_1 = 14.2 Hz, J_2 = 1.6 Hz, 1H), 3.84 (s, 3H), 3.78 (s, 3H), 3.73 (s, 6H).¹³CNMR (100 MHz, CDCl3):

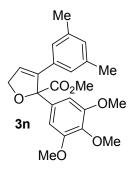
171.8, 153.0 140.4, 138.2, 134.2, 131.7, 129.8, 127.6, 122.2, 104.6, 94.6, 74.7, 60.8, 56.1, 52.7. HRMS: calcd for C₂₁H₂₁BrO₆Na [M+Na]⁺, 471.0419, found 471.0424.


Column chromatography afforded the desired product **3j**in 54% yield as colorless liquid: ¹HNMR(400 MHz, CDCl₃): δ 7.38 (d, J = 1.6 Hz, 1H),7.37(s, 1H), 7.15-7.07 (m, 2H),7.07(s, 1H), 6.39(t, J = 2 Hz, 1H), 4.98(dd, J_1 = 14.2 Hz, J_2 = 1.6 Hz, 1H), 4.94 (dd, J_1 = 14.2 Hz, J_2 = 1.6 Hz, 1H), 3.83 (s, 3H), 3.79 (s, 3H), 3.73 (s, 6H).¹³CNMR (100 MHz, CDCl3): 171.7, 153.0 140.5, 138.2, 134.2, 131.2, 129.5, 128.2, 127.0, 122.2, 104.5,

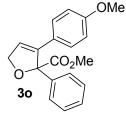
94.5, 74.7, 60.8, 56.1, 52.7. HRMS: calcd for $C_{21}H_{21}BrO_6Na$ [M+Na]⁺, 471.0419, found 471.0419.


Column chromatography afforded the desired product **3**kin 62% yield as colorless liquid: ¹HNMR(400 MHz, CDCl3): δ 7.18 (d, *J* = 8 Hz, 2H),7.05 (d, *J* = 8 Hz, 2H),6.58(s, 2H), 6.39 (t, *J* = 1.6 Hz, 1H), 4.98 (dd, *J*₁= 13.6 Hz, *J*₂= 1.6 Hz, 1H), 4.94 (dd, *J*₁= 13.6 Hz, *J*₂= 1.6 Hz, 1H), 3.83 (s, 3H), 3.78 (s, 3H), 3.72 (s, 6H), 2.31 (s, 3H).¹³CNMR (100 MHz, CDCl3):

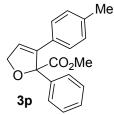
172.0, 152.8 141.2, 137.9, 134.6, 129.9, 128.8, 1287, 128.0, 126.2, 104.8, 94.5, 74.8, 60.8, 56.0, 52.6, 21.1. HRMS: calcd for C₂₂H₂₄O₆Na [M+Na]⁺, 407.1471, found 407.1487.


Column chromatography afforded the desired product **3l**in 63% yield as colorless liquid: ¹HNMR(400 MHz, CDCl3): δ 7.13-7.02 (m, 4H),6.58(s, 2H), 6.36 (t, *J* = 1.6 Hz, 1H), 4.99 (dd, *J*₁= 13.8 Hz, *J*₂= 1.6 Hz, 1H), 4.94 (dd, *J*₁= 13.8 Hz, *J*₂= 1.6 Hz, 1H), 3.87 (s, 3H), 3.83 (s, 3H), 3.71 (s, 6H), 2.28 (s, 3H).¹³CNMR (100 MHz, CDCl3): 172.0, 152.8 141.7, 137.9, 137.5, 134.6, 134.0,133.0, 128.8, 128.7, 127.9, 126.8, 125.3, 104.7, 104.1,

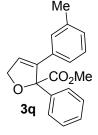
94.5, 74.8, 60.8, 56.2, 56.0, 52.6, 21.4. HRMS: calcd for C₂₂H₂₄O₆Na [M+Na]⁺, 407.1471, found 407.1478.


Column chromatography afforded the desired product **3m**in 58% yield as colorless liquid: ¹HNMR(400 MHz, CDCl3): δ 7.21 (s, 4H),6.54(s, 2H), 6.43 (t, J = 1.6 Hz, 1H), 4.97 (dd, $J_1 = 14.0$ Hz, $J_2 = 1.6$ Hz, 1H), 4.93 (dd, $J_1 = 14.0$ Hz, $J_2 = 1.6$ Hz, 1H), 3.83 (s, 3H), 3.78 (s, 3H), 3.73 (s, 6H).¹³CNMR (100 MHz, CDCl3): 171.8, 153.0 140.3, 138.2, 134.2, 134.0,

131.3, 129.5, 128.2, 127.6, 104.6, 94.6, 74.7, 60.8, 56.1, 52.7. HRMS: calcd for $C_{21}H_{21}ClO_6Na$ [M+Na]⁺, 427.0924, found 427.0922.


Column chromatography afforded the desired product **3n**in 51% yield as colorless liquid: ¹HNMR(400 MHz, CDCl3): $\delta 6.89(s, 1H)$, 6.85(s, 2H), 6.59(s, 2H), 6.31 (t, J = 1.6 Hz, 1H), 4.98 (dd, $J_1 = 13.7$ Hz, $J_2 = 1.6$ Hz, 1H), 4.91 (dd, $J_1 = 13.7$ Hz, $J_2 = 1.6$ Hz, 1H), 3.82 (s, 3H), 3.79 (s, 3H), 3.71 (s, 3H), 2.23 (s, 6H).¹³CNMR (100 MHz, CDCl3): 172.0, 152.6 141.8, 137.8, 137.3, 134.7, 133.0, 129.6, 126.6, 126.0, 104.6, 94.4, 74.8,

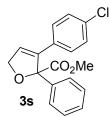
60.7, 55.9, 52.6, 21.2. HRMS: calcd for C₂₃H₂₆O₆Na [M+Na]⁺, 421.1627, found 421.1618.


Column chromatography afforded the desired product **30** in 64% yield as colorless liquid: ¹HNMR(400 MHz, CDCl3): δ 7.33 – 7.17 (m, 5H), 7.13 (d, J = 8 Hz, 2H), 6.66 (d, J = 8 Hz, 2H), 6.32 (t, J = 2 Hz, 1H), 4.88 (dd, $J_1 =$ 20 Hz, $J_2 = 4$ Hz, 1H), 4.83 (dd, $J_1 = 20$ Hz, $J_2 = 4$ Hz, 1H), 3.70 (s, 3H),

3.67 (s, 3H).¹³CNMR (100 MHz, CDCl3): 172.2, 159.3, 140.4, 139.5, 129.2, 128.7, 128.4, 128.3, 128.2, 127.5, 126.6, 125.0, 94.7, 74.8, 55.2, 52.6. HRMS: calcd for C₁₉H₁₈O₄Na [M+Na]⁺, 333.1103, found333.1114.

Column chromatography afforded the desired product **3p** in 60% yield as colorless liquid: ¹HNMR(400 MHz, CDCl3): $\delta7.30 - 7.24$ (m, 5H), 7.08 (d, J = 8 Hz, 2H), 6.94 (d, J = 8 Hz, 2H), 6.39 (t, J = 2 Hz, 1H), 4.90 (dd, $J_1 = 16$ Hz, $J_2 = 4$ Hz, 1H), 4.85 (dd, $J_1 = 16$ Hz, $J_2 = 4$ Hz, 1H), 3.71 (s, 3H), 2.22

(s, 3H).¹³CNMR (100 MHz, CDCl3): 172.1, 140.9, 139.1, 137.8, 129.6, 128.7, 128.3, 128.2, 127.7, 127.4, 126.0, 94.7, 74.8, 52.5, 21.4. HRMS: calcd for C₁₉H₁₈O₃Na [M+Na]⁺, 317.1154, found 317.1138.


Column chromatography afforded the desired product **3q** in 61%yield as colorless liquid: ¹HNMR(400 MHz, CDCl3): δ 7.28-7.24 (m, 5H), 7.18-6.99 (m, 4H), 6.38 (t, *J* = 4 Hz, 1H), 4.91 (dd, *J*₁= 12 Hz, *J*₂= 4 Hz, 1H), 4.85 (dd, *J*₁= 12 Hz, *J*₂= 4 Hz, 1H), 4.85 (dd, *J*₁= 12 Hz, *J*₂= 4 Hz, 1H), 3.71 (s, 3H), 2.18 (s, 3H).¹³CNMR (100 MHz, CDCl3): 172.1, 141.3, 139.4, 137.5, 132.6, 128.9, 128.7, 128.5, 128.3,128.2, 128.0,

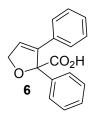
127.9, 127.8, 127.4, 127.2, 126.7, 125.2, 125.1, 94.7, 74.8, 52.6, 21.1. HRMS: calcd for $C_{19}H_{18}O_3Na [M+Na]^+$, 317.1154, found 317.1166.

Column chromatography afforded the desired product 3r in 50% yield ascolorless liquid: ¹HNMR(400 MHz, CDCl3):87.27 – 7.24 (m, 6H), 7.19 (s, 1H), 7.04 (d, J = 8 Hz, 2H), 6.43 (t, J = 4 Hz, 1H), 4.90 (dd, $J_1 = 12$ Hz, $J_2 = 4$ Hz, 1H), 4.86 (dd, J_1 = 12 Hz, J_2 = 4 Hz, 1H), 3.72 (s, 3H).¹³CNMR (100 MHz, CDCl3): 171.9, 140.3, 139.0, 131.2, 129.5, 128.6, 128.4, 127.2, 122.1, 94.7, 74.8, 52.6.

HRMS: calcd for C₁₈H₁₅O₃BrNa [M+Na]⁺, 381.0102, found 381.0083.

Column chromatography afforded the desired product 3s in 55% yield as colorless liquid: ¹HNMR(400 MHz, CDCl3):87.26 (s, 5H), 7.10 (s, 4H), 6.11 $(t, J = 4 \text{ Hz}, 1\text{H}), 4.91 \text{ (dd}, J_1 = 12 \text{ Hz}, J_2 = 4 \text{ Hz}, 1\text{H}), 4.85 \text{ (dd}, J_1 = 12 \text{ Hz},$ *J*₂= 4 Hz, 1H), 3.72 (s, 3H).¹³CNMR (100 MHz, CDCl3): 170.9, 159.0,

158.1, 128.9, 128.7, 127.5, 124.6, 122.8, 121.2, 111.4, 106.7, 98.7, 79.7, 63.5, 52.4.HRMS:calcd for C₁₈H₁₅O₃ClNa [M+Na]⁺, 337.0607, found 337.0623.

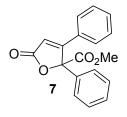


Column chromatography afforded the desired product 3t in 52% yield as colorless liquid: ¹HNMR(400 MHz, CDCl3):87.36 - 7.19 (m, 7H), 7.03 -6.69 (m, 2H), 6.41 (t, J = 4 Hz, 1H), 4.92 (dd, $J_1 = 12$ Hz, $J_2 = 4$ Hz, 1H), 4.87 (dd, J_1 = 12 Hz, J_2 = 4 Hz, 1H), 3.72 (s, 3H).¹³CNMR (100 MHz,

CDCl3): 171.8, 140.2, 139.0, 134.8, 130.9, 128.6, 128.4, 128.1, 127.2, 126.6, 128.4, 128.1, 127.2, 126.6, 122.0, 94.7, 52.6. HRMS: calcd for $C_{18}H_{15}O_3BrNa [M+Na]^+$, 381.0102, found 381.0121.

Procedure for hydrolysis of 2, 5-Dihydrofuran 3a

To a 20 mL flask, 3a (0.2 mmol) and LiOH (1.0 mmol, 5.0 eq) dissolved in the mixture of water, THF and methanol was added at 0 °C. After refluxed for 4 h, the reaction was cooled down and quenched with 1 N HCl. The aqueous phase was extracted with ethyl acetate for 3 times. The combined organic phase was dried with anhydrous Na₂SO₄. The solvent was removed with vacuum rotator, affording the crude product. Then 0.2 g Silicon gel was added to make the uniformed sample for the chromatography. The pure products were obtained with dichloromethane and methanol (v/v = 50 : 1-10 : 1) as elution.

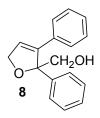


Column chromatography afforded the desired product **6** in 78% yield as colorless solid: ¹HNMR(400 MHz, d₆-acetone): δ 13.00 (br, 1H), 7.36-7.31 (m, 10H), 6.81 (t, *J* = 2 Hz, 1H), 4.85 (dd, *J*₁= 16 Hz, *J*₂= 2 Hz, 1H), 4.80 (dd, *J*₁= 16 Hz, *J*₂= 2 Hz, 1H), 4.80 (dd, *J*₁= 16 Hz, *J*₂= 2 Hz, 1H). ¹³CNMR (100 MHz, d₆-acetone): 172.5, 140.0, 139.9, 132.4, 127.9,

127.6, 127.5,127.4, 93.8,74.3. HRMS: calcd for $C_{17}H_{14}O_3Na$ [M+Na]⁺, 289.0841, found 289.0834.

Procedure for PCC oxidation of 2, 5-Dihydrofuran 3a³.

To a 20 mL flask, **3a** (0.2 mmol) was added and PCC (0.4 mmol, 2.0 eq) dissolved in $(CHCl)_2$ and KOAc (0.4 mmol, 2.0 eq) was added. After refluxed for 2 h, the reaction was cooled down and quenched with saturated NH₄Cl. The aqueous phase was extracted with ethyl acetate for 3 times. The combined organic phase was dried with anhydrous Na₂SO₄. The solvent was removed with vacuum rotator, affording the crude product. Then 0.2 g Silica gel was added to make the uniformed sample for the chromatography. The pure products were obtained with petrol ether and ethyl acetate (v/v = 10 : 1-5: 1) as elution.



Column chromatography afforded the desired product **7** in 89% yield as yellow solid: ¹HNMR(400 MHz, CDCl₃):87.42 – 7.27 (m, 10H), 6.55 (s, 1H), 3.72 (s, 3H).¹³CNMR (100 MHz, CDCl3): 170.9, 168.0, 165.0, 134.7, 131.4, 129.7, 129.3,128.8, 128.0, 116.6, 91.0, 53.7. HRMS: calcd for

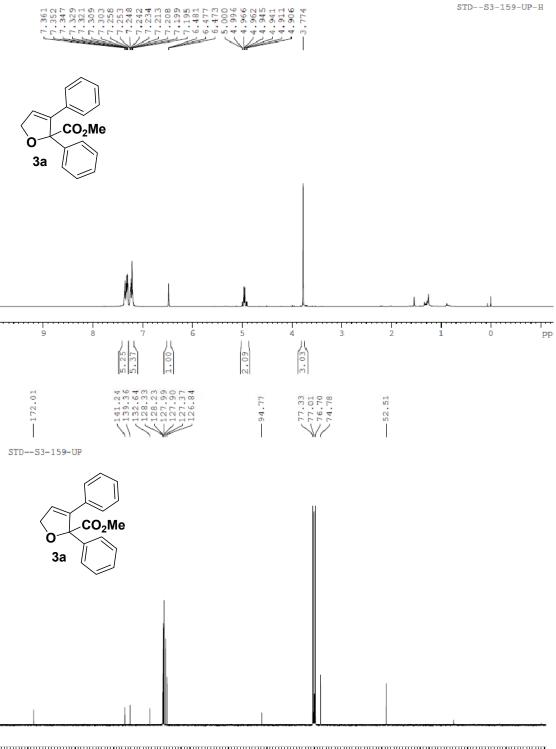
 $C_{18}H_{15}O_4Na [M+Na]^+$, 295.0970, found 295.0982.

Procedure for reduction of 2, 5-Dihydrofuran 3a

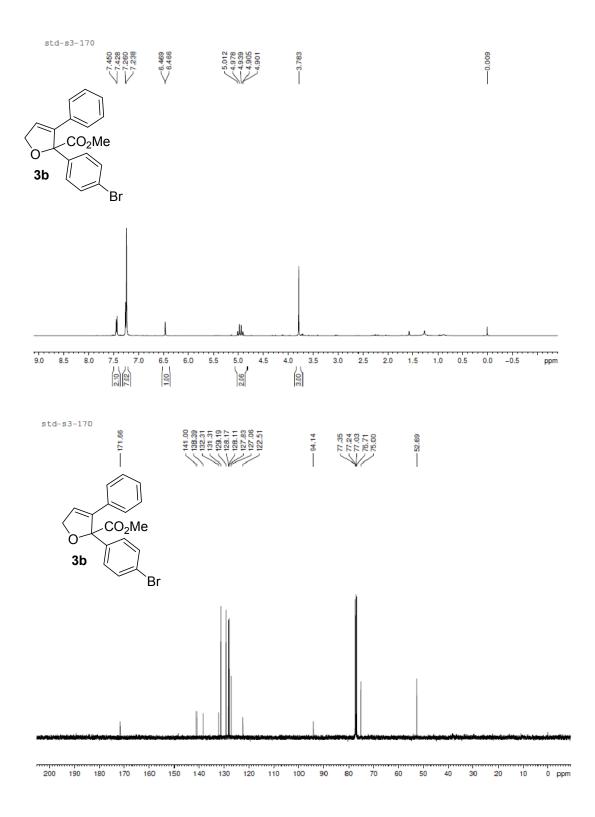
A 2-necked flask was dried with heat gun, and cooled down in the Nitrogen atmosphere. To the flask, **3a** (0.2 mmol)and 5 mL THF was added and cooled down to 0 °C, then LiAlH₄ (0.4 mmol, 2.0 eq) was added in portions. After refluxed for 2 hrs, the reaction was cooled down and quenched with saturated NH₄Cl. The aqueous phase was extracted with ethyl acetate for 3 times. The combined organic phase was dried with anhydrous Na₂SO₄. The solvent was removed with vacuum rotator, and 0.2 g Silica gel was added to make the uniformed sample for the chromatography. The pure products were obtained with petrol ether and ethyl acetate (v/v = 8 : 1-5: 1) as elution.

Column chromatography afforded the desired product **8** in 54% yield as yellow solid: ¹HNMR(400 MHz, CDCl₃): δ 7.21 – 7.08 (m, 10H), 6.11 (t, *J* = 1.6 Hz, 1H), 4.84 (dd, *J*₁= 13.4 Hz, *J*₂= 1.6 Hz, 1H), 4.79 (dd, *J*₁= 13.4 Hz, *J*₂= 1.6 Hz, 1H), 4.03 (br, 2 H), 2.20 (br, 1H).¹³CNMR (100 MHz, CDCl3): 142.8, 141.4,

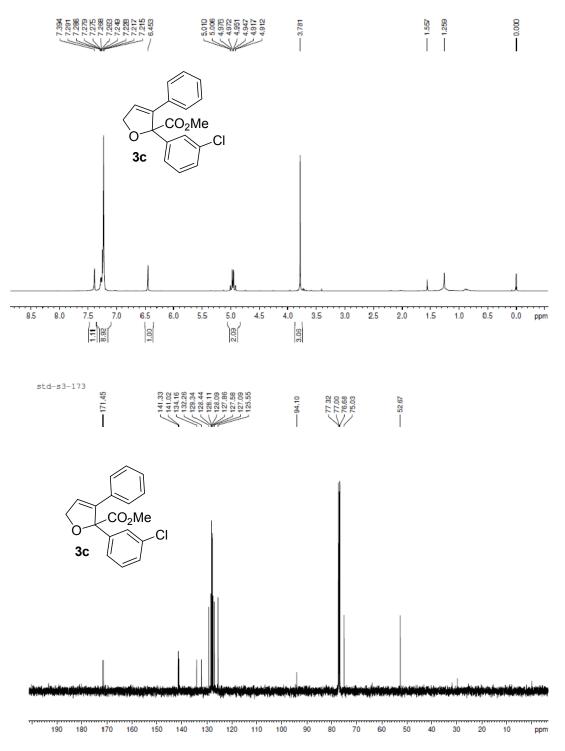
133.8, 128.3, 128.2, 127.9, 127.8,127.7, 126.0, 125.5, 94.4, 74.1, 65.9. HRMS: calcd for $C_{17}H_{16}O_2Na [M+Na]^+$, 275.1048, found 275.1057.

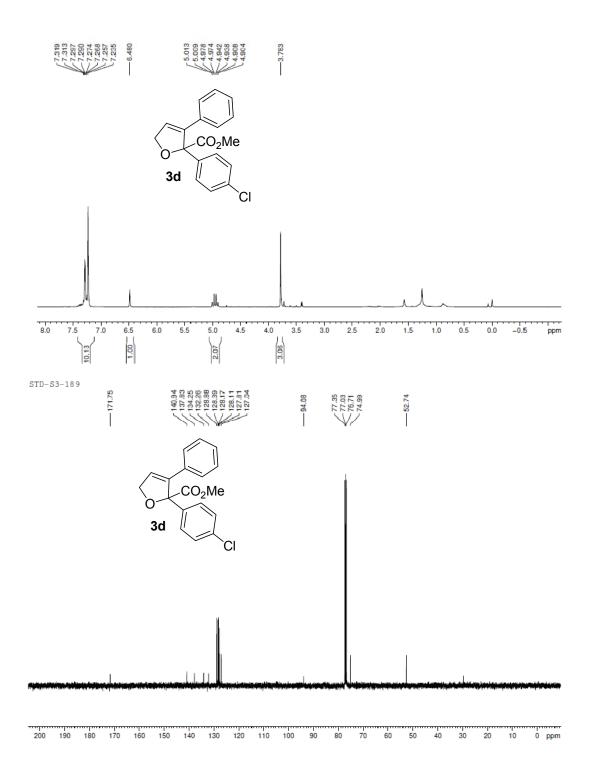

References

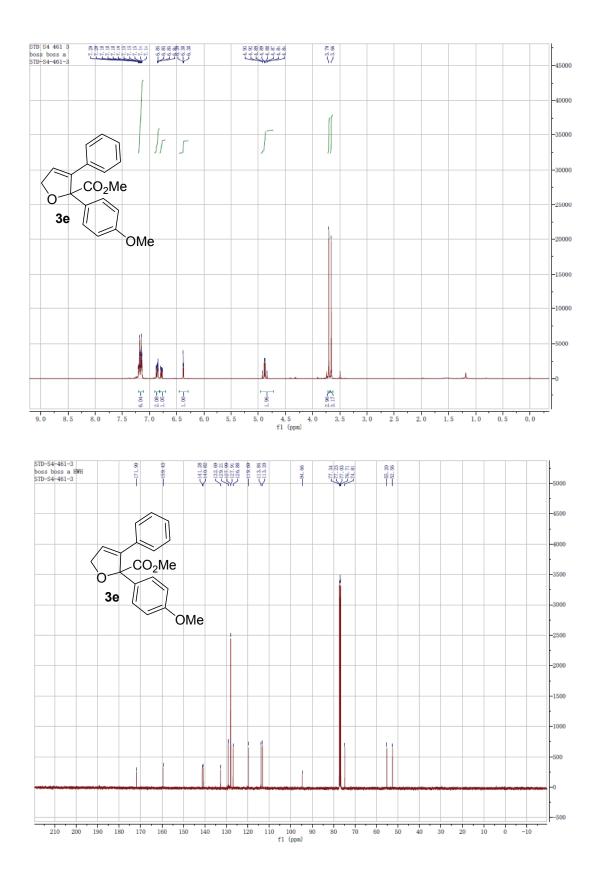
1. Y. Liang, Y.-X.Xie, and J.-H. Li, J. Org. Chem. 2006, 71, 379.

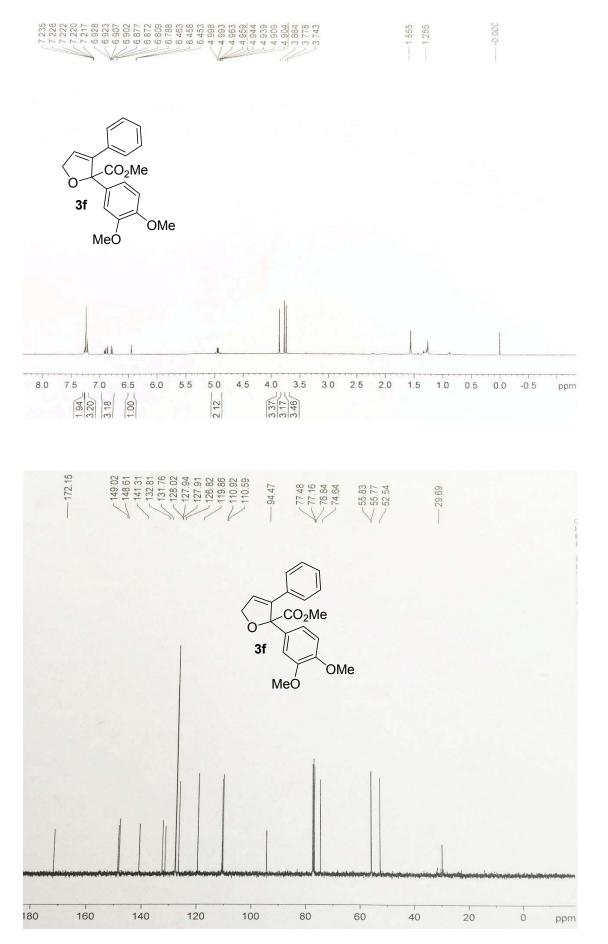

2. (a) W. A. J.Starmans, L.Thijs and B.Zwanenburg, *Tetrahedron* 1998, 54, 629; (b)M. K.-W.Choi,
W.-Y. Yu, and C.-M.Che, *Org. Lett.* 2005, 7, 1081; (c) W.-Y. Yu, Y.-T. Tsoi, Z. Y. Zhou, and A.
S. C.Chan, *Org. Lett.* 2009, 11, 469.

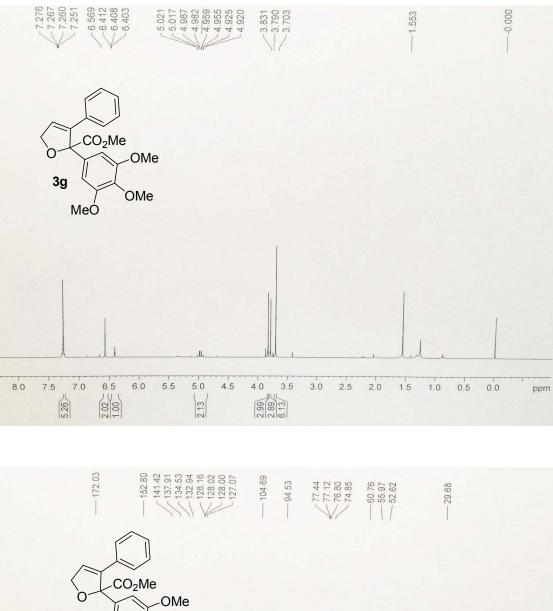
3. F. Bonadies and C. Bonini. Syn. Comm., 1988, 18, 1573.

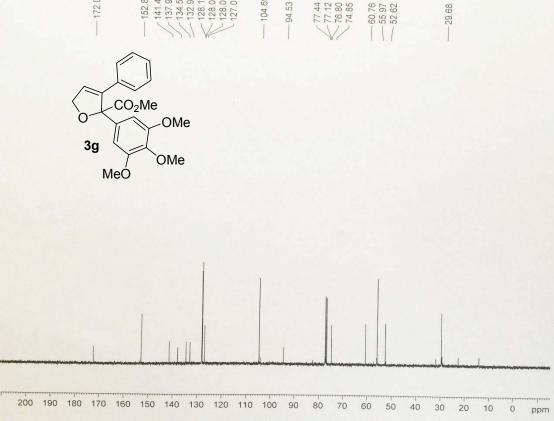

NMR Spectra

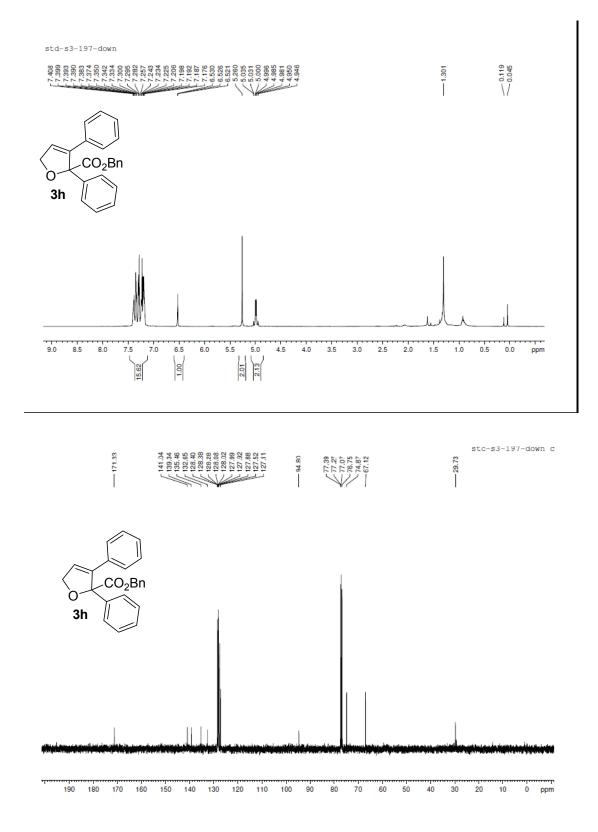

180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm

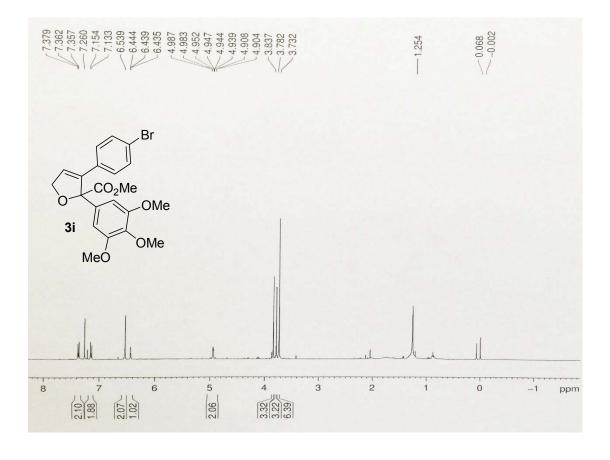


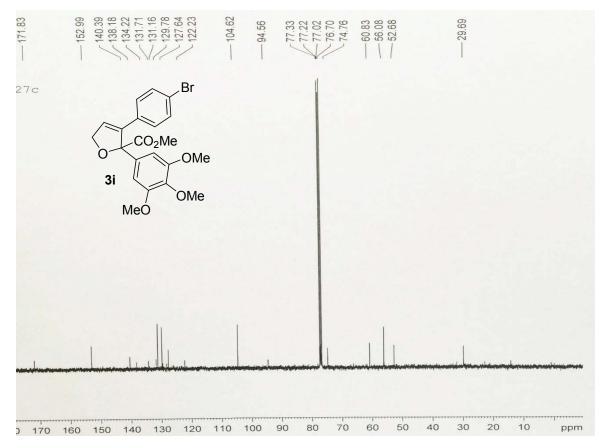

std-s3-173

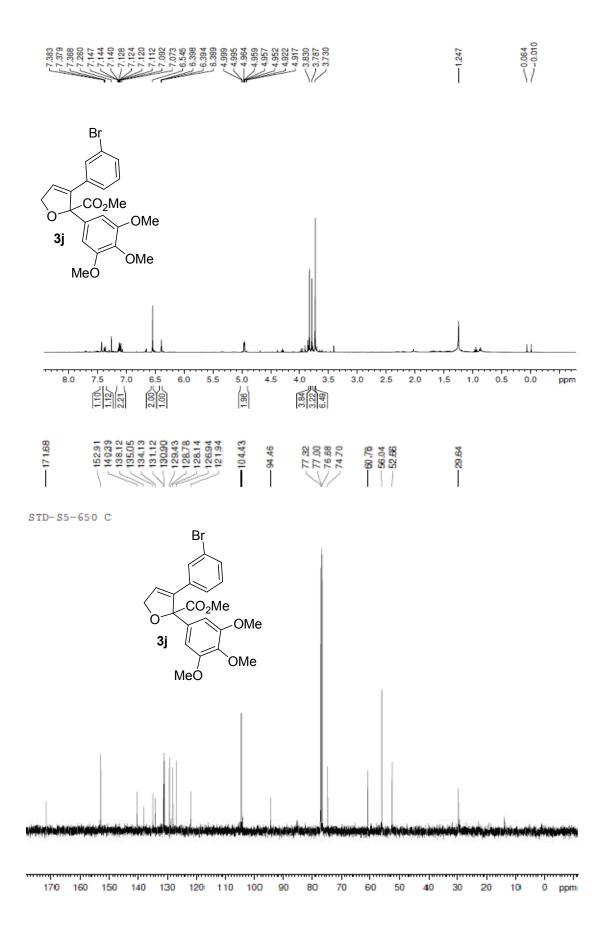


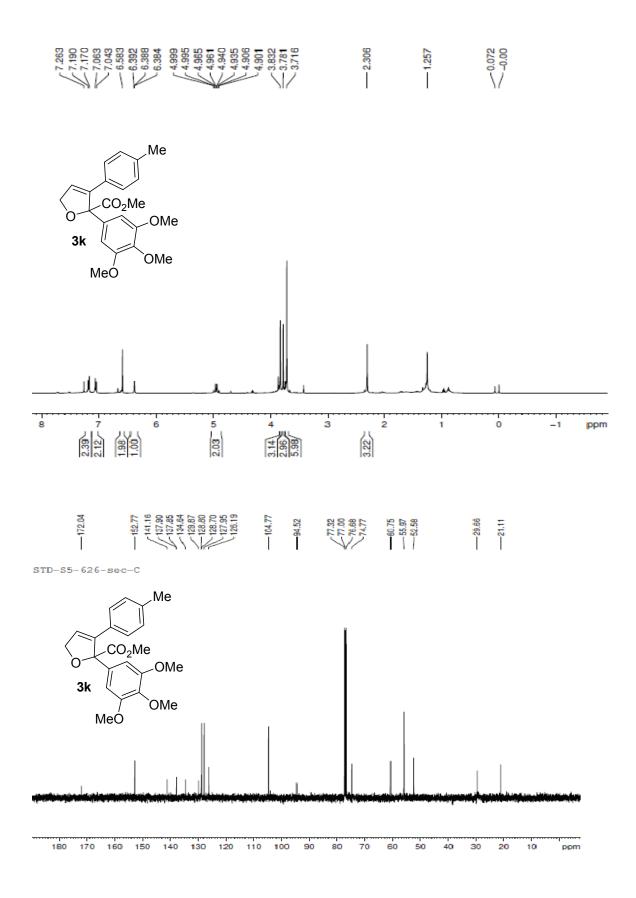

14

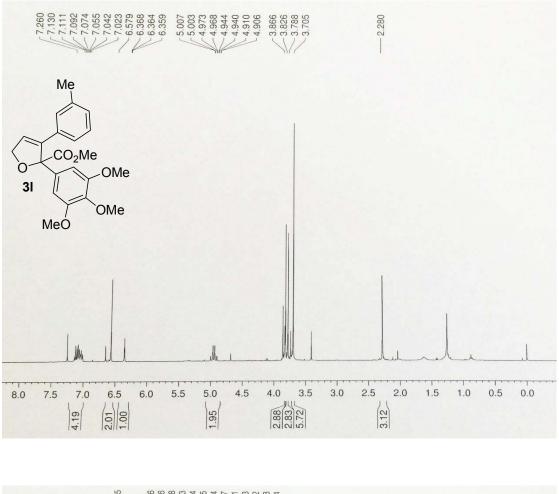


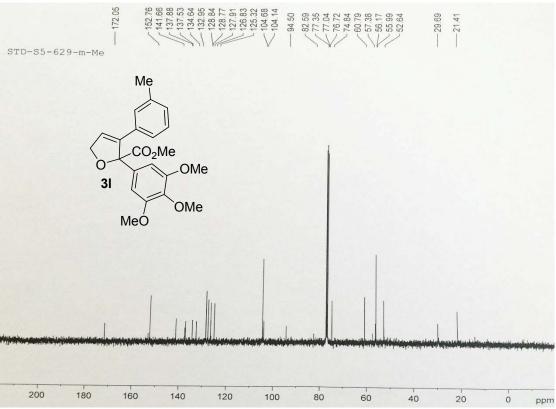


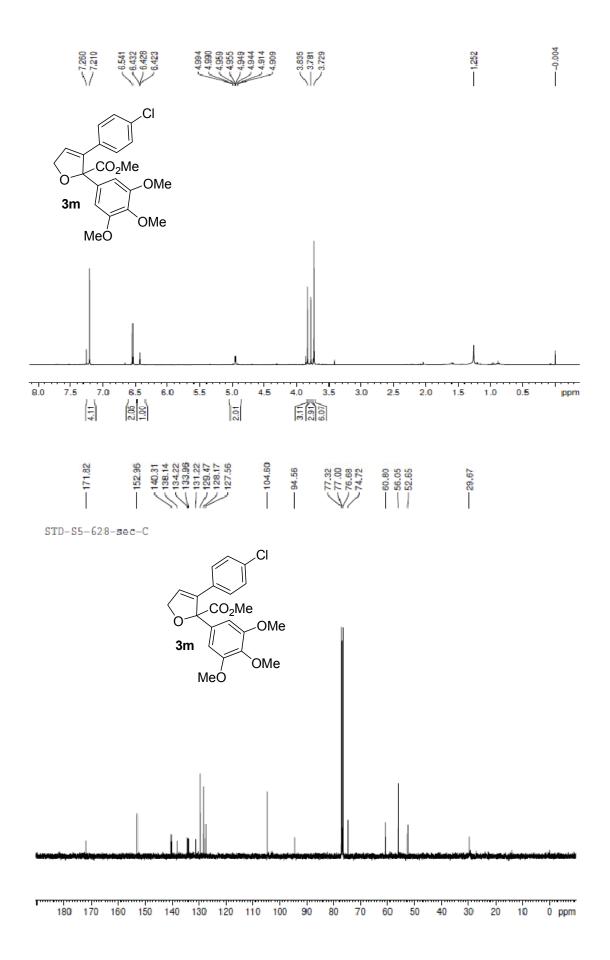


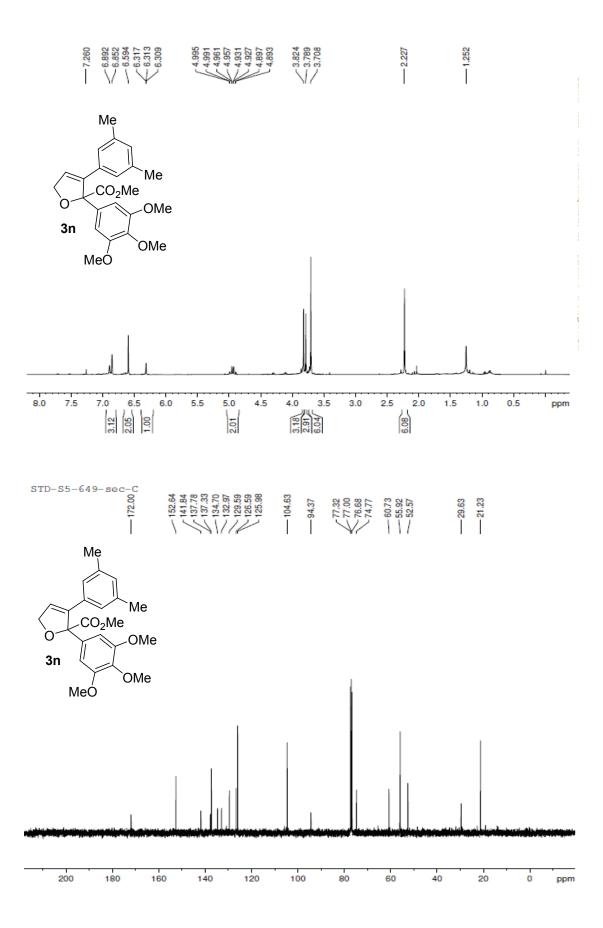


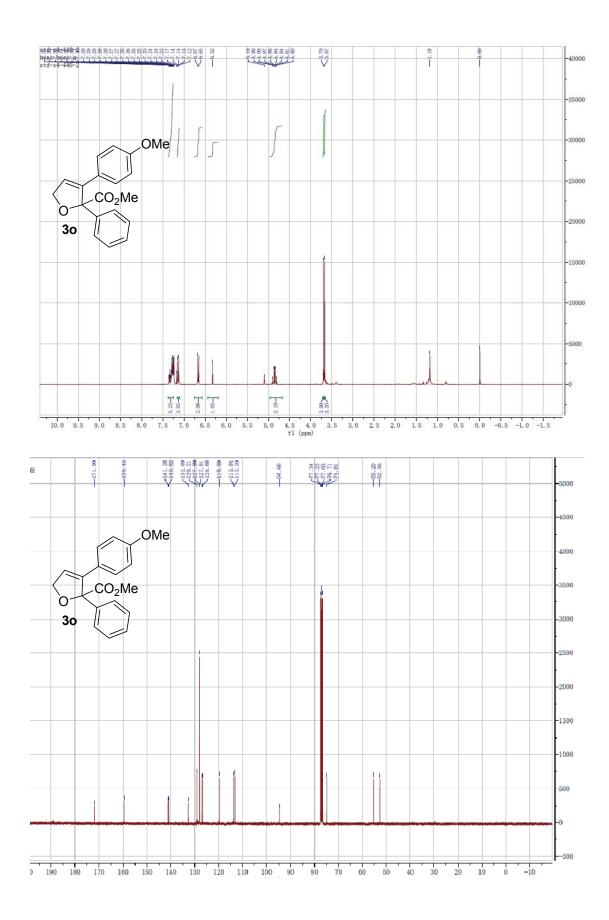


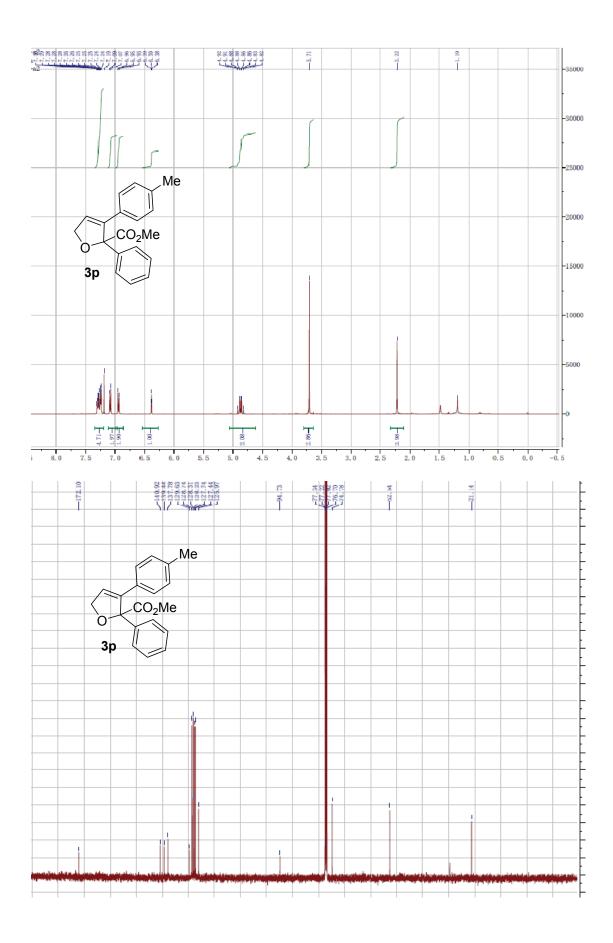


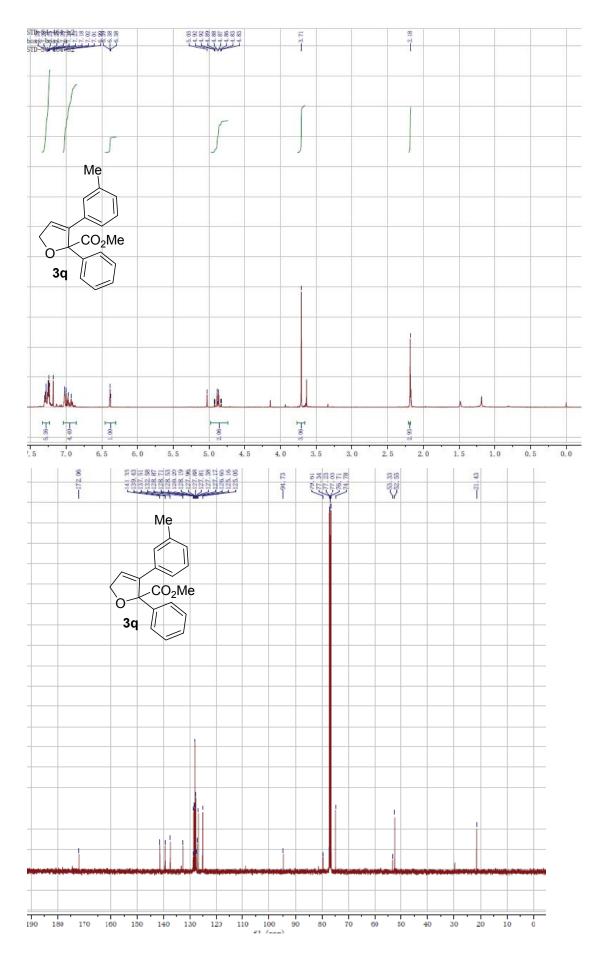


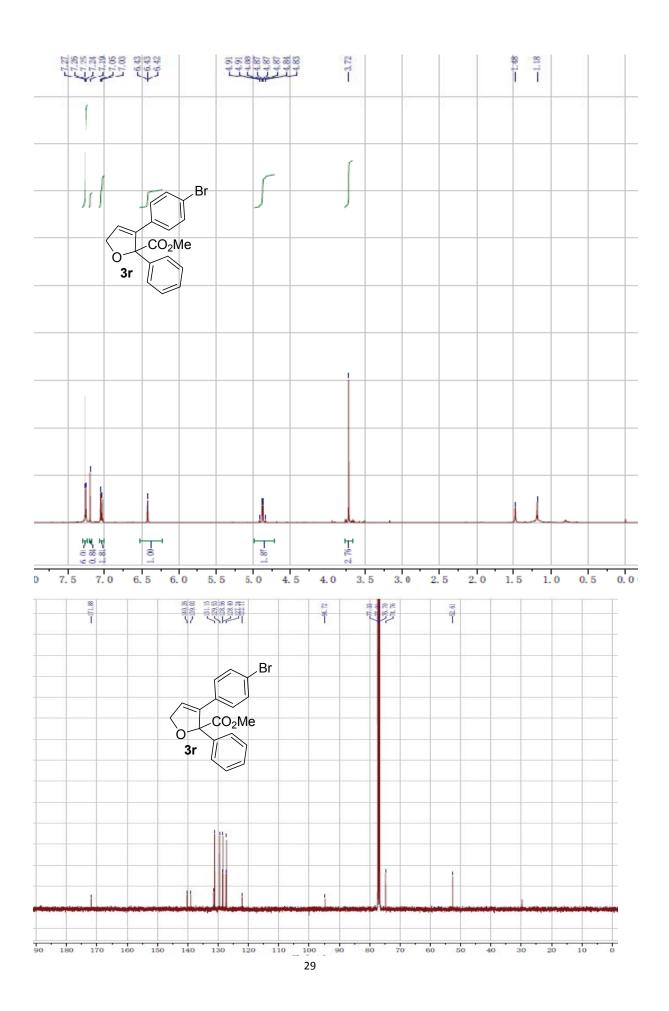


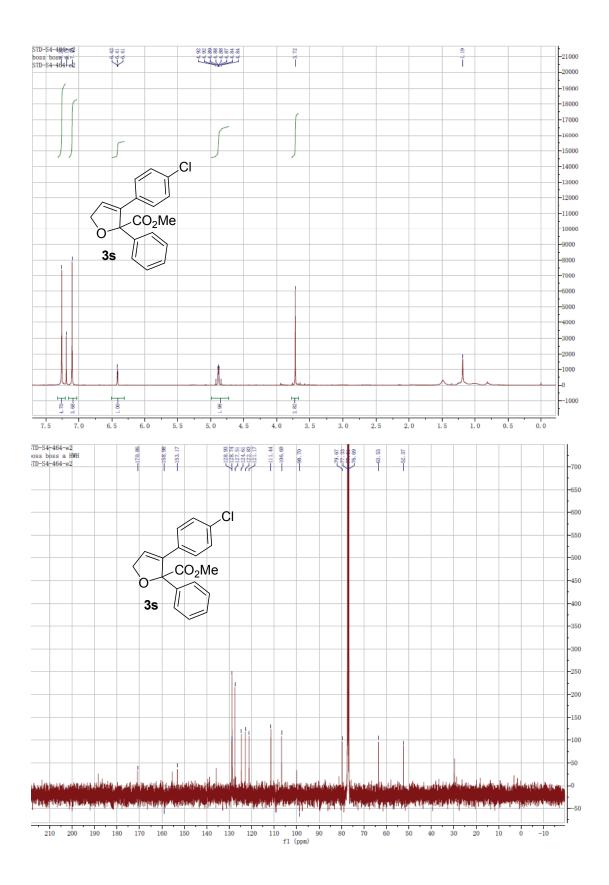


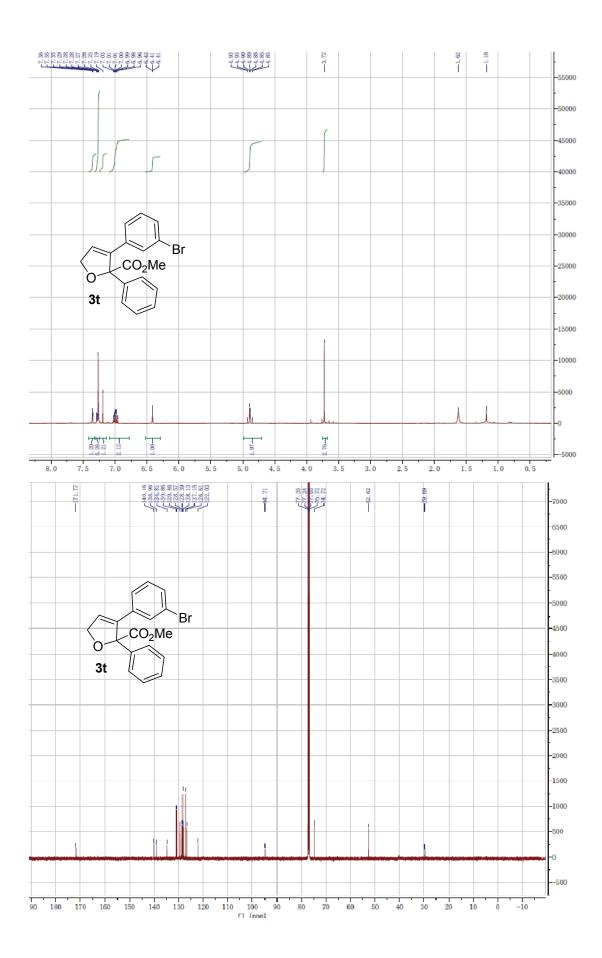


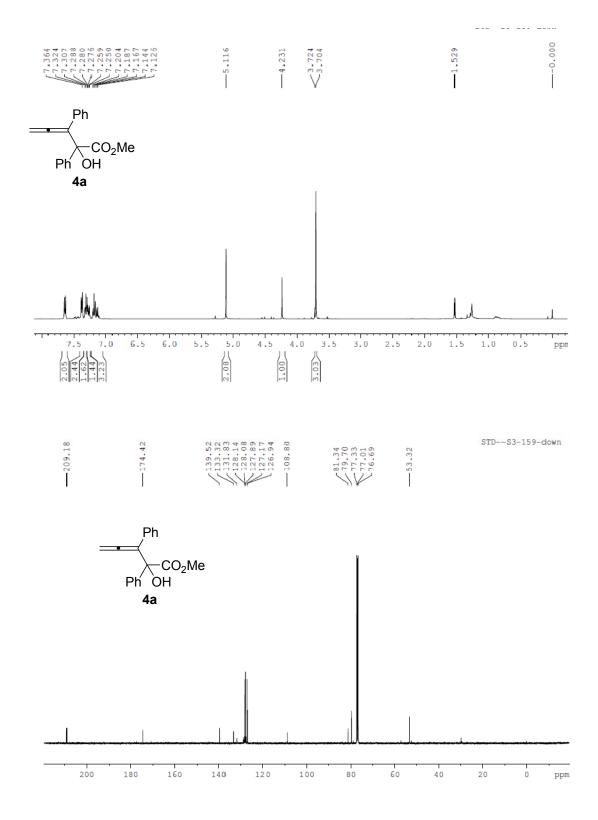


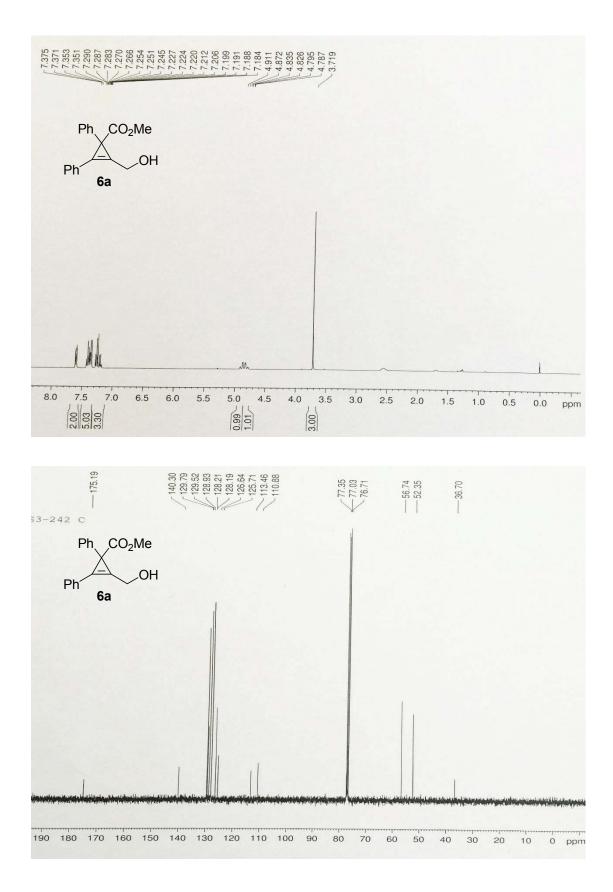


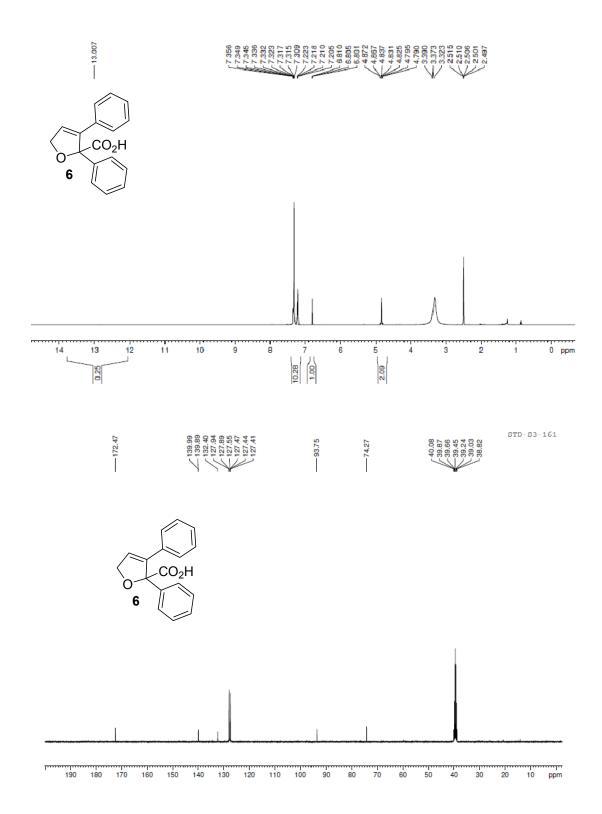


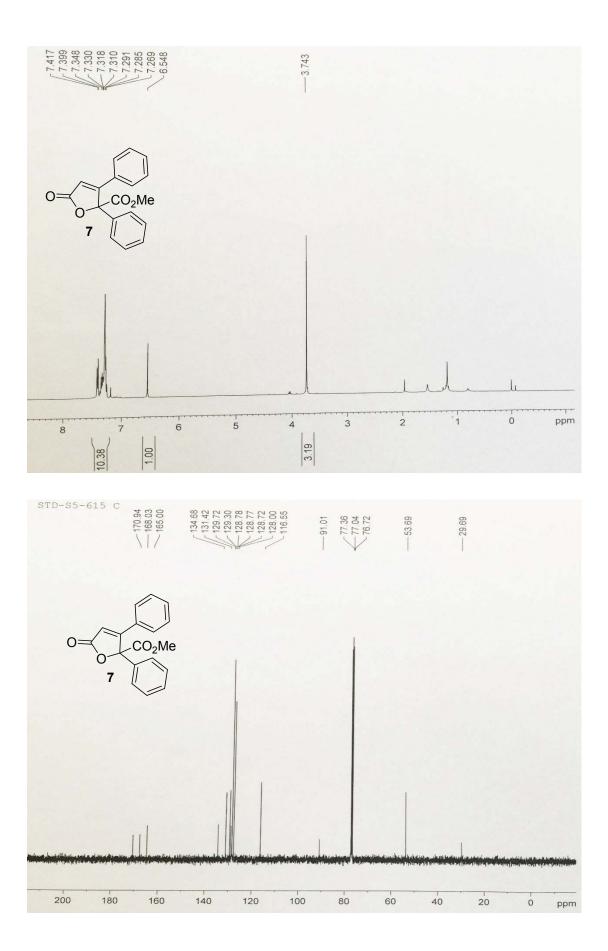


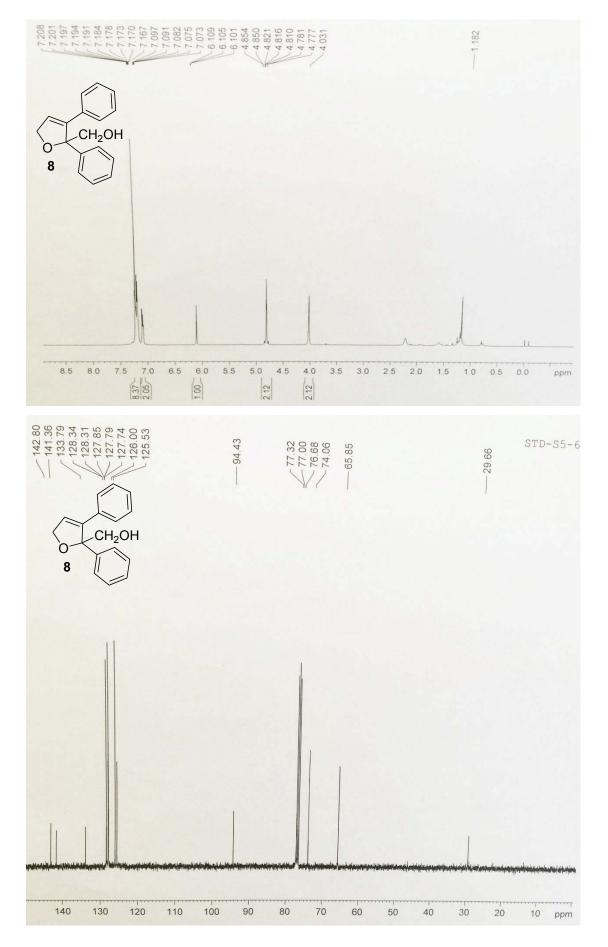


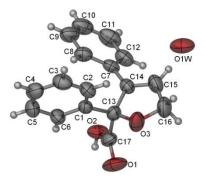












X-ray Crystal Structure Data

CCDC 1035999contains the supplementary crystallographic data for **8a**. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

checkCIF/PLATON report (basic structural check)

No syntax errors found. Please wait while processing CIF dictionary Interpreting this report

Datablock: z

Bond precis	con: $C-C = 0$.	036 A	Wavelength=0.71073		
Cell:	a-6.7978(7) b	-7.3605(7)	c-29.386(3)		
	alpha=90 b	ela=90	gamma=90		
Temperature: 296 K					
	Calculated		Reported		
Volume	1470.3(3)		1470.3(3)		
Space group	P 21 21 21		P2(1)2(1)2(
Hall group	P 2ac 2ab		?		
Moiety form	ula C17 H14 O3	, 0	?		
Sum formula	с17 н14 о4		C17 H14 O4		
Mr	282.28		282.20		
Dx,g cm-3	1.275		1.275		
Z	4		4		
Mii (mm-1)	0.091		0.091		
F000	592.0		592.0		
F000'	592.33				
h,k,lmax	9,9,39		9,9,39		
Nref	2212[3789]	3711		
Tmin, Tmax	0.972,0.98	υ	0.966,0.980		
Tmin'	0.966				
Correction method= MULTI SCAN					
Data completeness= 1.68/0.98 Theta(max)= 28.710					
R(reflections)= 0.0541(2749) wR2(reflections)= 0.1607(3711)					
3 - 1.044	Npar- 1	90			