Copper-Catalyzed Synthesis of **B**-Trifluoromethylated

Acrylonitriles and Trifluoromethyl-substituted 2H-Azirines

Yu-Tao He,[†] Qiang Wang,[†] Jiahui Zhao, [†] Xue-Yuan Liu,[†] Peng-Fei Xu,[†] and Yong-Min Liang*^{†‡}

[†]State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P.R. China [‡]State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Science, Lanzhou, 730000, P.R. China E-mail: liangym@lzu.edu.cn

Table of Contents

1	General Remarks	S2			
2	General Experimental Procedure				
3	Optimization of The Reaction Conditions For β -Trifluoromethylated	S4			
	acrylonitriles				
4	Optimization of The Reaction Conditions For	S5			
	Trifluoromethyl-substituted 2H-Azirines				
5	Characterization Data of 3a-p, 4a-r, 5a, 7a-f and 9				
6	Crystallographic Data of 3h, 4q, 5a, 7a and 9				
7	¹ H NMR ¹³ C NMR ¹⁹ F NMR Spectra for Substrates 3a-p, 4a-r, 5a, 7a-f	S23			
	and 9	-151			

1. General Remarks

For Column chromatography, 200-300 mesh silica gel was employed. Analytical TLC was performed with silica gel GF254 plates. ¹H NMR (400 MHz), ¹³C NMR (100 MHz) and ¹⁹F NMR (376 MHz) were recorded in CDCl₃ using TMS as internal standard. All products were further characterized by high resolution mass spectra (HRMS); copies of their ¹H NMR, ¹³C NMR and ¹⁹F NMR spectra are provided. Unless otherwise noted, reactions were carried out under an argon atmosphere. CH₃CN was distilled from P_2O_5 under reduced pressure before used.

2. General experimental procedure

An oven-dried tube was charged with Togni's reagent **2a** (0.24 mmol) and $Cu(OAc)_2$ (0.02 mmol), 2,2':6',2"-terpyridine **L3** (0.04 mmol). The tube was evacuated and backfilled with argon (repeated three times). Then, TMSCN (0.4 mmol) dissolved in CH₃CN (1.0 mL), and alkynes **1** (0.2 mmol) were added into the tube. The reaction mixture was stirring at 70 °C for 5 h and extracted with DCM. The combined organic layers were washed with saturated brine, dried over Na₂SO₄, concentrated in vacuum (Note: the control of temperature and pressure is very important) and purified by flash column chromatography (silica gel) to afford the product **3**.

An oven dried Schlenk tube charged with 3e (1.0 equiv), NaBH₄ (3.0 equiv) and I₂ (1.0 equiv) was purged with nitrogen, THF was added. The reaction mixture was then stirring at room temperature for 6 h. The solution was cooled, treated with H₂O and extracted with DCM. The combined organic layers were washed with saturated brine, dried over Na₂SO₄, concentrated in vacuum (Note: the control of temperature and pressure is very important) and purified by flash column chromatography (DCM/MeOH = 200/1) to afford the product **3p**.

An oven-dried tube was charged with Togni's reagent **2a** (0.26 mmol) and $Cu(OAc)_2$ (0.01 mmol), NaOAc (0.3 mmol). The tube was evacuated and backfilled with argon (repeated three times). Then, TMSN₃ (0.36 mmol) dissolved in CH₃CN (1.0 mL), and alkynes **1** (0.2 mmol) were added into the tube. The reaction mixture was stirring at 80 °C for 7 h and extracted with DCM. The combined organic layers were washed with saturated brine, dried over Na₂SO₄, concentrated in vacuum (Note: the control of temperature and pressure is very important) and purified by flash column chromatography (silica gel) to afford the product **4**.

An oven dried Schlenk tube charged with $[Rh_2(esp)_2]$ (0.004 mmol) was purged with nitrogen, and a solution of azirine **4** (0.2 mmol) in DCE (0.5 mL) was added. A solution of the freshly prepared diazo compound **6** (0.32 mmol) in DCE (0.5 mL) was added dropwise to the suspension under nitrogen. The reaction mixture was then heated to 90 °C for 16 h. The solution was cooled and treated with DDQ (1 equiv). The suspension was stirred at 35 °C for 2 h and filtered through a plug of silica gel. The filtrate was concentrated in vacuo, and the residue was purified by flash chromatography using hexanes/ethyl acetate as the eluent to give the desired product **7**.

An oven-dried tube was charged with 2*H*-azirines **4a** (0.2 mmol), N-sulfonyl-4-phenyl-1,2,3-triazole **8**, and $Rh_2(OAc)_4$ (0.004 mmol). Then, EtOAc (1.0 mL) was added into the tube. The reaction mixture was stirring at 120 °C for 16 h (monitored by thin-layer chromatography using silica gel precoated glass plates), concentrated in vacuum and purified by flash column chromatography (silica gel) to afford the product **9**.

3. Optimization of The Reaction Conditions for β -Trifluoromethylated acrylonitriles^{*a*}

		CF ₃	atalyst/ L	
^t Bu—		O + TMSCN Me	eCN, Argon	CF3
	1 2a	ö	Bu	3a
Entry	Catalyst (mol %) ^b	Ligand	Solvent	Yield (%) ^c
1	CuBr	—	1,4-dioxane	trace
2	CuBr	—	DCE	trace
3	CuBr	—	DMF	trace
4	CuBr (10)	—	CH ₃ CN	5 (>20/1)
5	CuBr (10)	L1(20)	CH ₃ CN	58 (>20/1)
6	Cu(OTf) ₂	L1(20)	CH ₃ CN	40 (>20/1)
7	Cu powder	L1(20)	CH ₃ CN	58 (>20/1)
8	$CuCl_2(10)$	L1(20)	CH ₃ CN	56 (>20/1)
9	Cu(OAc) ₂ (10)	L1(20)	CH ₃ CN	62 (>20/1)
10	Cu(OAc) ₂ (10)	L2(20)	CH ₃ CN	58 (>20/1)
11	Cu(OAc) ₂ (10)	L3(20)	CH ₃ CN	71 (>20/1)
12	Cu(OAc) ₂ (10)	L4(20)	CH ₃ CN	trace
13	Cu(OAc) ₂ (10)	L5(20)	CH ₃ CN	57 (>20/1)
14^d	—	L3(20)	CH ₃ CN	0
15 ^e	Cu(OAc) ₂ (10)	L3(20)	CH ₃ CN	62
16 ^f	Cu(OAc) ₂ (10)	L3(20)	CH ₃ CN	35

^{*a*}Reaction conditions: **1a** (0.2 mmol), Togni's reagent **2a** (0.24 mmol), TMSCN (0.4 mmol), copper catalyst (10 mol %), ligand (20 mol %), solvent (1.0 mL), 5 h, 70 °C, under argon. ^{*b*}Number given in parenthesis is mol % used. ^{*c*}Isolated yield, the ratio of regioisomers was determined by GC-MS. ^{*d*}Without copper catalyst. ^{*e*}Togni's reagent **2b** was used. ^{*f*}Umemoto reagent **2c** was used.

4. Optimization of The Reaction Conditions For

Trifluoromethyl-substituted 2*H*-Azirines^a

Entra	Catalyst	Base	Solvent	Temperatur	TMSN ₃		Yield (5a) (%)
Entry	(mol %) ^b			e (°C)	(equiv)	Yield (4a) (%)	
1	$Cu(OAc)_2/L3$	—	CH ₃ CN	70	1.8	trace	—
2	Cu(OAc) ₂	—	CH ₃ CN	70	1.8	30	_
3	CuBr	—	CH ₃ CN	70	1.8	21	—
4	Cu(MeCN) ₄ PF ₆	—	CH ₃ CN	70	1.8	20	—
5	Cu(OTf) ₂	—	CH ₃ CN	70	1.8	13	—
6	Cu(OAc) ₂	K ₂ CO ₃	CH ₃ CN	70	1.8	41	—
7	Cu(OAc) ₂	Na'OBu	CH ₃ CN	70	1.8	45	—
8	Cu(OAc) ₂	K_3PO_4	CH ₃ CN	70	1.8	33	—
9	Cu(OAc) ₂	NaHCO ₃	CH ₃ CN	70	1.8	46	—
10	Cu(OAc) ₂	NaOA _C	CH ₃ CN	70	1.8	51	—
11	Cu(OAc) ₂	NaOA _C	1,4-dioxane	70	1.8	trace	—
12	Cu(OAc) ₂	NaOA _C	DCE	70	1.8	trace	—
13	Cu(OAc) ₂	NaOA _C	DMF	70	1.8	30	_
14	Cu(OAc) ₂	NaOA _C	CH ₃ CN	80	1.8	64	13
15 ^c	Cu(OAc) ₂	NaOA _C	CH ₃ CN	80	1.8	58	—
16^d	Cu(OAc) ₂	NaOA _C	CH ₃ CN	80	1.8	40	_
17^e	Cu(OAc) ₂	NaOA _C	CH ₃ CN	80	1.8	54	—
18	Cu(OAc) ₂	NaOA _C	CH ₃ CN	80	3.0	59	27
19	Cu(OAc) ₂	NaOA _C	DMF	80	3.0	18	0
20	Cu(OAc) ₂	NaOA _C	1,4-dioxane	80	3.0	trace	2
21	Cu(OAc) ₂	NaOA _C	CH ₃ CN	80	4.0	30	18
14^{f}	Cu(OAc) ₂	NaOA _C	CH ₃ CN	80	1.8	61	
14^{g}	Cu(OAc) ₂	NaOA _C	CH ₃ CN	80	1.8	31	
24	Cu(OAc) ₂	NaOA _C /H ₂ O (1 quiv)	CH ₃ CN	80	3.0	13	10
25	Cu(OAc) ₂	NaOA _C / <i>i</i> PrOH (1 quiv)	CH ₃ CN	80	3.0	42	27
26	Cu(OAc) ₂	NaOA _C /9-BBN (1 quiv)	CH ₃ CN	80	3.0	0	0
27	Cu(OAc) ₂	NaOA _C /TFA (1 quiv)	CH ₃ CN	80	3.0	0	0
28	Cu(OAc) ₂	NaOA _C /1,4-CHD (1 quiv)	CH ₃ CN	80	3.0	12	20
29	Cu(OAc) ₂	NaOA _C /CF ₃ CH ₂ OH (1 quiv)	CH ₃ CN	80	3.0	13	31
30	Cu(OAc) ₂	$NaOA_C/K_2S_2O_8$ (1 quiv)	CH ₃ CN	80	3.0	27	21
31 ^{<i>f</i>}	_	NaOA	CH-CN	80	1.8	0	0

^{*a*}Reaction conditions: **1a** (0.2 mmol), Togni's reagent **2a** (0.26 mmol), TMSN₃ (0.36 mmol), copper catalyst (5 mol %), solvent (1.0 mL), 7 h, under argon. ^{*b*}Isolated yield. ^{*c*}molecular sieves (4Å; 50mg) was added. ^{*d*}NaN₃ was used instead of TMSN₃. ^{*e*}under air condition. ^{*f*}Togni's reagent **2b** was used. ^{*g*}Umemoto reagent **2c** was used. ^{*b*}Without copper catalyst.

5. Characterization Data of 3a-p, 4a-r, 5a, 7a-f and 9

(**E**)-2-(4-(tert-butyl)phenyl)-4,4,4-trifluorobut-2-enenitrile, 71% yield, E/Z > 20/1. ¹**H NMR** (400 MHz, CDCl₃) δ 7.48 – 7.42 (m, 4H), 6.44 (q, *J* = 8.00 Hz, 1H), 1.34 (s, 9H).

¹³**C NMR** (100 MHz, CDCl₃) δ 154.7, 129.0 (q, J = 37.0 Hz), 128.4 (d, J = 2.0 Hz), 126.8, 126.1 (q, J = 6.0 Hz), 125.9, 121.0 (q, J = 270.0 Hz, CF₃), 117.0, 34.9 , 31.1 . ¹⁹**F NMR** (376 MHz, CDCl₃) δ -57.9 (t, J = 3.8 Hz, 3F).

HRMS (ESI) Calcd for $C_{14}H_{14}F_3N$: [M] + H = 254.1151. Found: 254.1152.

(E)-4,4,4-trifluoro-2-(4-methoxyphenyl)but-2-enenitrile, 65% yield, E/Z = 17/1. ¹H NMR (400 MHz, CDCl₃) δ 7.38 (d, J = 8.8 Hz, 2H), 6.95 (d, J = 8.8 Hz, 2H), 6.44 (q, J = 8.4 Hz, 1H), 3.84 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 161.7, 130.4 (q, J = 2.0 Hz), 127.7 (q, J = 37.0 Hz), 125.7 (q, J = 6.0 Hz), 121.9, 121.1 (q, J = 270.0 Hz, CF₃), 117.1, 114.3, 55.4.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -57.9 (d, J =11.3 Hz, 3F).

HRMS (ESI) Calcd for $C_{11}H_8F_3NO$: [M] + H = 228.0631. Found: 228.0630.

(E)-2-([1,1'-biphenyl]-4-yl)-4,4,4-trifluorobut-2-enenitrile, 62% yield, E/Z = 16/1. ¹H NMR (400 MHz, CDCl₃) δ 7.66 (d, J = 8.40Hz, 2H), 7.61 – 7.55 (m, 4H), 7.46 (t, J = 7.42 Hz, 2H), 7.39 (t, J = 7.2 Hz, 1H), 6.49 (q, J = 8.00 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 143.9, 139.5, 129.6 (q, J = 37.0 Hz), 129.1, 129.0, 128.9, 128.2, 127.5, 127.1, 125.8 (q, J = 6.0 Hz), 121.0 (q, J = 270.0 Hz, CF₃), 116.9. ¹⁹F NMR (376 MHz, CDCl₃) δ -57.8 (d, J = 7.5 Hz, 3F).

HRMS (ESI) Calcd for $C_{16}H_{10}F_3N$: [M] + H = 274.0838. Found: 274.0839.

(E)-4,4,4-trifluoro-2-(p-tolyl)but-2-enenitrile, 65% yield, E/Z > 20/1.

¹**H** NMR (400 MHz, CDCl₃) δ 7.38 (d, *J* = 8.4 Hz, 2H), 7.27 – 7.25 (m, 2H), 6.44 (q, *J* = 8.0 Hz, 1H), 2.40 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 141.6, 129.7, 129.2 (q, *J* = 37.0 Hz), 128.5 (d, *J* = 2.0 Hz), 126.9, 126.2 (q, *J* = 6.0 Hz), 121.0 (q, *J* = 270.0 Hz, CF₃), 117.0, 21.4.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -57.9 (d, J = 7.5 Hz, 3F). **HRMS (ESI)** Calcd for C₁₁H₈F₃N: [M] + H = 212.0682. Found: 212.0683.

| ОМе **Зе**

(E)-4,4,4-trifluoro-2-(3-methoxyphenyl)but-2-enenitrile, 60% yield, E/Z = 18/1.

¹**H NMR** (400 MHz, CDCl₃) δ 7.36 (t, *J* = 8.00 Hz, 1H), 7.06 – 7.01 (m, 2H), 6.98 (s, 1H), 6.49 (q, *J* = 8.00Hz, 1H), 3.83 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 159.7, 130.8, 130.2 (q, *J* = 37.0 Hz), 130.0, 126.0 (q, *J* = 6.0 Hz), 120.8 (q, *J* = 272.0 Hz, CF₃), 120.7 (d, *J* = 2.0 Hz), 116.8, 116.7, 113.7 (d, *J* = 2.0 Hz), 55.4.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -57.8 (d, *J* =7.5 Hz, 3F).

HRMS (ESI) Calcd for $C_{11}H_8F_3NO$: [M] + H = 228.0631. Found: 228.0632.

(E)-4,4,4-trifluoro-2-(m-tolyl)but-2-enenitrile, 63% yield, E/Z = 20/1.

¹**H NMR** (400 MHz, CDCl₃) δ 7.34 – 7.28 (m, 4H), 6.47 (q, *J* = 8.00 Hz, 1H), 2.40 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 138.8, 131.8, 129.8 (q, *J* = 37.0 Hz), 129.7, 128.9 (d, *J* = 2.0 Hz), 128.8, 126.3 (q, *J* = 6.0 Hz), 125.6 (d, *J* = 2.0 Hz), 120.9 (q, *J* = 270.0 Hz, CF₃), 116.9, 21.3.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -57.9 (s, 3F).

HRMS (ESI) Calcd for $C_{11}H_8F_3N$: [M] + H = 212.0682. Found: 212.0680.

(E)-4,4,4-trifluoro-2-(2,4,5-trimethylphenyl)but-2-enenitrile, 89% yield, E/Z > 20/1.

¹**H NMR** (400 MHz, CDCl₃) δ 7.02 (s, 1H), 6.91 (s, 1H), 6.54 (q, *J* = 7.20 Hz, 1H), 2.28 (s, 3H), 2.24 (s, 3H), 2.22 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 139.2, 134.5, 132.7, 131.9, 131.9 (q, *J* = 34.0 Hz), 129.5 (d, *J* = 2.0 Hz), 126.6, 126.1 (q, *J* = 6.0 Hz), 120.8 (q, *J* = 271.0 Hz, CF₃), 116.0, 19.4, 19.0, 18.8.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -59.2 (d, J = 7.5 Hz, 3F).

HRMS (ESI) Calcd for $C_{13}H_{12}F_3N$: [M] + H = 240.0995. Found: 240.0992.

(E)-4,4,4-trifluoro-2-(6-methoxynaphthalen-2-yl)but-2-enenitrile, 67% yield, E/Z > 20/1.

¹**H** NMR (400 MHz, CDCl₃) δ 7.92 (s, 1H), 7.77 (d, J = 8.80 Hz, 2H), 7.49 (d, J = 8.00, 1H), 7.24 – 7.19 (m, 1H), 7.13 (d, J = 2.00 Hz, 1H), 6.49 (q, J = 8.00 Hz, 1H), 3.92 (s, 3H).

¹³**C** NMR (100 MHz, CDCl3) δ 159.5, 135.6, 130.2, 129.1 (d, J = 2.0 Hz), 128.9 (q, J = 37.0 Hz), 128.0 , 127.5 , 126.3 (q, J = 6.0 Hz), 125.2 (d, J = 2.0 Hz), 124.7, 121.1 (q, J = 270.0 Hz, CF₃), 120.2, 117.1, 105.7, 55.4 .

¹⁹**F NMR** (376 MHz, CDCl₃) δ -57.7 (d, J =6.0 Hz, 3F).

HRMS (ESI) Calcd for $C_{14}H_{10}F_3NO$: [M] + H = 266.0787. Found: 266.0789.

(E)-2-(4-bromophenyl)-4,4,4-trifluorobut-2-enenitrile, 60% yield, E/Z = 16/1.

¹**H** NMR (400 MHz, CDCl₃) δ 7.61 (d, *J* = 8.80 Hz, 2H), 7.35 (d, *J* = 8.40 Hz, 2H), 6.53 (q, *J* = 7.82 Hz, 1H).

¹³**C** NMR (100 MHz, CDCl₃) δ 132.3, 130.6 (q, *J* = 37.0 Hz), 130.0 (d, *J* = 2.0 Hz), 128.6, 125.8, 125.0 (q, *J* = 6.0 Hz), 120.7 (q, *J* = 270.0 Hz, CF₃), 116.3.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -57.9 (d, *J* = 7.5 Hz, 3F).

HRMS (**ESI**) Calcd for C₉H₅BrF₃N: [M] + H = 263.9630. Found: 263.9634.

(E)-2-(4-chlorophenyl)-4,4,4-trifluorobut-2-enenitrile, 58% yield, E/Z > 20/1.

¹**H NMR** (400 MHz, CDCl₃) δ 7.46–7.41 (m, 4H), 6.53 (q, *J* = 7.86 Hz, 1H).

¹³**C** NMR (100 MHz, CDCl₃) δ 137.5, 130.6 (q, J = 37.0 Hz, CHCF₃), 129.8 (d, J = 2.0 Hz), 129.3, 128.1, 125.0 (q, J = 6.0 Hz, CCHCF₃), 120.7 (q, J = 270.0 Hz, CF₃), 116.4.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -57.9 (d, *J* =3.8 Hz, 3F).

HRMS (ESI) Calcd for $C_{10}H_5ClF_3N$: [M] + H = 232.0135. Found: 232.0134.

(E)-2-(4-(cyanomethyl)phenyl)-4,4,4-trifluorobut-2-enenitrile, 35% yield, E/Z > 20/1.

¹**H** NMR (400 MHz, CDCl₃) δ 7.51 (d, *J* = 8.0 Hz, 2H), 7.45 (d, *J* = 8.4 Hz, 2H), 6.55 (q, *J* = 8.0 Hz, 1H), 3.83 (s, 2H).

¹³**C NMR** (100 MHz, CDCl₃) δ 133.1, 130.9 (q, *J* = 36.0 Hz, CHCF₃), 129.7, 129.3 (d, *J* = 2.0 Hz), 128.5, 125.2 (q, *J* = 5.0 Hz), 120.7 (q, *J* = 270.0 Hz, CF₃), 116.9, 116.5, 23.5.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -57.9 (d, J = 3.8 Hz, 3F).

HRMS (ESI) Calcd for $C_{12}H_7F_3N_2$: [M] + H = 237.0634. Found: 237.0638.

(E)-2-(2-chlorophenyl)-4,4,4-trifluorobut-2-enenitrile, 62% yield, E/Z > 20/1. ¹H NMR (400 MHz, CDCl₃) δ 7.51 – 7.49 (m, 1H), 7.46 – 7.42(m, 1H), 7.35 (t, J =

7.60, 1H), 7.29 – 7.26 (m, 1H), 6.67 (q, *J* = 6.80 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 133.7 (q, J = 36.0 Hz), 132.6, 131.9, 130.2 (d, J = 2.0 Hz), 130.1, 128.6, 127.2, 123.4 (q, J = 6.0 Hz), 120.5 (q, J = 270.0 Hz, CF₃), 115.0. ¹⁹F NMR (376 MHz, CDCl₃) δ -57.5 (d, J = 3.8 Hz, 3F).

HRMS (ESI) Calcd for $C_{10}H_5ClF_3N$: [M] + H = 232.0135. Found: 232.0136.

(E)-4,4,4-trifluoro-2-phenylbut-2-enenitrile, 61% yield, E/Z > 20/1. ¹H NMR (400 MHz, CDCl₃) δ 7.50– 7.43 (m, 5H), 6.50 (q, *J* = 8.00Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 131.0, 130.1 (q, J = 37.0 Hz), 129.8, 128.9, 128.4 (d, *J* = 2.0 Hz), 126.1 (q, *J* = 6.0 Hz), 120.9 (q, *J* = 270.0 Hz, CF₃), 116.8. ¹⁹F NMR (376 MHz, CDCl₃) δ -57.9 (d, *J* = 7.5 Hz, 3F). HRMS (ESI) Calcd for C₁₀H₆F₃N: [M] + H = 198.0525. Found: 198.0523.

(E)-2-(4-benzoylphenyl)-4,4,4-trifluorobut-2-enenitrile, 29% yield, E/Z = 14/1. ¹H NMR (400 MHz, CDCl₃) δ 7.88 (d, J = 8.00 Hz, 2H), 7.81 (d, J = 7.20Hz, 2H), 7.61 (t, J = 8.40 Hz, 3H), 7.52 (t, J = 7.60 Hz, 2H), 6.62 (q, J = 7.60 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 195.4, 139.7, 136.7, 133.2, 133.0, 131.5 (q, J = 36.0Hz), 130.8, 130.3, 130.0, 128.5, 125.1 (q, J = 5.0 Hz), 120.7 (q, J = 271.0 Hz, CF₃), 116.3.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -57.8 (d, J = 7.5 Hz, 3F).

HRMS (ESI) Calcd for $C_{17}H_{10}F_3NO$: [M] + H = 302.0787. Found: 302.0792.

(E)-5,5,5-trifluoropent-3-en-1-yl 4-chlorobenzoate, 30% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 7.95 (d, J = 8.80, 2H), 7.42 (d, J = 8.80, 2H), 6.46 – 6.42 (m, 1H), 5.80 – 5.75 (m, 1H), 4.43 (t, J = 6.40 Hz, 2H), 2.67– 2.61 (m, 2H). ¹³**C NMR** (100 MHz, CDCl₃) δ 165.4, 139.6, 135.9 (q, J = 7.0 Hz), 130.9, 128.8, 128.3, 122.6 (q, J = 267.0 Hz, CF₃), 121.0 (q, J = 34.0 Hz), 62.7, 30.9. ¹⁹F NMR (376 MHz, CDCl₃) δ -64.4 (t, J = 3.8 Hz, 3F). HRMS (ESI) Calcd for C₁₂H₁₀ClF₃NO₂: [M] + H = 279.0394. Found: 279.0391.

ÓМе Зр

4,4,4-trifluoro-2-(3-methoxyphenyl)butan-1-amine, 31% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 7.32 (t, *J* = 8.0 Hz, 1H), 6.87 (dd, *J* = 8.4 Hz, *J* = 2.0 Hz, 1H), 6.79 (d, *J* = 7.6 Hz, 1H), 6.74 (d, *J* = 1.6 Hz, 1H), 3.81 (s, 3H), 3.47 (d, *J* = 32.8 Hz, 2H), 3.29–3.23 (m, 1H), 3.20–3.14 (m, 1H), 3.00–2.92 (m, 1H), 2.47–2.38 (m, 2H).

¹³**C NMR** (100 MHz, CDCl₃) δ 160.5, 139.4, 131.0, 125.8 (q, *J* = 276.0 Hz), 119.3, 113.6, 113.5, 55.3, 52.6, 39.0 (q, *J* = 3.0 Hz), 38.4 (d, *J* = 28.0 Hz).

¹⁹**F NMR** (376 MHz, CDCl₃) δ -63.8.8 (s, 3F).

HRMS (ESI) Calcd for $C_{11}H_{14}F_3NO$: [M] + H = 234.1100. Found: 234.1103.

3-(4-(tert-butyl)phenyl)-2-(trifluoromethyl)-2H-azirine, 64% yield.

¹**H** NMR (400 MHz, CDCl₃) δ 7.86 (d, *J* = 8.40 Hz, 2H), 7.63 (d, *J* = 8.40 Hz, 2H), 2.68 (q, *J* = 4.40 Hz, 1H), 1.37 (s, 9H).

¹³**C NMR** (100 MHz, CDCl₃) δ 160.1, 158.5, 130.3, 126.5, 124.3 (q, *J* = 272.0Hz, CF₃), 119.2, 35.4, 31.0, 29.2 (q, *J* = 42.0 Hz, CHCF₃).

¹⁹**F NMR** (376 MHz, CDCl₃) δ -67.7 (s, 3F).

HRMS (ESI) Calcd for $C_{13}H_{14}F_3N$: [M] + H = 242.1157. Found: 242.1154.

3-(4-propylphenyl)-2-(trifluoromethyl)-2H-azirine, 52% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 7.83 (d, *J* = 8.2 Hz, 2H), 7.41 (d, J = 8.1 Hz, 2H), 2.72 - 2.67 (m, 3H), 1.74-1.65(m, 2H), 0.97 (t, *J* = 7.3 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 160.2 (d, J = 1.0 Hz), 150.3, 130.4, 129.6, 124.3 (q, J = 272.0 Hz, CF₃), 119.5, 38.3, 29.3 (q, J = 42.0 Hz, CHCF₃), 24.2, 13.7.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -67.7 (d, J = 3.8Hz, 3F).

HRMS (ESI) Calcd for $C_{12}H_{12}F_3N$: [M] + H = 228.0995. Found: 228.0997.

3-(4-methoxyphenyl)-2-(trifluoromethyl)-2H-azirine, 62% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 7.88 – 7.85 (m, 2H), 7.09 (d, *J* = 8.8 Hz, 2H), 3.92 (s, 3H), 2.66 (q, *J* = 4.6 Hz, 1H).

¹³**C NMR** (100 MHz, CDCl₃) δ 164.4, 159.1, 132.5, 124.4 (q, J = 272.0 Hz, CF₃), 115.0, 114.4, 55.6, 29.2 (q, J = 42.0 Hz, CHCF₃).

¹⁹**F NMR** (376 MHz, CDCl₃) δ -67.7 (d, J = 4.8 Hz, 3F).

HRMS (ESI) Calcd for $C_{10}H_8F_3NO$: [M] + H = 216.0631. Found: 216.0633.

3-(p-tolyl)-2-(trifluoromethyl)-2H-azirine, 54% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 7.81 (d, *J* = 8.1 Hz, 2H), 7.41 (d, *J* = 7.9 Hz, 2H), 2.68 (q, *J* = 4.6 Hz, 1H), 2.48 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 160.2, 145.6, 130.4, 130.2, 124.3 (q, J = 272.0 Hz, CF₃), 119.3, 29.3 (q, J = 42.0 Hz, CHCF₃), 21.9.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -67.7 (d, J = 4.7 Hz, 3F).

HRMS (ESI) Calcd for $C_{10}H_8F_3N$: [M] + H = 200.0682. Found: 200.0683.

3-([1,1'-biphenyl]-4-yl)-2-(trifluoromethyl)-2H-azirine, 55% yield.

¹**H** NMR (400 MHz, CDCl₃) δ 7.99 – 7.97 (m, 2H), 7.82 – 7.80 (m, 2H), 7.65 – 7.63(m, 2H), 7.51 – 7.47 (m, 2H), 7.45 – 7.41 (m, 1H), 2.74 (q, *J* = 4.80 Hz, 1H).

¹³**C NMR** (100 MHz, CDCl₃) δ 160.3 (d, J = 1.0Hz), 147.2, 139.3, 130.9, 129.1, 128.7, 128.1, 127.3, 124.3 (q, J = 272.0 Hz, CF₃), 120.7, 29.5 (q, J = 32.0 Hz, CHCF₃).

¹⁹**F NMR** (376 MHz, CDCl₃) δ -67.6 (d, J = 3.8 Hz, 3F).

HRMS (ESI) Calcd for $C_{15}H_{10}F_3N$: [M] + H = 262.0838. Found: 262.0840.

3-(4-(pentyloxy)phenyl)-2-(trifluoromethyl)-2H-azirine, 40% yield.

¹**H** NMR (400 MHz, CDCl₃) δ 7.85 (d, J = 8.80 Hz, 2H), 7.07 (d, J = 8.80Hz, 2H), 4.06 (t, J = 6.40 Hz, 2H), 2.65 (q, J = 4.40 Hz, 1H), 1.87 – 1.80 (m, 2H), 1.50 – 1.37(m, 4H), 0.95 (t, J = 7.20 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 164.1, 159.1, 132.5, 124.4 (q, J = 272.0 Hz, CF₃), 115.4, 114.1, 68.5, 29.2 (q, J = 42.0 Hz, CHCF₃), 28.7, 28.1, 22.4, 14.0.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -67.7 (d, J = 3.8 Hz, 3F).

HRMS (ESI) Calcd for $C_{14}H_{16}F_3NO$: [M] + H = 272.1257. Found: 272.1259.

3-(3-methoxyphenyl)-2-(trifluoromethyl)-2H-azirine, 54% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 7.54 – 7.48 (m, 2H), 7.44 – 7.43 (m, 1H), 7.23 – 7.20 (m, 1H), 3.90 (s, 3H), 2.73 (q, *J* = 4.40 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 160.9 (d, J = 1.0 Hz), 160.2, 130.6, 124.2 (q, J = 271.9 Hz, CF₃), 123.2, 123.1, 121.0, 114.1, 55.6, 29.8 (q, J = 43.0 Hz, CHCF₃). ¹⁹F NMR (376 MHz, CDCl₃) δ -67.5 (d, J = 3.8 Hz, 3F).

HRMS (ESI) Calcd for $C_{10}H_8F_3NO$: [M] + H = 216.0637. Found: 216.0632.

3-(m-tolyl)-2-(trifluoromethyl)-2H-azirine, 53% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 7.72 (d, *J* = 4.40 Hz, 2H), 7.50 – 7.48 (m, 2H), 2.70 (q, *J* = 4.80 Hz, 1H), 2.47 (s, 3H).

¹³**C** NMR (100 MHz, CDCl₃) δ 160.7 (d, J = 2.0 Hz), 139.5, 135.2, 130.8, 129.3, 127.6, 124.3 (d, J = 272.0 Hz, CF₃), 122.0, 29.5 (q, J = 42.0 Hz, CHCF₃), 21.2.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -67.7 (d, J = 3.8 Hz, 3F).

HRMS (ESI) Calcd for $C_{10}H_8F_3N$: [M] + H = 200.0682. Found: 200.0684.

phenyl(4-(2-(trifluoromethyl)-2H-azirin-3-yl)phenyl)methanone, 55% yield.

¹**H** NMR (400 MHz, CDCl₃) δ 8.05 (d, *J* = 8.40 Hz, 2H), 7.99 (d, *J* = 8.40 Hz, 2H), 7.83 (d, *J* = 7.20 Hz, 2H), 7.65 (t, *J* = 7.20 Hz, 1H), 7.53 (t, *J* = 7.60 Hz, 2H), 2.82 (q, *J* = 4.80Hz, 1H).

¹³**C NMR** (100 MHz, CDCl₃) δ 195.2, 160.7 (d, J = 1.0 Hz), 142.5, 136.4, 133.2, 130.5, 130.1, 130.0, 128.5, 124.9, 124.0 (d, J = 272.0 Hz, CF₃), 29.8 (q, J = 43.0 Hz, CHCF₃).

¹⁹**F NMR** (376 MHz, CDCl₃) δ -67.6 (d, J = 3.8 Hz, 3F).

HRMS (ESI) Calcd for $C_{16}H_{10}F_3NO$: [M] + H = 290.0787. Found: 290.0788.

3-(4-bromophenyl)-2-(trifluoromethyl)-2H-azirine, 61% yield.

¹**H** NMR (400 MHz, CDCl₃) δ 7.80 – 7.75 (m, 4H), 2.75 (q, J = 4.80 Hz, 1H). ¹³**C** NMR (100 MHz, CDCl₃) δ 160.3 (d, J = 1.8 Hz), 133.0, 131.5, 129.7, 124.0 (q, J = 272.0 Hz, CF₃), 121.0, 29.7 (q, J = 43.0 Hz, CHCF₃). ¹⁹**F** NMR (376 MHz, CDCl₃) δ -67.7 (d, J = 3.8 Hz, 3F). **HRMS (ESI)** Calcd for C₉H₅BrF₃N: [M] + H = 263.30. Found: 263.9634.

3-(4-chlorophenyl)-2-(trifluoromethyl)-2H-azirine, 53% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 7.87 (d, *J* = 8.5 Hz, 2H), 7.60 (d, *J* = 8.5 Hz, 2H), 2.75 (q, J = 4.5 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 160.1, 141.0, 131.5, 130.0, 124.1 (q, J = 272.0 Hz, CF₃), 120.6, 29.7 (q, J = 42.0 Hz, CHCF₃).

¹⁹**F NMR** (376 MHz, CDCl₃) δ -67.7 (s, 3F).

HRMS (ESI) Calcd for C₉H₅ClF₃N: [M] + H = 220.0141. Found: 220.0139.

3-(3-fluorophenyl)-2-(trifluoromethyl)-2H-azirine, 48% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 7.74 – 7.72 (m, 1H), 7.64 – 7.52 (m, 2H), 7.42 – 7.37 (m, 1H), 2.77 (q, J = 4.80 Hz, 1H).

¹³**C NMR** (100 MHz, CDCl₃) δ 162.8 (d, J = 248.0 Hz), 160.6 (d, J = 1.0 Hz), 131.4 (d, J = 8.0 Hz), 126.2 (d, J = 3.0 Hz), 124.0 (q, J = 272.0 Hz, CF₃), 124.0 (d, J = 8.0 Hz), 121.6 (d, J = 21.0 Hz), 116.8 (d, J = 23.0 Hz), 30.0 (q, J = 43.0 Hz, CHCF₃). ¹⁹**F NMR** (376 MHz, CDCl₃) δ -67.8 (d, J = 3.8 Hz, 3F).

HRMS (ESI) Calcd for $C_9H_5F_4N$: [M] + H = 204.0431. Found: 204.0434.

3-(2-chlorophenyl)-2-(trifluoromethyl)-2H-azirine, 48% yield.

¹**H** NMR (400 MHz, CDCl₃) δ 7.89 – 7.87 (m, 1H), 7.62 – 7.61 (m, 2H), 7.53 – 7.49 (m, 1H), 2.76 (q, *J* = 4.40 Hz, 1H).

¹³**C NMR** (100 MHz, CDCl₃) δ 159.6, 136.9, 135.0, 133.0, 131.0, 127.5, 124.0 (d, *J* = 272.0 Hz, CF₃), 121.0, 29.6 (q, *J* = 42.0 Hz, CHCF₃).

¹⁹**F NMR** (376 MHz, CDCl₃) δ -68.0 (s, 3F).

HRMS (ESI) Calcd for C₉H₅ClF₃N: [M] + H = 220.0135. Found: 220.0137.

2-(trifluoromethyl)-3-(4-(trifluoromethyl)phenyl)-2H-azirine, 62% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 8.07 (d, *J* = 8.0 Hz, 2H), 7.89 (d, *J* = 8.4 Hz, 2H), 2.82 (q, *J* = 4.8 Hz, 1H),

¹³**C NMR** (100 MHz, CDCl₃) δ 160.8, 135.8 (q, J = 33.0 Hz), 130.6, 126.5 (q, J = 4.0 Hz), 125.4, 124.6, 123.9 (q, J = 272.0 Hz, CF₃), 30.1 (q, J = 43.0 Hz, CHCF₃). ¹⁹**F NMR** (376 MHz, CDCl₃) δ -63.4 (s, 3F), -67.8 (s, 3F). **HRMS (ESI)** Calcd for $C_{10}H_5F_6N$: [M] + H = 254.0399. Found: 254.0404.

2-(4-(2-(trifluoromethyl)-2H-azirin-3-yl)phenyl)acetonitrile, 39% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 7.96 (d, *J* = 8.0 Hz, 2H), 7.61 (d, *J* = 8.0 Hz, 2H), 3.90 (s, 2H), 2.76 (q, *J* = 4.4 Hz, 1H).

¹³**C NMR** (100 MHz, CDCl₃) δ 160.4, 136.6, 131.1, 129.1, 124.1 (q, J = 272.0 Hz, CF₃), 122.1, 116.6, 29.7 (q, J = 42.0 Hz, CHCF₃), 23.9.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -67.7 (s, 3F).

HRMS (ESI) Calcd for $C_{11}H_7F_3N_2$: [M] + H = 225.0634. Found: 225.0638.

3-phenyl-2-(trifluoromethyl)-2H-azirine, 60% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 7.93 – 7.91 (m, 2H), 7.91 – 7.68 (m, 1H), 7.62-7.59 (m, 2H), 2.73 (q, J = 4.6 Hz, 1H).

¹³**C** NMR (100 MHz, CDCl₃) δ 160.7 (d, J = 1.0 Hz), 134.4, 130.3, 129.4 (s), 124.3 (q, J = 272.0 Hz, CF₃), 122.1, 29.5 (q, J = 42.0 Hz, CHCF₃).

¹⁹**F NMR** (376 MHz, CDCl₃) δ -67.7(d, J =3.8 Hz, 3F).

HRMS (ESI) Calcd for $C_9H_6F_3N$: [M] + H = 186.0525. Found: 186.0527.

3-(6-methoxynaphthalen-2-yl)-2-(trifluoromethyl)-2H-azirine, 54% yield. **¹H NMR** (400 MHz, CDCl₃) δ 8.26 (s, 1H), 7.94 (dd, *J* = 6.80, 1.60 Hz, 1H), 7.90 – 7.87 (m, 2H), 7.28 – 7.25 (m, 1H), 7.20 (d, *J* = 2.40 Hz, 1H), 3.97 (s, 3H), 2.77 (q, J = 4.40 Hz, 1H).

¹³**C NMR** (100 MHz, CDCl₃) δ 160.4, 160.3 , 137.9 , 132.8 , 130.9 , 128.2 , 128.0 , 125.2 , 124.4 (q, J = 272.0 Hz, CF₃), 120.4 , 117.0 , 106.1 , 55.5 , 29.5 (q, J = 42.0 Hz, CHCF₃).

¹⁹**F NMR** (376 MHz, CDCl₃) δ -67.5 (d, J = 3.8 Hz, 3F).

HRMS (ESI) Calcd for $C_{14}H_{10}F_3NO$: [M] + H = 266.0787. Found: 266.0789.

2,3-diphenyl-2-(trifluoromethyl)-2H-azirine, 19% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 7.96 – 7.93 (m, 2H), 7.67 – 7.64 (m, 1H), 7.60 – 7.56 (m, 2H), 7.46 (d, J = 6.8 Hz, 2H), 7.36 – 7.32 (m, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 162.3, 134.4, 133.7, 130.4, 129.6, 128.6, 128.5, 127.4,

124.8 (d, J = 274.0Hz, CF₃), 121.7, 40.3 (q, J = 38.0 Hz, CHCF₃). ¹⁹**F NMR** (376 MHz, CDCl₃) δ -65.3 (s, 3F).

HRMS (ESI) Calcd for $C_{15}H_{10}F_3N$: [M] + H = 262.0838. Found: 262.0835.

1-(4-(tert-butyl)phenyl)-5-(2,2,2-trifluoroethyl)-1H-tetrazole.

¹**H** NMR (400 MHz, CDCl₃) δ 7.64 (d, *J* = 8.80 Hz, 2H), 7.37 (d, *J* = 8.80 Hz, 2H), 3.81 (q, *J* = 9.60 Hz, 2H), 1.40 (s, 9H).

¹³**C NMR** (100 MHz, CDCl₃) δ 154.8, 146.5 (d, *J* = 3.0 Hz), 130.1, 127.1, 125.0, 123.3 (q, *J* = 276.0 Hz, CF₃), 35.0, 31.1, 29.4 (q, *J* = 33.0 Hz, CHCF₃).

¹⁹**F NMR** (376 MHz, CDCl₃) δ -68.3 (t, J = 7.5 Hz, 3F).

HRMS (ESI) Calcd for $C_{13}H_{15}F_3N_4$: [M] + H = 285.1322. Found: 285.1318.

methyl 6-(4-(tert-butyl)phenyl)-4-phenyl-5-(trifluoromethyl)picolinate,54% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.05 (s, 1H), 7.57 (d, J = 8.00 Hz, 2H), 7.48 (d, J = 7.60 Hz, 5H), 7.45 – 7.43 (m, 2H), 4.00 (s, 3H), 1.36 (s, 9H).

¹³**C NMR** (100 MHz, CDCl₃) δ 164.9, 160.1, 152.8 (d, J = 2.0 Hz), 152.1, 148.5, 138.5, 137.1, 128.9, 128.6 (d, J = 2.0 Hz), 128.4, 128.1, 125.6, 125.1, 125.1 (q, J = 29.0 Hz, CCF₃), 123.6 (q, J = 274.0 Hz, CF₃), 53.2, 34.7, 31.3.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -49.0 (s, 3F).

HRMS (ESI) Calcd for $C_{24}H_{22}F_3NO_2$: [M] + H = 414.1675. Found: 414.1672.

methyl 6-(4-(tert-butyl)phenyl)-4-(p-tolyl)-5-(trifluoromethyl)picolinate, 67% yield.

¹**H** NMR (400 MHz, CDCl₃) δ 8.04 (s, 1H), 7.56 (d, *J* = 8.40 Hz, 2H), 7.48 (d, *J* = 8.40Hz, 2H), 7.34 (d, *J* = 8.00 Hz, 2H), 7.29 (d, *J* = 8.00 Hz, 2H), 4.00 (s, 3H), 2.43 (s, 3H), 1.36 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 165.0, 160.1, 152.9 (d, J = 2.0 Hz), 152.1, 148.4, 138.9, 137.2, 135.6, 129.1, 128.6, 128.1 (d, J = 1.0 Hz), 125.7, 125.1, 125.1 (q, J = 29.0 Hz, CCF₃), 123.6 (q, J = 274.0 Hz, CF₃), 53.1, 34.7, 31.2, 21.3. ¹⁹F NMR (376 MHz, CDCl₃) δ -49.0 (s, 3F). **HRMS (ESI)** Calcd for $C_{25}H_{24}F_3NO_2$: [M] + H = 428.1832. Found: 428.1827.

Methyl 6-(4-(tert-butyl)phenyl)-4-(4-methoxyphenyl)-5-(trifluoromethyl)picolinate, 63% yield.

¹**H** NMR (400 MHz, CDCl₃) δ 8.05 (s, 1H), 7.57 (d, J = 8.40 Hz, 2H), 7.48 (d, J = 8.40 Hz, 2H), 7.40 (d, J = 8.40 Hz, 2H), 7.01 (d, J = 8.80 Hz, 2H), 4.00 (s, 3H), 3.87 (s, 3H), 1.36 (s, 9H).

¹³**C NMR** (100 MHz, CDCl₃) δ 165.0, 160.2, 160.1, 152.5 (d, *J* = 2.0 Hz), 152.0, 148.3, 137.3, 130.8, 129.6, 128.5 (d, *J* = 2.0 Hz), 125.6, 125.1, 125.0 (q, *J* = 29.0 Hz, CCF₃), 123.7 (q, *J* = 274.0 Hz, CF₃), 113.8, 55.3, 53.1, 34.6, 31.2.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -49.1 (s, 3F).

HRMS (ESI) Calcd for $C_{25}H_{24}F_3NO_3$: [M] + H = 444.1781. Found: 444.1773.

methyl 6-(4-(tert-butyl)phenyl)-4-(4-chlorophenyl)-5-(trifluoromethyl)picolinate, 60% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 8.02(s, 1H), 7.55 (d, J = 8.40 Hz, 2H), 7.50 – 7.46 (m, 4H), 7.38 (d, J = 8.80 Hz, 2H), 4.01 (s, 3H), 1.36 (s, 9H).

¹³**C NMR** (100 MHz, CDCl₃) δ 164.8 , 160.2 (d, J = 1.0 Hz), 152.3, 151.5 (d, J = 2.0 Hz), 148.6, 136.9, 136.8, 135.3, 129.5 (d, J = 1.0 Hz), 128.7, 128.5 (d, J = 1.0 Hz), 125.3, 125.1, 125.0 (q, J = 29.0 Hz, CCF₃), 123.5 (q, J = 274.0 Hz, CF₃), 53.2, 34.7, 31.2.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -49.0 (s, 3F).

HRMS (ESI) Calcd for $C_{24}H_{21}ClF_3NO_2$: [M] + H = 448.1286. Found: 448.1282.

methyl 6-(4-(tert-butyl)phenyl)-4-(3-chlorophenyl)-5-(trifluoromethyl)picolinate, 56% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 8.02 (s, 1H), 7.56 (d, J = 8.40Hz, 2H), 7.49 (d, J =

8.40 Hz, 2H), 7.45 (s, 2H), 7.42 (t, *J* = 7.60 Hz, 1H), 7.32 (d, *J* = 7.60Hz, 1H), 4.01 (s, 3H), 1.36 (s, 9H).

¹³**C NMR** (100 MHz, CDCl₃) δ 164.7, 160.2, 152.3, 151.1 (d, J = 2.0 Hz), 148.7, 140.0, 136.9, 134.4, 129.7, 129.1, 128.6 (d, J = 1.0 Hz), 128.2, 126.4, 125.3, 125.1, 124.9 (q, J = 29.0 Hz, CCF₃), 123.4 (q, J = 274.0 Hz, CF₃), 53.3, 34.7, 31.3.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -49.0 (s, 3F).

HRMS (ESI) Calcd for $C_{24}H_{21}ClF_3NO_2$: [M] + H = 448.1286. Found: 448.1280.

methyl 6-(4-bromophenyl)-4-(4-methoxyphenyl)-5-(trifluoromethyl)picolinate, 50% yield.

¹**H** NMR (400 MHz, CDCl₃) δ 8.08 (s, 1H), 7.61 (d, J = 8.40 Hz, 2H), 7.50 (d, J = 8.40 Hz, 2H), 7.38 (d, J = 8.80 Hz, 2H), 7.02 (d, J = 8.80 Hz, 2H), 4.01 (s, 3H), 3.88 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 164.7, 160.4, 158.8, 152.8 (d, *J* = 2.0 Hz), 148.5, 139.0, 131.4, 130.5 (d, *J* = 2.0 Hz), 130.4, 129.6, 126.3, 125.1 (q, *J* = 29.0 Hz, CCF₃), 123.6, 123.5 (q, *J* = 275.0Hz, CF₃), 114.0, 55.3, 53.3.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -49.0 (s, 3F).

HRMS (ESI) Calcd for $C_{21}H_{15}BrF_3NO_3$: [M] + H = 466.0260. Found: 466.0256.

2-(4-(tert-butyl)phenyl)-5-phenyl-3-(trifluoromethyl)pyrazine, 33% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 9.22 (s, 1H), 8.16 – 8.14 (m, 2H), 7.59 – 7.51 (m, 7H), 1.38 (d, J = 0.70 Hz, 9H).

¹³**C NMR** (100 MHz, CDCl₃) δ 152.8, 151.4, 149.2, 142.6, 140.0 (q, *J* = 34.0 Hz, CCF₃), 134.7, 133.7, 130.6, 129.2, 128.6 (d, *J* = 2.0 Hz), 127.1, 125.3, 121.7 (q, *J* = 273.0 Hz, CF₃), 34.8, 31.2.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -61.9 (s, 3F).

HRMS (ESI) Calcd for $C_{21}H_{19}F_3N_2$: [M] + H = 357.1573. Found: 357.1569.

$$Ph \rightarrow Ph$$

(1-azido-3,3,3-trifluoropropane-1,1-diyl)dibenzene

¹**H** NMR (400 MHz, CDCl₃) δ 7.36 – 7.19 (m, 10H), 3.26 (q, J = 10.00 Hz, 2H). ¹³**C** NMR (100 MHz, CDCl₃) δ 141.4, 128.6, 128.1, 126.6, 125.1 (q, J = 277.0Hz, CF₃), 68.3 (d, J = 1.0 Hz), 42.3 (q, J = 27.0 Hz, CH₂CF₃). ¹⁹**F NMR** (376 MHz, CDCl₃) δ -59.4 (t, *J* =7.5 Hz, 3F). **HRMS** (**ESI**) Calcd for C₁₅H₁₂F₃N₃: [M-N₂] + H = 264.0995. Found: 264.0996.

6. Crystallographic data of 3h

Bond precisi	on: $C-C =$	0.0085 A	Wavelength=0.71073
Cell:	a=13.226(3)	b=13.605(4)	c=7.270(2)
	alpha=90	beta=92.84(2)	gamma=90
Temperature:	293 K		
	Calcula	ited	Reported
Volume	1306.60	(6)	1306.6(6)
Space group	P 21/c		P 1 21/c 1
Hall group	-P 2ybc	,	-P 2ybc
Moiety formu	ila C15 H1C) F3 N O	C15 H10 F3 N O
Sum formula	C15 H10) F3 N O	C15 H10 F3 N O
Mr	277.24		277.24
Dx,g cm-3	1.409		1.409
Z	4		4
Mu (mm-1)	0.118		0.118
F000	568.0		568.0
F000'	568.39		
h,k,lmax	16, 16, 8	3	16, 16, 8
Nref	2566		2566
Tmin, Tmax	0.968,0	. 976	0.386, 1.000
Tmin'	0.962		
Correction m	nethod= MULTI-S	SCAN	
Data complet	eness= 0.997	Theta(max)	= 26.020
R(reflection	ns) = 0.1085(88)	87) wR2(ref	Elections)= 0.3752(2559)
S = 0.917	Npar	- 182	

Crystallographic data of 4r

Bond precisi	Ion: $C-C =$	0.0059 A	Wavelength=0.71000
Cell:	a=9.2351(7)	b=5.3558(4)	c=12.9094(9)
	alpha=90	beta=104.113(7)	gamma=90
Temperature	293 K		
	Calcula	ated	Reported
Volume	619.24	(8)	619.25(8)
Space group	P 21		P 1 21 1
Hall group	P 2yb		P 2yb
Moiety form	ila C14 H1	0 F3 N O	C14 H10 F3 N O
Sum formula	C14 H1	0 F3 N O	C14 H10 F3 N O
Mr	265.23		265.23
Dx,g cm-3	1.423		1.422
Z	2		2
Mu (mm-1)	0.121		0.121
F000	272.0		272.0
F000'	272.19		
h,k,lmax	11, 6, 1	5	11, 6, 15
Nref	2461[1369]	1934
Tmin, Tmax	0.959,	0.970	0.758, 1.000
Tmin'	0.959		
Correction m	nethod= MULTI-	SCAN	
Data complet	eness= 1.41/0	.79 Theta $(max) =$	25.990
R(reflection	ns) = 0.0591(1)	339) wR2(refle	ections)= 0.1470(1934)
S = 1.076	Npa	r= 173	

Crystallographic data of 5a

Bond precisi	on: $C-C =$	0.0044 A	Wavelength=0.71073	
Cell:	a=11.3589(5)	b=8.1467(4)	c=15.8924(7)	
	alpha=90	beta=99.885(5)	gamma=90	
Temperature:	293 K			
	Calcula	ated	Reported	
Volume	1448.81	(12)	1448.80(11)	
Space group	P 21/n		P 1 21/n 1	
Hall group	-P 2yn		-P 2yn	
Moiety form	ıla C13 H15	5 F3 N4	C13 H15 F3 N4	
Sum formula	C13 H15	5 F3 N4	C13 H15 F3 N4	
Mr	284.29		284.29	
Dx,g cm-3	1.303		1.303	
Z	4		4	
Mu (mm-1)	0.108		0.108	
F000	592.0		592.0	
F000'	592.33			
h,k,lmax	14,10,19		14,10,19	
Nref	2841		2830	
Tmin, Tmax	0.967,0). 973	0.822, 1.000	
Tmin'	0.966			
Correction m	nethod= MULTI-S	SCAN		
Data complet	eness= 0.996	Theta(max)=	= 26.020	
R(reflection	ns) = 0.0637(15)	506) wR2(ref	lections)= 0.1959(2830)	
S = 1.036	Npar	r= 233		

Crystallographic data of 7a

Bond precisi	on: $C-C =$	0.0049 A	Wavelength=0.71073
Cell:	a= 33. 4249 (17)	b= 6. 2204 (3)	c=20.9937(9)
	alpha=90	beta=96.885(4)	gamma=90
Temperature:	294 K		
	Calcula	ted	Reported
Volume	4333.5(4)	4333.5(3)
Space group	C 2/c		C 1 2/c 1
Hall group	-C 2yc		-С 2ус
Moiety formu	la C24 H22	F3 N 02	C24 H22 F3 N O2
Sum formula	C24 H22	F3 N 02	C24 H22 F3 N O2
Mr	413.43		413. 43
Dx,g cm-3	1.267		1.267
Z	8		8
Mu (mm-1)	0.098		0.098
F000	1728.0		1728.0
F000'	1729.03		
h,k,lmax	40, 7, 25		40, 7, 25
Nref	4265		4254
Tmin, Tmax	0.964,0	. 973	0.703,1.000
Tmin'	0.964		
Correction m	ethod= MULTI-S	CAN	
Data complet	eness= 0.997	Theta(max)=	= 26.020
R(reflection	(s) = 0.0635(20)	53) wR2(ref	lections)= 0.1951(4254)
S = 1.046	Npar	= 333	

Crystallographic data of 9

Bond precisi	ion: $C-C =$	0.0078 A	Wavelength=0.71073	
Cell:	a=9.987(3)	b=10.061(3)	c=10. 1680 (16)	
	alpha=71.21(2)	beta=75.39(2)	gamma=79.84(2)	
Temperature	:295 K			
	Calculat	ted	Reported	
Volume	930.9(4))	930.8(4)	
Space group	P −1		P -1	
Hall group	-P 1		-P 1	
Moiety form	ıla C21 H19	F3 N2	C21 H19 F3 N2	
Sum formula	C21 H19	F3 N2	C21 H19 F3 N2	
Mr	356.38		356.38	
Dx,g cm-3	1.271		1.272	
Z	2		2	
Mu (mm-1)	0.096		0.096	
F000	372.0		372.0	
F000'	372.20			
h,k,lmax	12,12,12		12,12,12	
Nref	3682		3647	
Tmin, Tmax	0.967,0.	976	0.374, 1.000	
Tmin'	0.967			
Correction m	nethod= MULTI-S	CAN		
Data complet	eness= 0.990	Theta(max)	= 26.020	
R(reflection	ns) = 0.0880(12)	22) wR2(ref	flections)= 0.3307(3647)	
S = 0.950	Npar	= 239		

7¹H NMR¹³C NMR¹⁹F NMR Spectra for Substrates 3a-p, 4a-r, 5a, 7a-f and 9

28.72-78.72-78.72-

3a CL

56:72-> 26:72-

Meo CF₅

3c CF3

F

6*L*:*L*S-*LL*:*L*S-

Brown and Charles and Charles

S32

58:72-58:72-58:72-58:72-58:72-58:72-58:72-58:72-58:72-58:72-58:72-58:72-58:72-58:72-58:72-58:72-58:72-59

36 CL³

L8.TZ----

<-20.24 -20.25

S C C

<-21.93 -21.93

S S CL

68:72->

S S Z

S58

06:72-88:72->

g____g

א ב₀

~-21.84 -27.84

92.59----

S71

59·*L*9-—

Aa CF₃

99:19-59:19->

99:₂₉->

69:19-89:19->

89:19-29:19->

00.89----

εφ.εð----

4n CF3

^{L9:L9-} 99:L9->

4p CF₃

τς:*L*9-ος:*L*9->

	mdd
	-110
-	-100
-	-90
· · · · · · · · · · · · · · · · · · ·	-80
-	-70
- - - - - - - -	-60
-	-50
	-40
	-30
	-20
	-10

82.28----

4r CF3

00.61----

-15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 ppm

66.81----

90.05-

86.84----

00.01-40.00

₽0.0₽----

-95 ppm -- **6** - 82 - **8** -75 - 6 - 6 - 9 -22 -20 - 42 - 4 -35 - ဗို -52

58.18----

S149

54.62-14.62-85.92-38