Supplementary Information for

Transfer hydrogenation promoted by N-heterocyclic carbene and water

Terumasa Kato, Shin-ichi Matsuoka,* Masato Suzuki

Department of Materials Science and Engineering, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555, Japan

Fax: +81-52-735-7254; Tel: +81-52-735-7254;

Corresponding Author E-mail: <u>matsuoka.shinichi@nitech.ac.jp</u>

Contents

Experimental Section	
General	5
Experimental Procedure and Compound Characterization Data	6
The transfer hydrogenation of 1a	6
Compound 4a	6
Compound 4c	6
The transfer hydrogenation of 1h	7
Compound 3h	7
Compound 3c	7
Compound 3d	7
Compound 3e	8
Compound 3f	8
Compound 3 g	8
Compound 3i	8
Compound 3 j	9
Compound 3k	9
Compound 31	9
Compound 3m	9
Compound 3n	9
Compound 30	9
Compound 3p	9
Compound 3 q	9
Synthesis of 1d	10
Synthesis of 1e	10
Synthesis of 1g	11
Synthesis of 1k	11
The transfer hydrogenation of dibutyl fumarate by an equimolar amount of D_2O	
(Scheme 1)	11
Compound 3r	12
Compound 3s	12
Compound 3t	12
Compound 5t	13
The transfer hydrogenation of dibutyl fumarate in the presence of an excess amount of	
D ₂ O (Scheme 2)	13

The transfer hydrogenation of dibutyl fumarate in the presence of an excess amount of D ₂ O through the deoxy-Breslow intermediate (Scheme 2) 1 Compound 3v 1 Table S1. Transfer hydrogenation of dibutyl fumarate by NHC and water. 1 Figure S1. Substrates that did not undergo the transfer hydrogenation. 1 Scheme S1. The attempted reaction of the deoxy-Breslow intermediate 5m with H ₂ O. 1 References 1 Figure S2. ¹ H NMR spectrum of 3a 1 Figure S3. ¹³ C NMR spectrum of 4c 2 Figure S1. ¹⁴ C NMR spectrum of 4c 2 Figure S1. ¹³ C NMR spectrum of 1d 2 Figure S1. ¹³ C NMR spectrum of 1d 2 Figure S1. ¹³ C NMR spectrum of 1d 2 Figure S1. ¹³ C NMR spectrum of 1d 2 Figure S1. ¹⁴ N NMR spectrum of 1d 2 Figure S1. ¹⁴ N NMR spectrum of 1d 2 Figure S1. ¹⁴ N NMR spectrum of 1d 3 Figure S1. ¹⁴ N NMR spectrum of 3d 3 Figure S1. ¹⁴ N NMR spectrum of 3d 3 Figure S1. ¹⁴ N NMR spectrum of 3d 3 Figure S1. ¹⁴ N NMR spectrum of 3d 3 Figure S1. ¹⁵ C NMR spectrum of 3g 3	Compound 3u	13
D ₂ O through the deoxy-Breslow intermediate (Scheme 2)ICompound 3v ITable S1. Transfer hydrogenation of dibutyl fumarate by NHC and water.IFigure S1. Substrates that did not undergo the transfer hydrogenation.IScheme S1. The attempted reaction of the deoxy-Breslow intermediate 5m with H ₂ O.IReferencesIFigure S2. ¹ H NMR spectrum of 3a IFigure S3. ¹³ C NMR spectrum of 4c IFigure S5. ¹³ C NMR spectrum of 4c IFigure S5. ¹³ C NMR spectrum of 4c IFigure S7. ¹³ C NMR spectrum of 4d IFigure S8. ¹ H NMR spectrum of 1d IFigure S9. ¹³ C NMR spectrum of 1d IFigure S10. ¹ H NMR spectrum of 1d IFigure S11. ¹³ C NMR spectrum of 1e IFigure S12. ¹ H NMR spectrum of 3d IFigure S13. ¹ H NMR spectrum of 3d IFigure S14. ¹³ C NMR spectrum of 3d IFigure S15. ¹⁴ NMR spectrum of 3d IFigure S15. ¹⁴ NMR spectrum of 3d IFigure S14. ¹³ C NMR spectrum of 3d IFigure S15. ¹⁴ NMR spectrum of 3d IFigure S15. ¹⁴ NMR spectrum of 3d IFigure S16. ¹³ C NMR spectrum of 3d IFigure S19. ¹⁴ NMR spectrum of 3d IFigure S19. ¹⁴ NMR spectrum of 3d IFigure S10. ¹⁴ NMR spectrum of 3d IFigure S20	The transfer hydrogenation of dibutyl fumarate in the presence of an excess amount of	
Compound 3v ITable S1. Transfer hydrogenation of dibutyl fumarate by NHC and water.IFigure S1. Substrates that did not undergo the transfer hydrogenation.IScheme S1. The attempted reaction of the deoxy-Breslow intermediate 5m with H2O.IReferencesIFigure S2. ¹ H NMR spectrum of 3a IFigure S3. ¹³ C NMR spectrum of 4c IFigure S5. ¹³ C NMR spectrum of 4c IFigure S4. ¹ H NMR spectrum of 4c IFigure S7. ¹³ C NMR spectrum of 4c IFigure S7. ¹³ C NMR spectrum of 4d IFigure S8. ¹ H NMR spectrum of 4d IFigure S9. ¹³ C NMR spectrum of 1d IFigure S1. ¹³ C NMR spectrum of 1d IFigure S1. ¹³ C NMR spectrum of 1d IFigure S1. ¹³ C NMR spectrum of 1e IFigure S1. ¹³ C NMR spectrum of 3d IFigure S1. ¹⁴ NMR spectrum of 3f IFigure S2. ¹⁵ C NMR spectrum of 3g IFigure S2. ¹⁵ C NMR spectrum of 3g IFigure S2. ¹⁵ C NMR spectrum of 3g IFigure S2. ¹⁵ C NMR spectrum of 3j IFigure S2. ¹⁵ C NMR spectrum of 3j IFigure S2. ¹⁵ C NMR spectrum of	D ₂ O through the deoxy-Breslow intermediate (Scheme 2)	14
Table S1. Transfer hydrogenation of dibutyl fumarate by NHC and water.IFigure S1. Substrates that did not undergo the transfer hydrogenation.IScheme S1. The attempted reaction of the deoxy-Breslow intermediate 5m with H2O.IReferencesIFigure S2. ¹ H NMR spectrum of 3a IFigure S3. ¹³ C NMR spectrum of 4c IFigure S5. ¹³ C NMR spectrum of 4c IFigure S6. ¹ H NMR spectrum of 4c IFigure S7. ¹³ C NMR spectrum of 4c IFigure S7. ¹³ C NMR spectrum of 4d IFigure S1. ¹⁴ D NMR spectrum of 1d IFigure S1. ¹³ C NMR spectrum of 1d IFigure S1. ¹³ C NMR spectrum of 1d IFigure S1. ¹⁴ D NMR spectrum of 1d IFigure S1. ¹³ C NMR spectrum of 1d IFigure S1. ¹⁴ D NMR spectrum of 1e IFigure S1. ¹⁴ NMR spectrum of 3d IFigure S1. ¹⁴ NMR spectrum of 3d IFigure S15. ¹⁴ H NMR spectrum of 3d IFigure S15. ¹⁴ H NMR spectrum of 3d IFigure S16. ¹³ C NMR spectrum of 3d IFigure S17. ¹⁴ H NMR spectrum of 3d IFigure S18. ¹³ C NMR spectrum of 3d IFigure S19. ¹⁴ H NMR spectrum of 3d IFigure S20. ¹³ C NMR spectrum of 3d IFigure S21. ¹⁴ H NMR spectrum of 3d IFigure S21. ¹⁴ H NMR spectrum of 3d IFigure S22. ¹⁵ C NMR spectrum of 3d IFigure S23. ¹⁴ H NMR spectrum of 3d IFigure S23. ¹⁴ H NMR spectrum of 3d I	Compound 3v	14
Figure S1. Substrates that did not undergo the transfer hydrogenation.IScheme S1. The attempted reaction of the deoxy-Breslow intermediate 5m with H2O.ReferencesFigure S2. ¹ H NMR spectrum of 3a Figure S3. ¹³ C NMR spectrum of 4c Figure S4. ¹ H NMR spectrum of 4c Figure S5. ¹³ C NMR spectrum of 4c Figure S6. ¹ H NMR spectrum of 4c Figure S7. ¹³ C NMR spectrum of 4c Figure S7. ¹³ C NMR spectrum of 4d Figure S1. ¹³ C NMR spectrum of 1d Figure S1. ¹⁴ NMR spectrum of 1d Figure S1. ¹³ C NMR spectrum of 1e Figure S1. ¹⁴ NMR spectrum of 3d Figure S1. ¹⁴ NMR spectrum of 3d Figure S15. ¹⁴ H NMR spectrum of 3d Figure S15. ¹⁵ C NMR spectrum of 3d Figure S16. ¹³ C NMR spectrum of 3d Figure S16. ¹³ C NMR spectrum of 3d Figure S15. ¹⁴ H NMR spectrum of 3d Figure S16. ¹³ C NMR spectrum of 3d Figure S17. ¹⁴ H NMR spectrum of 3f Figure S18. ¹³ C NMR spectrum of 3g Figure S20. ¹³ C NMR spectrum of 3g Figure S21. ¹⁴ H NMR spectrum of 3h Figure S21. ¹⁴ H NMR spectrum of 3h Figure S23. ¹⁴ H NMR spectrum of 3h Figure S24. ¹⁴ NMR spectrum of 3j Figure S24. ¹⁴ NMR spectrum of 3j Figure S24. ¹⁴ NMR spectrum of 3k <t< td=""><td>Table S1. Transfer hydrogenation of dibutyl fumarate by NHC and water.</td><td>15</td></t<>	Table S1. Transfer hydrogenation of dibutyl fumarate by NHC and water.	15
Scheme S1. The attempted reaction of the deoxy-Breslow intermediate 5m with H2O.IReferencesIFigure S2. ¹ H NMR spectrum of $3a$ IFigure S3. ¹³ C NMR spectrum of $4c$ IFigure S4. ¹ H NMR spectrum of $4c$ IFigure S5. ¹³ C NMR spectrum of $4c$ IFigure S7. ¹⁴ C NMR spectrum of $4c$ IFigure S8. ¹ H NMR spectrum of $4c$ IFigure S9. ¹³ C NMR spectrum of $1d$ IFigure S9. ¹³ C NMR spectrum of $1d$ IFigure S1. ¹¹ D NMR spectrum of $1d$ IFigure S1. ¹¹ C NMR spectrum of $1d$ IFigure S1. ¹¹ C NMR spectrum of $1e$ IFigure S1. ¹¹ C NMR spectrum of $3c$ IFigure S1. ¹¹ H NMR spectrum of $3d$ IFigure S1. ¹¹ H NMR spectrum of $3d$ IFigure S1. ¹¹ C NMR spectrum of $3d$ IFigure S1. ¹¹ C NMR spectrum of $3d$ IFigure S1. ¹¹ H NMR spectrum of $3d$ IFigure S1. ¹¹ H NMR spectrum of $3d$ IFigure S1. ¹¹ H NMR spectrum of $3f$ IFigure S1. ¹¹ H NMR spectrum of $3g$ IFigure S2. ¹¹ C NMR spectrum of $3d$ IFigure S2. ¹¹ C NMR spectrum of $3h$ IFigure S2. ¹¹ H NMR spectrum of $3h$ IFigure S2. ¹¹ H NMR spectrum of $3j$ IFigure S2. ¹¹ H NMR spectrum of $3j$ IFigure S2. ¹¹ H NMR spectrum of $3i$ IFigure S2. ¹¹ H NMR spectrum of $3i$ IFigure S2. ¹¹ H NMR spectrum of $3i$ IFigure S2. ¹¹ C NMR spectrum of $3i$ IF	Figure S1. Substrates that did not undergo the transfer hydrogenation.	16
ReferencesIFigure S2. ¹ H NMR spectrum of 3a IFigure S3. ¹³ C NMR spectrum of 4c IFigure S4. ¹ H NMR spectrum of 4c IFigure S5. ¹³ C NMR spectrum of 4c IFigure S6. ¹ H NMR spectrum of 4c IFigure S7. ¹³ C NMR spectrum of 4c IFigure S9. ¹³ C NMR spectrum of 1d IFigure S1. ¹⁴ D NMR spectrum of 1d IFigure S1. ¹⁴ C NMR spectrum of 1e IFigure S11. ¹³ C NMR spectrum of 1e IFigure S12. ¹⁴ H NMR spectrum of 3d IFigure S13. ¹⁴ NMR spectrum of 3d IFigure S14. ¹³ C NMR spectrum of 3d IFigure S15. ¹⁴ H NMR spectrum of 3d IFigure S16. ¹³ C NMR spectrum of 3d IFigure S17. ¹⁴ NMR spectrum of 3d IFigure S18. ¹³ C NMR spectrum of 3d IFigure S19. ¹⁴ NMR spectrum of 3d IFigure S10. ¹⁴ NMR spectrum of 3d IFigure S10. ¹⁴ NMR spectrum of 3d IFigure S10. ¹⁴ NMR spectrum of 3d IFigure S11. ¹³ C NMR spectrum of 3d IFigure S12. ¹⁴ NMR spectrum of 3d IFigure S13. ¹⁴ NMR spectrum of 3d IFigure S21. ¹⁵ C NMR spectrum of 3h IFigure S21. ¹⁴ NMR spectrum of 3h IFigure S21. ¹⁴ NMR spectrum of 3i IFigure S21. ¹⁴ NMR spectrum of 3j IFigure S21. ¹⁴ NMR spectrum of 3k IFigure S22. ¹⁵ C NMR spectrum of 3k IFigure S23. ¹⁴ NMR spectrum of	Scheme S1. The attempted reaction of the deoxy-Breslow intermediate $5m$ with H_2O .	16
Figure S2. ¹ H NMR spectrum of $3a$ IFigure S3. ¹³ C NMR spectrum of $4c$ 2Figure S4. ¹ H NMR spectrum of $4c$ 2Figure S5. ¹³ C NMR spectrum of $4c$ 2Figure S7. ¹³ C NMR spectrum of $4c$ 2Figure S8. ¹ H NMR spectrum of $4c$ 2Figure S9. ¹³ C NMR spectrum of $1d$ 2Figure S1. ¹ H NMR spectrum of $1d$ 2Figure S1. ¹³ C NMR spectrum of $1d$ 2Figure S1. ¹³ C NMR spectrum of $1d$ 2Figure S1. ¹⁴ NMR spectrum of $1c$ 2Figure S12. ¹⁴ H NMR spectrum of $3c$ 2Figure S13. ¹⁴ NMR spectrum of $3d$ 3Figure S14. ¹³ C NMR spectrum of $3d$ 3Figure S15. ¹⁴ H NMR spectrum of $3d$ 3Figure S16. ¹³ C NMR spectrum of $3d$ 3Figure S16. ¹⁴ C NMR spectrum of $3d$ 3Figure S17. ¹⁴ H NMR spectrum of $3f$ 3Figure S18. ¹³ C NMR spectrum of $3f$ 3Figure S20. ¹³ C NMR spectrum of $3g$ 3Figure S21. ¹⁴ H NMR spectrum of $3g$ 3Figure S22. ¹³ C NMR spectrum of $3h$ 3Figure S23. ¹⁴ H NMR spectrum of $3h$ 3Figure S24. ¹⁴ H NMR spectrum of $3j$ 4Figure S25. ¹³ C NMR spectrum of $3j$ 4Figure S26. ¹⁴ H NMR spectrum of $3k$ 4Figure S26. ¹⁴ H NMR spectrum of $3j$ 4Figure S26. ¹⁴ H NMR spectrum of $3k$ 4Fi	References	17
Figure S3. 13 C NMR spectrum of 3a 2Figure S4. 1 H NMR spectrum of 4c 2Figure S5. 13 C NMR spectrum of 4c 2Figure S6. 1 H NMR spectrum of 4c 2Figure S8. 1 H NMR spectrum of 1d 2Figure S9. 13 C NMR spectrum of 1d 2Figure S10. 1 H NMR spectrum of 1d 2Figure S11. 13 C NMR spectrum of 1e 2Figure S12. 1 H NMR spectrum of 3c 2Figure S13. 1 H NMR spectrum of 3d 3Figure S14. 13 C NMR spectrum of 3d 3Figure S15. 1 H NMR spectrum of 3d 3Figure S16. 13 C NMR spectrum of 3d 3Figure S17. 14 H NMR spectrum of 3e 3Figure S18. 13 C NMR spectrum of 3f 3Figure S19. 14 H NMR spectrum of 3g 3Figure S19. 14 H NMR spectrum of 3g 3Figure S19. 14 H NMR spectrum of 3g 3Figure S20. 13 C NMR spectrum of 3h 3Figure S21. 14 H NMR spectrum of 3h 3Figure S22. 13 C NMR spectrum of 3i 4Figure S23. 14 H NMR spectrum of 3i 4Figure S24. 14 H NMR spectrum of 3j 4Figure S25. 15 C NMR spectrum of 3k 4Figure S26. 14 H NMR spectrum of 3k 4Figure S26. 14 H NMR spectrum of 3k 4Figure S23. 14 H NMR spectrum of 3k	Figure S2. ¹ H NMR spectrum of 3a	19
Figure S4. 1 H NMR spectrum of 4c2Figure S5. 13 C NMR spectrum of 4c2Figure S6. 1 H NMR spectrum of 4c2Figure S7. 13 C NMR spectrum of 1d2Figure S8. 1 H NMR spectrum of 1d2Figure S9. 13 C NMR spectrum of 1d2Figure S10. 1 H NMR spectrum of 1e2Figure S11. 13 C NMR spectrum of 3c2Figure S12. 1 H NMR spectrum of 3d3Figure S13. 1 H NMR spectrum of 3d3Figure S14. 13 C NMR spectrum of 3d3Figure S15. 1 H NMR spectrum of 3e3Figure S16. 13 C NMR spectrum of 3e3Figure S17. 1 H NMR spectrum of 3f3Figure S18. 13 C NMR spectrum of 3g3Figure S19. 14 H NMR spectrum of 3g3Figure S10. 13 C NMR spectrum of 3g3Figure S12. 14 H NMR spectrum of 3g3Figure S13. 14 H NMR spectrum of 3g3Figure S14. 13 C NMR spectrum of 3g3Figure S12. 14 H NMR spectrum of 3g3Figure S21. 14 H NMR spectrum of 3h3Figure S22. 13 C NMR spectrum of 3i4Figure S23. 14 H NMR spectrum of 3j4Figure S24. 14 H NMR spectrum of 3k4Figure S25. 13 C NMR spectrum of 3k4Figure S26. 14 H NMR spectrum of 3k4Figure S26. 14 H NMR spectrum of 3k4Figure S28. 14 H NMR spectrum of 3i4Figure S28. 14 H NMR spectrum of 3i4Figure S28. 14 H NMR spectrum	Figure S3. ¹³ C NMR spectrum of 3a	20
Figure S5. 13 C NMR spectrum of 4c2Figure S6. 1 H NMR spectrum of 4c2Figure S7. 13 C NMR spectrum of 1d2Figure S9. 13 C NMR spectrum of 1d2Figure S10. 14 H NMR spectrum of 1e2Figure S11. 13 C NMR spectrum of 1e2Figure S12. 14 H NMR spectrum of 3c2Figure S13. 14 H NMR spectrum of 3d3Figure S14. 13 C NMR spectrum of 3d3Figure S15. 14 H NMR spectrum of 3d3Figure S15. 14 H NMR spectrum of 3e3Figure S16. 13 C NMR spectrum of 3e3Figure S16. 13 C NMR spectrum of 3f3Figure S11. 13 C NMR spectrum of 3f3Figure S12. 14 H NMR spectrum of 3g3Figure S13. 14 H NMR spectrum of 3f3Figure S14. 13 C NMR spectrum of 3f3Figure S15. 14 H NMR spectrum of 3f3Figure S12. 14 H NMR spectrum of 3g3Figure S21. 14 H NMR spectrum of 3g3Figure S22. 13 C NMR spectrum of 3h3Figure S22. 13 C NMR spectrum of 3j4Figure S23. 14 H NMR spectrum of 3j4Figure S24. 14 H NMR spectrum of 3j4Figure S25. 13 C NMR spectrum of 3k4Figure S26. 14 H NMR spectrum of 3k4Figure S28. 14 H NMR spectrum of 3i4Figure S28. 14 H NMR	Figure S4. ¹ H NMR spectrum of 4c	21
Figure S6. 1 H NMR spectrum of 4c2Figure S7. 13 C NMR spectrum of 1d2Figure S8. 1 H NMR spectrum of 1d2Figure S9. 13 C NMR spectrum of 1d2Figure S10. 1 H NMR spectrum of 1e2Figure S12. 1 H NMR spectrum of 3c2Figure S13. 1 H NMR spectrum of 3d3Figure S14. 13 C NMR spectrum of 3d3Figure S15. 1 H NMR spectrum of 3d3Figure S16. 13 C NMR spectrum of 3e3Figure S16. 13 C NMR spectrum of 3f3Figure S18. 13 C NMR spectrum of 3g3Figure S19. 1 H NMR spectrum of 3g3Figure S20. 13 C NMR spectrum of 3h3Figure S21. 1 H NMR spectrum of 3h3Figure S22. 13 C NMR spectrum of 3j4Figure S23. 1 H NMR spectrum of 3j4Figure S24. 1 H NMR spectrum of 3j4Figure S25. 13 C NMR spectrum of 3j4Figure S25. 13 C NMR spectrum of 3j4Figure S26. 1 H NMR spectrum of 3k4Figure S26. 1 H NMR spectrum of 3k4Figure S28. 1 H NMR spectrum of 3i4Figure S28. 1 H NMR spectrum of 3i4Figure S29. 13 C NMR spectrum of 3i<	Figure S5. ¹³ C NMR spectrum of 4c	22
Figure S7. 13 C NMR spectrum of 4c2Figure S8. 14 H NMR spectrum of 1d2Figure S9. 13 C NMR spectrum of 1d2Figure S10. 14 H NMR spectrum of 1e2Figure S11. 13 C NMR spectrum of 1e2Figure S12. 14 H NMR spectrum of 3c2Figure S13. 14 H NMR spectrum of 3d3Figure S14. 13 C NMR spectrum of 3d3Figure S15. 14 H NMR spectrum of 3d3Figure S16. 13 C NMR spectrum of 3e3Figure S17. 14 H NMR spectrum of 3f3Figure S18. 13 C NMR spectrum of 3g3Figure S19. 14 H NMR spectrum of 3g3Figure S19. 14 H NMR spectrum of 3g3Figure S20. 13 C NMR spectrum of 3g3Figure S21. 14 H NMR spectrum of 3g3Figure S22. 13 C NMR spectrum of 3h3Figure S23. 14 H NMR spectrum of 3j4Figure S24. 14 NMR spectrum of 3j4Figure S25. 15 C NMR spectrum of 3j4Figure S26. 14 H NMR spectrum of 3j4Figure S26. 14 H NMR spectrum of 3j4Figure S26. 14 H NMR spectrum of 3k4Figure S28. 14 H NMR spectrum of 3k4Figure S28. 14 H NMR spectrum of 3l4Figure S28. 14 NMR spectrum of 3l4Figure S29. 13 C NMR spectrum of 3l4Figure S29. 13 C NMR spectr	Figure S6. ¹ H NMR spectrum of 4c	23
Figure S8. ¹ H NMR spectrum of 1d2Figure S9. ¹³ C NMR spectrum of 1d2Figure S10. ¹ H NMR spectrum of 1e2Figure S11. ¹³ C NMR spectrum of 1e2Figure S12. ¹ H NMR spectrum of 3c2Figure S13. ¹ H NMR spectrum of 3d3Figure S14. ¹³ C NMR spectrum of 3d3Figure S15. ¹ H NMR spectrum of 3d3Figure S16. ¹³ C NMR spectrum of 3e3Figure S16. ¹³ C NMR spectrum of 3e3Figure S17. ¹ H NMR spectrum of 3f3Figure S18. ¹³ C NMR spectrum of 3g3Figure S19. ¹ H NMR spectrum of 3g3Figure S20. ¹³ C NMR spectrum of 3g3Figure S21. ¹ H NMR spectrum of 3g3Figure S22. ¹³ C NMR spectrum of 3h3Figure S23. ¹ H NMR spectrum of 3h3Figure S24. ¹ H NMR spectrum of 3j4Figure S25. ¹³ C NMR spectrum of 3j4Figure S25. ¹³ C NMR spectrum of 3j4Figure S26. ¹⁴ NMR spectrum of 3j4Figure S26. ¹⁴ NMR spectrum of 3j4Figure S26. ¹⁴ NMR spectrum of 3k4Figure S28. ¹⁴ NMR spectrum of 3k4Figure S28. ¹⁴ NMR spectrum of 3l4Figure S29. ¹³ C NMR spectrum of 3l4Fig	Figure S7. ¹³ C NMR spectrum of 4c	24
Figure S9. 13 C NMR spectrum of 1d2Figure S10. 1 H NMR spectrum of 1e2Figure S11. 13 C NMR spectrum of 3c2Figure S12. 1 H NMR spectrum of 3d3Figure S13. 1 H NMR spectrum of 3d3Figure S14. 13 C NMR spectrum of 3d3Figure S15. 1 H NMR spectrum of 3e3Figure S16. 13 C NMR spectrum of 3e3Figure S17. 1 H NMR spectrum of 3f3Figure S18. 13 C NMR spectrum of 3f3Figure S19. 14 H NMR spectrum of 3g3Figure S19. 14 H NMR spectrum of 3g3Figure S20. 13 C NMR spectrum of 3g3Figure S21. 14 H NMR spectrum of 3h3Figure S22. 13 C NMR spectrum of 3h3Figure S23. 14 H NMR spectrum of 3i4Figure S24. 14 H NMR spectrum of 3j4Figure S25. 13 C NMR spectrum of 3j4Figure S26. 14 H NMR spectrum of 3k4Figure S26. 14 H NMR spectrum of 3k4Figure S26. 14 H NMR spectrum of 3k4Figure S28. 14 H NMR spectrum of 3k4Figure S28. 14 H NMR spectrum of 3i4Figure S29. 13 C NMR spectrum of 3i4Figure S29. 13 C NMR spectrum of 3i4	Figure S8. ¹ H NMR spectrum of 1d	25
Figure S10. 1 H NMR spectrum of 1e2Figure S11. 13 C NMR spectrum of 3c2Figure S12. 1 H NMR spectrum of 3d3Figure S13. 1 H NMR spectrum of 3d3Figure S14. 13 C NMR spectrum of 3d3Figure S15. 1 H NMR spectrum of 3e3Figure S16. 13 C NMR spectrum of 3e3Figure S17. 1 H NMR spectrum of 3f3Figure S18. 13 C NMR spectrum of 3f3Figure S18. 13 C NMR spectrum of 3g3Figure S19. 14 H NMR spectrum of 3g3Figure S20. 13 C NMR spectrum of 3g3Figure S21. 14 H NMR spectrum of 3h3Figure S22. 13 C NMR spectrum of 3h3Figure S23. 14 H NMR spectrum of 3i4Figure S24. 14 H NMR spectrum of 3j4Figure S25. 13 C NMR spectrum of 3j4Figure S26. 14 H NMR spectrum of 3k4Figure S28. 14 H NMR spectrum of 3l4Figure S29. 15 C NMR spectrum of 3l4	Figure S9. ¹³ C NMR spectrum of 1d	26
Figure S11. 13 C NMR spectrum of 1e2Figure S12. 1H NMR spectrum of 3c2Figure S13. 1H NMR spectrum of 3d3Figure S14. 13 C NMR spectrum of 3d3Figure S15. 1H NMR spectrum of 3e3Figure S16. 13 C NMR spectrum of 3e3Figure S17. 1H NMR spectrum of 3f3Figure S18. 13 C NMR spectrum of 3f3Figure S19. 1H NMR spectrum of 3f3Figure S19. 1H NMR spectrum of 3g3Figure S20. 13 C NMR spectrum of 3g3Figure S22. 13 C NMR spectrum of 3h3Figure S23. 1H NMR spectrum of 3i4Figure S24. 1H NMR spectrum of 3j4Figure S25. 13 C NMR spectrum of 3j4Figure S26. 14 NMR spectrum of 3j4Figure S28. 14 NMR spectrum of 3j4Figure S29. 13 C NMR spectrum of 3j4Figure S29. 13 C NMR spectrum of 3j4 <td< td=""><td>Figure S10. ¹H NMR spectrum of 1e</td><td>27</td></td<>	Figure S10. ¹ H NMR spectrum of 1e	27
Figure S12. ¹ H NMR spectrum of 3c 2Figure S13. ¹ H NMR spectrum of 3d 3Figure S14. ¹³ C NMR spectrum of 3d 3Figure S15. ¹ H NMR spectrum of 3e 3Figure S16. ¹³ C NMR spectrum of 3e 3Figure S17. ¹ H NMR spectrum of 3f 3Figure S18. ¹³ C NMR spectrum of 3f 3Figure S19. ¹ H NMR spectrum of 3g 3Figure S20. ¹³ C NMR spectrum of 3g 3Figure S21. ¹ H NMR spectrum of 3h 3Figure S22. ¹³ C NMR spectrum of 3h 3Figure S23. ¹ H NMR spectrum of 3i 4Figure S24. ¹ H NMR spectrum of 3j 4Figure S25. ¹³ C NMR spectrum of 3j 4Figure S26. ¹ H NMR spectrum of 3k 4Figure S25. ¹³ C NMR spectrum of 3k 4Figure S26. ¹ H NMR spectrum of 3k 4Figure S26. ¹ H NMR spectrum of 3k 4Figure S26. ¹ H NMR spectrum of 3k 4Figure S27. ¹ H NMR spectrum of 3k 4Figure S28. ¹ H NMR spectrum of 3i 4Figure S29. ¹³ C NMR spectrum of 3i 4	Figure S11. ¹³ C NMR spectrum of 1e	28
Figure S13. ¹ H NMR spectrum of 3d3Figure S14. ¹³ C NMR spectrum of 3d3Figure S15. ¹ H NMR spectrum of 3e3Figure S16. ¹³ C NMR spectrum of 3e3Figure S17. ¹ H NMR spectrum of 3f3Figure S18. ¹³ C NMR spectrum of 3f3Figure S19. ¹ H NMR spectrum of 3g3Figure S20. ¹³ C NMR spectrum of 3g3Figure S21. ¹ H NMR spectrum of 3h3Figure S22. ¹³ C NMR spectrum of 3h3Figure S23. ¹ H NMR spectrum of 3i4Figure S24. ¹ H NMR spectrum of 3j4Figure S25. ¹³ C NMR spectrum of 3j4Figure S26. ¹ H NMR spectrum of 3j4Figure S26. ¹ H NMR spectrum of 3k4Figure S26. ¹ H NMR spectrum of 3k4Figure S27. ¹ H NMR spectrum of 3k4Figure S28. ¹ H NMR spectrum of 3k4Figure S29. ¹³ C NMR spectrum of 3i4Figure S29. ¹⁴ C NMR spectrum of 3i4Figure S29. ¹³ C NMR spectrum of 3i4Figure S28. ¹ H NMR spectrum of 3i4Figure S29. ¹³ C NMR spectrum of 3i4Figure S29. ¹⁴ C NMR spectrum of 3i4Figure S29. ¹³ C NMR spectrum of 3i4Figure S29. ¹³ C NMR spectrum of 3i4Figure S29. ¹⁴ D NMR spectrum of 3i4Figure S29. ¹³ C NMR spectrum of 3i4 <tr< td=""><td>Figure S12. ¹H NMR spectrum of 3c</td><td>29</td></tr<>	Figure S12. ¹ H NMR spectrum of 3c	29
Figure S14. 13 C NMR spectrum of 3d3Figure S15. 1 H NMR spectrum of 3e3Figure S16. 13 C NMR spectrum of 3e3Figure S17. 1 H NMR spectrum of 3f3Figure S18. 13 C NMR spectrum of 3f3Figure S19. 1 H NMR spectrum of 3g3Figure S20. 13 C NMR spectrum of 3g3Figure S21. 1 H NMR spectrum of 3h3Figure S22. 13 C NMR spectrum of 3h3Figure S23. 1 H NMR spectrum of 3j4Figure S24. 1 H NMR spectrum of 3j4Figure S25. 13 C NMR spectrum of 3j4Figure S26. 1 H NMR spectrum of 3k4Figure S27. 1 H NMR spectrum of 3k4Figure S28. 1 H NMR spectrum of 3k4Figure S29. 13 C NMR spectrum of 3l4Figure S29. 13 C NMR spectrum of 3l4	Figure S13. ¹ H NMR spectrum of 3d	30
Figure S15. 1 H NMR spectrum of 3e 3Figure S16. 13 C NMR spectrum of 3e 3Figure S17. 1 H NMR spectrum of 3f 3Figure S18. 13 C NMR spectrum of 3f 3Figure S19. 1 H NMR spectrum of 3g 3Figure S20. 13 C NMR spectrum of 3g 3Figure S21. 1 H NMR spectrum of 3h 3Figure S22. 13 C NMR spectrum of 3h 3Figure S23. 1 H NMR spectrum of 3i 4Figure S25. 13 C NMR spectrum of 3j 4Figure S26. 1 H NMR spectrum of 3k 4Figure S27. 1 H NMR spectrum of 3k 4Figure S28. 1 H NMR spectrum of 3i 4Figure S29. 13 C NMR spectrum of 3i 4Figure S29. 13 C NMR spectrum of 3i 4	Figure S14. ¹³ C NMR spectrum of 3d	31
Figure S16. 13 C NMR spectrum of 3e3Figure S17. 1H NMR spectrum of 3f3Figure S18. 13 C NMR spectrum of 3f3Figure S19. 1H NMR spectrum of 3g3Figure S20. 13 C NMR spectrum of 3g3Figure S21. 1H NMR spectrum of 3h3Figure S22. 13 C NMR spectrum of 3h3Figure S23. 1H NMR spectrum of 3i4Figure S24. 1H NMR spectrum of 3j4Figure S25. 13 C NMR spectrum of 3j4Figure S26. 1H NMR spectrum of 3j4Figure S26. 1H NMR spectrum of 3k4Figure S27. 1H NMR spectrum of 3k4Figure S28. 1H NMR spectrum of 3k4Figure S28. 1H NMR spectrum of 3l4Figure S29. 13 C NMR spectrum of 3l4Figure S29. 13 C NMR spectrum of 3l4	Figure S15. ¹ H NMR spectrum of 3e	32
Figure S17. ¹ H NMR spectrum of 3f 3Figure S18. ¹³ C NMR spectrum of 3g 3Figure S19. ¹ H NMR spectrum of 3g 3Figure S20. ¹³ C NMR spectrum of 3g 3Figure S21. ¹ H NMR spectrum of 3h 3Figure S22. ¹³ C NMR spectrum of 3h 3Figure S23. ¹ H NMR spectrum of 3i 4Figure S24. ¹ H NMR spectrum of 3j 4Figure S25. ¹³ C NMR spectrum of 3j 4Figure S26. ¹ H NMR spectrum of 3k 4Figure S27. ¹ H NMR spectrum of 3k 4Figure S28. ¹ H NMR spectrum of 3l 4	Figure S16. ¹³ C NMR spectrum of 3e	33
Figure S18. ¹³ C NMR spectrum of 3f 3Figure S19. ¹ H NMR spectrum of 3g 3Figure S20. ¹³ C NMR spectrum of 3g 3Figure S21. ¹ H NMR spectrum of 3h 3Figure S22. ¹³ C NMR spectrum of 3h 3Figure S23. ¹ H NMR spectrum of 3i 4Figure S24. ¹ H NMR spectrum of 3j 4Figure S25. ¹³ C NMR spectrum of 3j 4Figure S26. ¹ H NMR spectrum of 3k 4Figure S27. ¹ H NMR spectrum of 3k 4Figure S28. ¹ H NMR spectrum of 3l 4Figure S28. ¹ H NMR spectrum of 3l 4Figure S28. ¹ H NMR spectrum of 3l 4	Figure S17. ¹ H NMR spectrum of 3f	34
Figure S19. ¹ H NMR spectrum of 3g 3Figure S20. ¹³ C NMR spectrum of 3g 3Figure S21. ¹ H NMR spectrum of 3h 3Figure S22. ¹³ C NMR spectrum of 3h 3Figure S23. ¹ H NMR spectrum of 3i 4Figure S24. ¹ H NMR spectrum of 3j 4Figure S25. ¹³ C NMR spectrum of 3j 4Figure S26. ¹ H NMR spectrum of 3k 4Figure S27. ¹ H NMR spectrum of 3k 4Figure S28. ¹ H NMR spectrum of 3i 4Figure S28. ¹ C NMR spectrum of 3i 4	Figure S18. ¹³ C NMR spectrum of 3f	35
Figure S20. 13 C NMR spectrum of 3g3Figure S21. 1H NMR spectrum of 3h3Figure S22. 13 C NMR spectrum of 3h3Figure S23. 1H NMR spectrum of 3i4Figure S24. 1H NMR spectrum of 3j4Figure S25. 13 C NMR spectrum of 3j4Figure S26. 1H NMR spectrum of 3k4Figure S27. 1H NMR spectrum of 3k4Figure S28. 1H NMR spectrum of 3l4Figure S28. 1C NMR spectrum of 3l4	Figure S19. ¹ H NMR spectrum of 3g	36
Figure S21. ¹ H NMR spectrum of 3h3 Figure S22. ¹³ C NMR spectrum of 3h3 Figure S23. ¹ H NMR spectrum of 3i4 Figure S24. ¹ H NMR spectrum of 3j4 Figure S25. ¹³ C NMR spectrum of 3j4 Figure S26. ¹ H NMR spectrum of 3k4 Figure S27. ¹ H NMR spectrum of 3k4 Figure S28. ¹ H NMR spectrum of 3l4 Figure S28. ¹ H NMR spectrum of 3l4 Figure S28. ¹ C NMR spectrum of 3l4	Figure S20. ¹³ C NMR spectrum of 3g	37
Figure S22. 13C NMR spectrum of 3h3 Figure S23. 1H NMR spectrum of 3i4 Figure S24. 1H NMR spectrum of 3j4 Figure S25. 13C NMR spectrum of 3j4 Figure S26. 1H NMR spectrum of 3k4 Figure S27. 1H NMR spectrum of 3k4 Figure S28. 1H NMR spectrum of 3i4 Figure S28. 1H NMR spectrum of 3i4 Figure S28. 1C NMR spectrum of 3i4 Figure S28. 1C NMR spectrum of 3i4 Figure S28. 1C NMR spectrum of 3i4 Figure S29. 13C NMR spectrum of 3i4	Figure S21. ¹ H NMR spectrum of 3h	38
Figure S23. ¹ H NMR spectrum of 3i 4Figure S24. ¹ H NMR spectrum of 3j 4Figure S25. ¹³ C NMR spectrum of 3j 4Figure S26. ¹ H NMR spectrum of 3k 4Figure S27. ¹ H NMR spectrum of 3k 4Figure S28. ¹ H NMR spectrum of 3l 4Figure S28. ¹ H NMR spectrum of 3l 4Figure S29. ¹³ C NMR spectrum of 3l 4	Figure S22. ¹³ C NMR spectrum of 3h	39
Figure S24. ¹ H NMR spectrum of 3j 4Figure S25. ¹³ C NMR spectrum of 3j 4Figure S26. ¹ H NMR spectrum of 3k 4Figure S27. ¹ H NMR spectrum of 3k 4Figure S28. ¹ H NMR spectrum of 3l 4Figure S29. ¹³ C NMR spectrum of 3l 4	Figure S23. ¹ H NMR spectrum of 3i	40
Figure S25. 13C NMR spectrum of 3j2Figure S26. 1H NMR spectrum of 3k2Figure S27. 1H NMR spectrum of 3k2Figure S28. 1H NMR spectrum of 3l2Figure S29. 13C NMR spectrum of 3l2	Figure S24. ¹ H NMR spectrum of 3j	41
Figure S26. ¹ H NMR spectrum of 3k 2Figure S27. ¹ H NMR spectrum of 3k 2Figure S28. ¹ H NMR spectrum of 3l 2Figure S29. ¹³ C NMR spectrum of 3l 2	Figure S25. ¹³ C NMR spectrum of 3j	42
Figure S27. ¹ H NMR spectrum of 3k 2Figure S28. ¹ H NMR spectrum of 3l 2Figure S29. ¹³ C NMR spectrum of 3l 2	Figure S26. ¹ H NMR spectrum of 3k	43
Figure S28. ¹ H NMR spectrum of 3 4Figure S29. ¹³ C NMR spectrum of 3 4	Figure S27. ¹ H NMR spectrum of 3k	44
Figure S29. ¹³ C NMR spectrum of 3	Figure S28. ¹ H NMR spectrum of 3 I	45
-Sector	Figure S29. ¹³ C NMR spectrum of 3 I	46

Figure S30. ¹ H NMR spectrum of 3m	47
Figure S31. ¹³ C NMR spectrum of 3m	48
Figure S32. ¹ H NMR spectrum of 3n	49
Figure S33. ¹³ C NMR spectrum of 3n	50
Figure S34. ¹ H NMR spectrum of 30	51
Figure S35. ¹³ C NMR spectrum of 30	52
Figure S36. ¹³ C NMR spectrum of 3p	53
Figure S37. ¹³ C NMR spectrum of 3p	54
Figure S38. ¹ H NMR spectrum of 3q	55
Figure S39. ¹³ C NMR spectrum of 3q	56
Figure S40. ¹ H NMR spectrum of 3r	57
Figure S41. ¹³ C NMR spectrum of 3r	58
Figure S42. ESI-MS spectrum of 3r	59
Figure S43. ¹ H NMR spectrum of 3s	60
Figure S44. ¹³ C NMR spectrum of 3s	61
Figure S45. ESI-MS spectrum of 3s	62
Figure S46. ¹ H NMR spectrum of 3t	63
Figure S47. ¹³ C NMR spectrum of 3t	64
Figure S48. ESI-MS spectrum of 3t	65
Figure S49. ¹ H NMR spectrum of 5 t	66
Figure S50. ¹³ C NMR spectrum of 5t	67
Figure S51. ¹ H NMR spectrum of 3u	68
Figure S52. ¹³ C NMR spectrum of 3u	69
Figure S53. ESI-MS Spectrum of 3u	70
Figure S54. ¹ H NMR spectrum of 3v	71
Figure S55. ¹³ C NMR spectrum of 3v	72
Figure S56. ESI-MS Spectrum of 3v	73

Experimental Section

General

All reactions were performed under nitrogen atmosphere. Microwave irradiation experiments were carried out in a Biotage Initiator microwave reactor. The reaction temperature was measured by a surface sensor. NHC precursors were prepared according to the previous literatures $(2\mathbf{a}^1, 2\mathbf{b}^1, 2\mathbf{c}^2, 2\mathbf{d}^2, 2\mathbf{e}^3, 2\mathbf{f}^4, 2\mathbf{g}^4, 2\mathbf{h}^4, 2\mathbf{i}^5, 2\mathbf{j}^6)$. Dibutyl fumarate, dibutyl maleate, *n*-butyl alcohol, 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), N,N-diisopropylethylamine (DIPEA), 1,2-dimethoxyethane (DME), and N,N-dimethylformamide (DMF) were distilled from CaH₂ under reduced pressure before use. Anhydrous toluene and ethanol were purchased from KANTO CHEMICAL CO., INC. Deuterium oxide (99.9 atom D%) was purchased from SIGMA-ALDRICH. Thiamine hydrochloride (2k), *trans*-1,2-dibenzoylethylene(1j), *N*-phenylmaleimide (1k), 2-methyl-*N*-phenylmaleimide(**1m**), *N*,*N*'-dicyclohexylcarbodiimide (DCC, **1p**), diisopropyl azodicarboxylate (DIAD, 1q), and other reagents were used as received. Several substrates shown in Table 2 were prepared according to the previous literatures ($1c^7$, $1f^8$, $1h^9$, $1i^{10}$, $1n^{11}$, $1o^{12}$). Kugelrohr distillations were carried out under reduced pressure (2.0 mmHg) at 110 °C ~ 220 °C. ¹H and ¹³C NMR spectra were recorded on Bruker Avance III HD (400 MHz for ¹H, 100 MHz for ¹³C) or JEOL JNM-ECA700 (700 MHz for ¹H, 176 Hz for ¹³C) NMR spectrometers. Chemical shift values in ¹H and ¹³C NMR spectra are relative to the internal TMS standard (0.0 ppm for ¹H) or CDCl₃ resonance (77.16 ppm for ¹³C). Electrospray ionization mass spectrometry (ESI-MS) was performed in methanol solutions on a Waters Synapt G2 HDMS tandem quadrupole orthogonal acceleration time-of-flight instrument equipped with a Z-spray nanoelectrospray ionization source. Infrared spectra were obtained on a JASCO FT/IR-460 Plus spectrometer. Thin layer chromatography was performed on TLC Silica gel 60 F254 Merck KGaA.

Experimental Procedure and Compound Characterization Data

The transfer hydrogenation of dibutyl fumarate (1a) (Table 1, Entry 1)

In a two-necked flask equipped with a three way stopcock, NHC precursor **2b** (100 mg, 0.30 mmol) was heated at 100 °C for 12 h under vacuum to generate NHC **2a**. To this flask, 1,2-dimethoxyethane (1.0 mL) and H₂O (16.0 mg, 0.90 mmol) were added. After the stirring for 3 min at room temperature, dibutyl fumarate (57.0 mg, 0.25 mmol) was added and the mixture was transferred by a microsyringe into a 2.0 mL microwave vial. The vial was then sealed and heated with microwave irradiation at 150 °C for 2 h. The precipitated **4a** was removed by filtration and washed with hexane. The filtrate was subjected to Kugelrohr distillation under reduced pressure to give dibutyl succinate **3a** (54.1 mg, 0.24 mmol, transparent liquid) in 94% yield. For the ¹H and ¹³C NMR data of **3a**, see ref 13. In the case of the isolation of **4a**, the crude reaction mixture was subjected to the silica gel column chromatography using dichloromethane as the eluent ($R_f = 0.6$) to give **4a** (73 mg, 0.24 mmol, white solid) in 78% yield.

1,3,4-triphenyl-1H-1,2,4-triazol-5(4H)-one (4a)

mp = 213-214 °C. ¹H NMR (400 MHz, CDCl₃) δ : 7.26-7.48 (m, 13H, *Ph*), 8.11 (d, *J* = 7.8 Hz, 2H, *Ph*). ¹³C NMR (100 MHz, CDCl₃) δ : 119.0, 125.6, 126.4, 127.4, 128.1, 128.7, 128.9, 129.1, 129.6, 133.6, 138.0, 145.3, 151.9. HRMS (ESI) *m/z*: calcd for C₂₀H₁₅N₃O [M+Na]⁺ 336.1113, found 336.1112. IR (KBr, cm⁻¹): 3392, 3045, 2922, 2857, 1703, 1592, 1491, 1375, 1151, 966, 756, 693.

2-phenyl-6,7-dihydro-2H-pyrrolo[2,1-c][1,2,4]triazol-3(5H)-one (4c) (Table 1, Entry 7)

16 mg, 0.077 mmol, 26% isolated yield, white solid, purified by silica gel column chromatography (ethyl acetate: hexane = 3: 1, $R_f = 0.3$). mp = 108-109 °C. ¹H NMR (400 MHz, CDCl₃) δ : 2.56 (m, 2H, -CH₂-CH₂-CH₂-), 2.90 (t, J = 7.6 Hz, 2H, =C-CH₂-CH₂-), 3.84 (t, J = 7.0 Hz, 2H, N-CH₂-CH₂-), 7.18 (t, J = 7.5 Hz, 1H, Ph), 7.40 (t, J = 7.9 Hz, 2H, Ph), 7.91 (d, J = 7.7 Hz, 2H, Ph).

¹³C NMR (100 MHz, CDCl₃); δ: 22.7, 26.3, 41.9, 118.7, 125.1, 129.0, 138.7, 150.5, 153.3. HRMS (ESI) *m/z*: calcd for C₁₁H₁₁N₃O [M+Na]⁺ 224.0799, found 224.0808. IR (KBr, cm⁻¹): 3417, 2922, 2852, 1703, 1615, 1596, 1501, 1362, 1335, 1101, 757, 727, 690.

The transfer hydrogenation of *(E)-tert*-butyl 3-(4-cyanophenyl)propenoate (1h) (Table 2, Entry 7)

NHC **2b** (100 mg, 0.30 mmol), H₂O (16 mg, 0.90 mmol) and 1,2-dimethoxyethane (1.0 mL) were added into a 2.0 mL microwave vial. The mixture was stirred for 3 min at room temperature and (*E*)-*tert*-butyl 3-(4-cyanophenyl)propenoate **1h** (58 mg, 0.25 mmol) was added. The vial was then sealed and heated with microwave irradiation at 150 °C for 2 h. The precipitated **4a** was removed by filtration and washed with hexane. The filtrate was purified by silica gel column chromatography (ethyl acetate : hexane = 1 : 10, $R_f = 0.3$) to give **3h** (43 mg, 0.19 mmol, white solid) in 74% yield.

tert-butyl 3-(4-cyanophenyl)propanoate (3h)

¹H NMR (400 MHz, CDCl₃) δ: 1.40 (s, 9H, -C*H*₃), 2.56 (t, *J* = 7.5 Hz, 2H, Ph-C*H*₂-), 2.97 (t, *J* = 7.5 Hz, 2H, -*CH*₂-CO-), 7.31 (d, *J* = 8.4 Hz, 2H, *Ar*), 7.68 (d, *J* = 8.4 Hz, 2H, *Ar*). ¹³C NMR (100 MHz, CDCl₃); δ: 28.1, 31.2, 36.2, 80.9, 110.2, 119.0, 129.3, 132.3, 146.5, 171.6. HRMS (ESI) *m/z*: calcd for C₁₄H₁₇NO₂ [M+Na]⁺ 254.1157, found 254.1167. IR (KBr, cm⁻¹): 3429, 2923, 2853, 2226, 1725, 1608, 1509, 1371, 1154, 948, 825, 760.

diethyl 2-methylsuccinate (**3c**)¹⁴; purified by Kugelrohr distillation to give 31 mg of the crude mixture. The yield was estimated by ¹H NMR spectroscopy; the mixture of unreacted **1c** (19%), the *E*-isomer of **1c** (11%), and product **3c** (36%) were obtained.

allyl ethyl succinate (3d)

41 mg, 0.22 mmol, 85% isolated yield, transparent liquid, purified by Kugelrohr distillation.

¹H NMR (400 MHz, CDCl₃) δ: 1.25 (t, J = 7.2 Hz, 3H, CH₃), 2.61-2.67 (m, 4H, -C(=O)-CH₂-), 4.14 (q, J = 7.2 Hz, 2H, -CH₂-CH₃), 4.59 (dt, J = 5.7 Hz, J = 1.5 Hz, 2H, =CH-CH₂-), 5.22 (dq, J = 10.5 Hz, J = 1.5 Hz, 1H, CH₂=), 5.31 (dq, J = 17.3 Hz, J = 1.5 Hz, 1H, CH₂=), 5.9 (m, 1H, CH=). ¹³C NMR (100 MHz, CDCl₃); δ: 14.3, 29.2, 29.3, 60.8, 65.5, 118.4, 132.2, 172.2, 172.4. HRMS (ESI) m/z: calcd for C₉H₁₄O₄ [M+Na]⁺ 209.0789, found 209.0805. IR (NaCl, cm⁻¹): 3087, 2984, 2938, 1736, 1415, 1375, 1211, 1159, 1025, 992, 933, 857.

dipropyn-2-yl succinate (3e)

33 mg, 0.17 mmol, 68% isolated yield, transparent liquid, purified by Kugelrohr distillation ¹H NMR (400 MHz, CDCl₃) δ : 2.47 (t, *J* = 2.5 Hz, C*H*), 2.70 (s, 4H, -C(=O)-C*H*₂-), 4.67 (d, *J* = 2.5 Hz, 4H, O-C*H*₂-).

¹³C NMR (100 MHz, CDCl₃); δ: 28.8, 52.4, 75.1, 171.4.

HRMS (ESI) m/z: calcd for C₁₀H₁₀O₄ [M+Na]⁺ 217.0476, found 217.0485.

IR (KBr, cm⁻¹): 3291, 2945, 2130, 1741, 1437, 1382, 1348, 1271, 1209, 1154, 1026, 995, 652.

tert-butyl 4-oxopentanoate (**3f**)¹⁵; 28 mg, 0.17 mmol, 65% isolated yield, transparent liquid, purified by Kugelrohr distillation.

ethyl 4-(diethylamino)-4-oxobutanoate (3g)

40 mg, 0.20 mmol, 79% isolated yield, transparent liquid, purified by Kugelrohr distillation. ¹H NMR (400 MHz, CDCl₃) δ : 1.11 (t, *J* = 7.1 Hz, 3H, -N-CH₂-C*H*₃), 1.20 (t, *J* = 7.1 Hz, 3H, -N-CH₂-C*H*₃), 1.26 (t, *J* = 7.2 Hz, 3H, -O-CH₂-C*H*₃), 2.60-2.69 (m, 4H, -CO-C*H*₂-C*H*₂-CO-), 3.34 (q, 2H, -N-C*H*₂-), 3.37 (q, 2H, -N-C*H*₂-), 4.15 (q, *J* = 7.1 Hz, 2H, -O-C*H*₂-). ¹³C NMR (100 MHz, CDCl₃); δ : 13.1, 14.2, 27.8, 29.5, 40.3, 41.8, 60.5, 170.3, 173.3. HRMS (ESI) *m*/*z*: calcd for C₁₀H₁₉NO₃ [M+Na]⁺ 224.1262 , found 254.1264. IR (NaCl, cm⁻¹): 2978, 2934, 1736, 1646, 1482, 1434, 1376, 1177, 1141, 1028.

tert-butyl 3-(4-acetylphenyl)propanoate (3i); purified by silica gel column chromatography (ethyl acetate : hexane = 1 : 10, $R_{\rm f}$ = 0.3) to give 26 mg of the crude mixture. Yields were estimated by ¹H

NMR. The unreacted 1i (13%) and the product 3i (24%) were obtained.

1,4-diphenylbutane-1,4-dione (**3j**)¹⁶; 41 mg, 0.17 mmol, 68% isolated yield, white solid, purified by silica gel column chromatography (dichloromethane, $R_f = 0.6$)

1-butylpyrrolidine-2,5-dione (**3k**)¹⁷; 20 mg, 0.13 mmol, 51% isolated yield, transparent liquid, purified by Kugelrohr distillation.

1-phenylpyrrolidine-2,5-dione (3l)¹⁸; 24 mg, 0.14 mmol, 55% isolated yield, white solid, purified by silica gel column chromatography (ethyl acetate : hexane = 2 : 3, $R_f = 0.3$).

3-methyl-1-phenylpyrrolidine-2,5-dione (**3m**)¹⁹; 34 mg, 0.18 mmol, 72% isolated yield, yellow solid, purified by silica gel column chromatography (ethyl acetate : hexane = 2 : 3, $R_f = 0.3$).

4-((phenylamino)methyl)benzonitrile (3n)²⁰; 42 mg, 0.20 mmol, 80% isolated yield, pale yellow solid, purified by silica gel column chromatography (ethyl acetate : hexane = 3 : 1, $R_f = 0.4$).

methyl 4-((phenylamino)methyl)benzoate (30)²¹; 41 mg, 0.17 mmol, 68% isolated yield, pale yellow solid, purified by silica gel column chromatography (ethyl acetate : hexane = 3 : 1, $R_f = 0.5$).

(*E*)-*N*,*N*'-dicyclohexylformimidamide (3p)²²; 44 mg, 0.21 mmol, 70% isolated yield, white solid, purified by Kugelrohr distillation. 1.0 equivalent of NHC 2b was used.

diisopropyl hydrazine-1,2-dicarboxylate $(3q)^{23}$; 45 mg, 0.22 mmol, 88% isolated yield, white solid, purified by silica gel column chromatography (ethyl acetate : hexane = 2 : 3, $R_f = 0.6$).

Synthesis of allyl ethyl fumarate (1d)

To a two-necked 30 mL flask equipped with a three way stopcock, maleic anhydride (0.70 g, 7.0 mmol), toluene (3.0 mL), and allyl alcohol (0.57 g, 9.8 mmol) were added and heated at 90 °C for 8 h. After the volatiles were removed under reduced pressure, 4-dimethylaminopyridine (86 mg, 0.70 mmol), anhydrous ethanol (2.5 g, 54.8 mmol), dichloromethane (4.0 mL), and *N*,*N*'-dicyclohexylcarbodiimide (1.8 g, 8.7 mmol) were added and then stirred at room temperature for 48 h. The reaction mixture was filtered and washed with dichloromethane, and the filtrate was subjected to silica gel column chromatography (ethyl acetate : hexane = 1 : 3, R_f = 0.3) to give **1d** (0.13 g, 0.69 mmol, transparent liquid) in 10% yield. ¹H NMR (400 MHz, CDCl₃) δ : 1.31 (t, *J* = 7.1 Hz, 3H, CH₃), 4.25 (q, *J* = 7.1 Hz, 2H, -CH₂-CH₃), 4.69 (dt, *J* = 5.8 Hz, *J* = 1.3 Hz, 2H, =CH-CH₂-), 5.28 (dq, *J* = 10.4 Hz, *J* = 1.3 Hz, 1H, CH₂=CH-), 5.20 (dr. *L*, 17.1 Hz, 2H, CH, CH, CH) δ (21.6 CH, 21.6 CH, 21.6 CH, 21.6 CH)

5.30 (dq, J = 17.1 Hz, J = 1.5 Hz, 1H, CH_2 =CH-), 5.94 (m, 1H, CH_2 -CH=), 6.87 (s, 2H, -CH=CH-). ¹³C NMR (100 MHz, CDCl₃); δ : 14.2, 61.4, 66.0, 118.9, 131.6, 133.3, 134.1, 164.8, 165.0. HRMS (ESI) m/z: calcd for C₉H₁₂O₄ [M+Na]⁺ 207.0633, found 207.0635.

IR (NaCl, cm⁻¹): 3439, 3084, 2985, 1724, 1647, 1448, 1368, 1300, 1259, 1154, 1033, 981, 936, 775

Synthesis of diprop-2-ynyl fumarate (1e)

In a two-necked 30 mL flask equipped with a three way stopcock, fumaric acid (0.50 g, 4.3 mmol), 4-dimethylaminopyridine (52 mg, 0.43 mmol), 2-propyn-1-ol (1.0 g, 18 mmol), DMF (4.0 mL), and *N*,*N*-dicyclohexylcarbodiimide (2.3 g, 11 mmol) were added and then stirred at room temperature for 48 h. The reaction mixture was filtered and washed with dichloromethane, and the filtrate was subjected to silica gel column chromatography (ethyl acetate: hexane = 1:3, R_f = 0.3). Compound **1d** (0.18 g, 0.93 mmol, white solid) was obtained in 22% yield.

mp=79.9-80.6 °C.

¹H NMR (400 MHz, CDCl₃) δ: 2.25 (t, *J* = 2.4 Hz, 2H, C*H*), 4.80 (d, *J* = 2.5 Hz, 4H, C*H*₂), 6.93 (s, 2H, -C*H*=).

¹³C NMR (100 MHz, CDCl₃); δ: 53.0, 75.7, 77.0, 133.7, 164.0.

HRMS (ESI) m/z: calcd for C₁₀H₈O₄ [M+Na]⁺ 215.0320, found 215.0317.

IR (neat, cm⁻¹): 3278, 3087, 2943, 2131, 1723, 1359, 1296, 1159, 1032, 771, 711, 656.

Synthesis of (E)-ethyl 4-(diethylamino)-4-oxobut-2-enoate (1g)

In a two-necked 50 mL flask equipped with a three way stopcock, maleic anhydride (1.0 g, 10 mmol), toluene (3.0 mL), and diethylamine (0.75 g, 10 mmol) were added and stirred at 50 °C for 8 h. Dichloromethane (30 mL) was added to reaction mixture and washed with 1M HCl aq. The organic layer was dried over MgSO₄, followed by the filtration and consentration to yield (*E*)-4-(diethylamino)-4-oxobut-2-enoic acid ²⁴ (1.0 g, 5.8 mmol) in 58% yield.

In a two-necked 30 mL flask equipped with a three way stopcock,

(*E*)-4-(diethylamino)-4-oxobut-2-enoic acid (1.0 g, 5.8 mmol), 4-dimethylaminopyridine (71 mg, 0.58 mmol), anhydrous ethanol (3.2 g, 69 mmol), dichloromethane (5.0 mL), and *N*,*N*'-dicyclohexylcarbodiimide (1.4 g, 7.0 mmol) were added and stirred at room temperature for 48 h. The reaction mixture was filtered and washed with dichloromethane (5 mL), and the filtrate was subjected to silica gel column chromatography (ethyl acetate: hexane = 1:1, R_f = 0.4) to give **1g** (0.25 g, 1.3 mmol, transparent liquid) in 22% yield. For the ¹H NMR spectrum data of **1g**, see ref 25.

Synthesis of (*E*)-ethyl 4-(butylamino)-4-oxobut-2-enoate (1k)

In a two-necked 50 mL flask equipped with a three way stopcock, maleic anhydride (1.0 g, 10 mmol), toluene (3.0 mL), and *N*-butyl amine (0.82 g, 11 mmol) were added and stirred at 70 °C for 8 h. Dichloromethane (30 mL) was added to reaction mixture and washed with 1M HCl aq. The organic layer was dried over MgSO₄, followed by the filtration and consentration to yield (*E*)-4-(butylamino)-4-oxobut-2-enoic acid²⁶ (1.1 g, 6.4 mmol) in 64% yield.

In a two-necked 30 mL flask equipped with a three way stopcock, (*E*)-4-(butylamino)-4-oxobut-2-enoic acid (1.1 g, 6.4 mmol), 4-dimethylaminopyridine (78 mg, 0.64 mmol), anhydrous ethanol (3.2g, 69 mmol), and *N*,*N*-dicyclohexylcarbodiimide (1.6 g, 0.75 mmol) were added and stirred at room temperature for 48 h. The reaction mixture was filtered and washed with dichloromethane, and the filtrate was subjected to silica gel column chromatography (ethyl acetate : hexane = 1 : 1, R_f = 0.6) to give **1k** (0.36 g, 1.8 mmol) in 28% yield. For the ¹H and ¹³C NMR data of **1k**, see ref 27.

The transfer hydrogenation of dibutyl fumarate by an equimolar amount of D₂O (Scheme 1)

To the mixture of D₂O (5.0 mg, 0.25 mmol) and 1,2-dimethoxyethane (1.0 mL) in a 2.0

mL microwave vial, NHC **2a** (91 mg, 0.30 mmol) was added. After the mixture was stirred for 3 min, dibutyl fumarate (57.0 mg, 0.25 mmol) was added at room temperature. The vial was then sealed and heated with microwave irradiation at 120 °C for 6 h. The resulting mixture was cooled to room temperature, and the precipitate was removed by filtration. Kugelrohr distillation of the filtrate under reduced pressure gave **3r** (55.1 mg, 0.24 mmol) in 95% yield.

Compound **3s** (28 mg, 0.16 mmol, 65% yield) was also obtained from **1f** by a similar procedure. In the case of **1m** as a substrate, the reaction mixture was filtered, and washed with hexane, The filtrate was purified by using column chromatography (ethyl acetate: hexane = 2: 3, R_f = 0.3) to give **3t** (13 mg, 0.07 mmol) in 28% yield. In addition, the precipitate was washed with ethyl acetate three times to give **5t** (34 mg, 0.07mmol) in 28% yield.

Compound 3r

¹H NMR (400 MHz, CDCl₃) δ : 0.92 (t, 6.0H), 1.34-1.36 (m, 4.0H), 1.58-1.62 (m, 4.0H), 2.59 (m, 2.0H), 4.08 (t, *J* = 6.6 Hz, 4.0H).

¹³C NMR (100 MHz, CDCl₃) δ: 13.8, 19.2, 28.7, 28.8, 28.9, 29.0, 29.1, 29.2, 29.3, 30.7, 64.7, 172.5. HRMS (ESI) *m/z*: calcd for $C_{12}H_{21}DO_4$ [M+Na]⁺ 254.1478, found 254.1474, calcd for $C_{12}H_{20}D_2O_4$ [M+Na]⁺ 255.1541, found 255.1542, calcd for $C_{12}H_{19}D_3O_4$ [M+Na]⁺ 256.1604, found 256.1595.

Compound 3s

¹H NMR (400 MHz, CDCl₃) δ: 1.44 (s, 9.0H), 2.17-2.19 (m, 2.68 H), 2.49-2.55 (m, 1.3H), 2.67-2.71 (m, 1.3H).

¹³C NMR (100 MHz, CDCl₃) δ: 29.1, 29.2, 30.0, 37.9, 38.0, 38.1, 80.6, 172.0, 206.9. HRMS (ESI) *m/z*: calcd for C₉H₁₆O₃ [M+Na]⁺ 195.0997, found 195.0996, calcd for C₉H₁₅DO₃

 $[M+Na]^{+}$ 196.1059, found 196.1054; calcd for $C_9H_{14}D_2O_3$ $[M+Na]^{+}$ 197.1122, found 197.1115; calcd for $C_9H_{13}D_3O_3$ $[M+Na]^{+}$ 198.1185, found 198.1177.

Compound 3t

¹H NMR (400 MHz, CDCl₃) δ: 1.45 (m, 3.0H), 2.48-2.52 (m, 0.57H), 3.03-3.11 (m, 1.0H), 7.27-7.29 (m, 2.0H), 7.36-7.41 (m, 1.0H), 7.45-7.49 (m, 2.0H).

¹³C NMR (100 MHz, CDCl₃) δ: 15.8, 15.9, 33.7, 33.8, 33.9, 35.5, 35.6, 125.4, 127.6, 128.1, 130.9, 174.4, 178.5.

HRMS (ESI) m/z: calcd for $C_{11}H_{10}DNO_2 [M+Na]^+ 213.0750$, found 213.0748; calcd for $C_{11}H_9D_2NO_2 [M+Na]^+ 214.081$, found 214.0807; calcd for $C_{11}H_8D_3NO_2 [M+Na]^+ 215.0875$, found

215.0859.

Compound 5t

¹H NMR (400 MHz, CDCl₃) δ: 1.16 (m, 3.0H), 2.81 (q, J = 7.1 Hz, 0.46H), 7.11-7.68 (m, 20H). ¹³C NMR (100 MHz, CDCl₃) δ: 18.4, 18.5, 39.0, 70.4, 70.5, 123.4, 124.5, 126.7, 127.0, 128.2, 128.2, 128.7, 129.2, 129.3, 130.0, 130.1, 133.6, 135.1, 139.3, 150.3, 151.2, 164.7, 164.7, 177.8.

The transfer hydrogenation of dibutyl fumarate in the presence of an excess amount of D_2O (Scheme 2)

The same procedure as mentioned above for Table 1 was performed using an excess amount of D_2O (150 mg, 7.5 mmol) in place of H_2O . Consequently, **3u** (47 mg, 0.24 mmol, 80% yield) was obtained by Kugelrohr distillation.

Compound 3u

¹H NMR (700 MHz, CDCl₃) δ : 0.93 (t, J = 7.3 Hz, 6.0H), 1.35-1.40 (m, 4.0H), 1.59-1.63 (m, 4.0H),

2.60 (brs, 1.0H), 4.09 (t, J = 6.9 Hz, 4.0H). ¹³C NMR (176 MHz, CDCl₃) δ : 13.8, 19.2, 28.9 (t, J = 20 Hz), 30.7, 64.7, 172.5. HRMS (ESI) m/z: calcd for C₁₂H₁₉D₃O₄ [M+Na]⁺ 256.1604, found 256.1601.

The transfer hydrogenation of dibutyl fumarate in the presence of an excess amount of D_2O through the deoxy-Breslow intermediate (Scheme 2)

To the solution of 2a (90 mg, 0.30 mmol) in 1,2-dimethoxyethane (1.0 mL), dibutyl fumarate (57 mg, 0.25 mmol) was added at 80 °C and stirred at 80 °C for 10 min. The reaction mixture was cooled to room temperature and a small aliquot was subjected to ¹H NMR analysis to confirm the complete consumption of dibutyl fumarate. Afterwards,D₂O (150 mg, 7.5 mmol) was added,. This mixture stirred for 1 min at room temperature was transferred to a 2.0 mL microwave vial, which was then sealed and heated under microwave irradiation at 150 °C for 4 h. The resulting mixture was cooled to room temperature, and the precipitate was removed by filtration. Kugelrohr distillation of the filtrate under reduced pressure gave **3v** (47 mg, 0.24 mmol) in 80% yield.

Compound 3v

¹H NMR (700 MHz, CDCl₃) δ: 0.93 (t, *J* = 7.3 Hz, 6.0H), 1.35-1.41 (m, 4.0H), 1.59-1.63 (m, 4.0H), 2.61 (brs, 2.0H), 4.09 (t, *J* = 6.6 Hz, 4.0H).

¹³C NMR (176 MHz, CDCl₃) δ: 13.8, 19.2, 28.8 (quin, J = 21 Hz), 29.2, 30.7, 64.7, 172.5. HRMS (ESI) m/z: calcd for C₁₂H₂₀D₂O₄ [M+Na]⁺ 255.1541, found 255.1539.

Table C1	The second second	l	of J!L 4	l C	NILC and maken
Table 51	. Iransier	nvorogenation		і пипагате р	VINHU AND WALEE.

$\begin{array}{c} & & & Ph \\ & & & & N \\ & & & & N \\ & & & & N \\ & & & &$							
ର ପ୍ର 1a 3a							
Entry	NHC	Proton	Base ^{<i>a</i>}	Temp	Time	Heating	Yield ^c
		Source (eq.)		(°C)	(h)	Method ^b	(%)
1	2b	H ₂ O (3.6)	-	100	2	MW	65
2	2b	H ₂ O (20)	-	150	2	MW	94
3	2c	H ₂ O (3.6)	K_2CO_3	120	2	MW	34
4	2a	H ₂ O (3.6)	DBU	120	4	MW	59
5	2a	H ₂ O (3.6)	DIEA	120	4	MW	83
6	2b	Aniline (3.6)	-	150	2	MW	0
7	2b	Benzoic acid (3.6)	-	150	2	MW	0
8	2b	H ₂ O (3.6)	-	120	2	OB	91
9	2b	H ₂ O (3.6)	-	80	12	OB	81

^a 2.0 equivalent relative to NHC.

^b MW: microwave irradiation, OB: oil bath heating.

^c isolated yield.

DBU:1,8-diazabicyclo[5.4.0]undec-7-ene,

DIPEA: N,N-diisopropylethylamine,

DME: 1,2-dimethoxyethane

Figure S1. Substrates that did not undergo the transfer hydrogenation.

Scheme S1. The attempted reaction of the deoxy-Breslow intermediate 5m with H_2O . Compound 5m was prepared according to the previous literature (ref. 28).

References

1 D. Enders, K. Breuer, G. Raabe, J. Runsink, J. H. Teles, J.-P. Melder, K. Ebel, S. Brode, Angew. Chem., Int. Ed. Engl. 1995, 34, 1021.

2 M. S. Kerr, J. R. Alaniz, T. Rovis, J. Org. Chem. 2005, 70, 5725.

3 H. V. Huyuh, Y. Han, R. Jothibasu, J. A. Yang, Organometallics 2009, 28, 5395.

4 A. J. Arduengo, III, R. Krafczyk, R. Schmutzler, Tetrahedron 1999, 55, 14523.

5. R. Rubbiani, I. Kitanovic, H. Alborzina, S. Can, A. Kitanovic, L. A. Onambele, M. Stefanopoulou,

Y. Geldmacher, W. S. Sheldrick, G. Wolber, A. Prokop, S. Wölfl, I. Ott, J. Med. Chem. 2010, 53, 8608.

6 I. Piel, M. D. Pawelczyk, K. Hirano, R. Fröhlich, F. Glorius, Eur. J. Org. Chem. 2011, 5475.

7. E. Brenna, F. D. Gatti, A. Manfredi, D. Monti, F. Parmeggiani, Adv. Synth. Catal. 2012, 354, 2859.

8 D. Appleton, A. B. Duguid, S.-K. Lee, Y.-J. Ha, H.-J. Ha, F. J. Leeper, J. Chem. Soc., Perkin Trans. 1998, 89.

9 A. Zhdanko, A. Schmauder, C. I. Ma, L. D. Sibley, D. Sept, F. Sasse, M. E. Maier, *Chem. Eur. J.* 2011, **17**, 13349.

10 J.-H. Li, D.-P. Wang, Y.-X. Xie, Synthesis 2005, 2193.

11 J. L. G. Ruano, J. Alemán, I. Alonso, A. Parra, V. Marcos, J. Aguirre, *Chem. Eur. J.* 2007, **13**, 6179.

12. H. Naka, D. Koseki, Y. Kondo, Adv. Synth. Catal. 2008, 350, 1901.

13 A. O. Terent'ev, D. A. Borisov, I. A. Yaremenko, Y. N. Ogibin, G. I. Nikishin, *Synthesis* 2010, 1145.

14 Y. Cai, B. P. Roberts, D. A. Tocher, S. A. Barnett, Org. Biomol. Chem. 2004, 2, 2517.

15 F. Chen, K.-S. Song, Y.-D. Wu, D. Yang, J. Am. Chem. Soc. 2008, 130, 743.

16 S. Kotani, K. Osakama, M. Sugiura, M. Nakajima, Org. Lett. 2011, 13, 3968.

17 S. Puertas, F. Rebolledo, V. Gotor, Tetrahedron 1995, 51, 1495.

18 H. J. Kim, J. Kim, S. H. Cho, S. Chang, J. Am. Chem. Soc. 2011, 133, 16382.

19 M. Hall, C. Stueckler, B. Hauer, R. Stuermer, T. Friedrich, M. Breuer, W. Kroutil, K. Faber, *Eur. J. Org. Chem.* 2008, 1511.

20 A. Heydari, S. Khaksar, M. Esfandyari, M. Tajbakhsh, Tetrahedron 2007, 63, 3363.

21 K. Fujita, Y. Enoki, R. Yamaguchi, Tetrahedron 2008, 64, 1943.

22 K. Bao, W. Zhang, X. Bu, Z. Song, L. Zhang, M. Cheng, Chem. Commun. 2008, 5429.

23 Y. Wu, W. Yao, L. Pan, Y. Zhang, C. Ma, Org. Lett. 2010, 12, 640.

24 T. Angelini, S. Bonollo, D. Lanari, F. Pizzo, L. Vaccaro, Org. Lett. 2012, 14, 4610.

25 M. G. Götz, K. E. James, E. Hansell, J. Dvorák, A. Seshaadri, D. Sojka, P. Kopáček, J. H.

McKerrow, C. R. Caffrey, J. C. Powers, J. Med. Chem. 2008, 51, 2816.

26. W. E. Kowtoniuk, Y. Shen, J. M. Heemstra, I. Agarwal, D. R. Liu, PNAS, 2009, 106, 7768.

27 N. Kaur, B. Zhou, F. Breitbeil, K. Hardy, K. S. Kraft, I. Trantcheva, O. Phanstiel IV, *Mol. Pharmaceut.* 2008, **5**, 294.

28 M. Shin-ichi, Y. Tochigi, K. Takagi, M. Suzuki, Tetrahedron 2012, 68, 9836.

Figure S37. 13 C NMR spectrum of **3p** (CDCl₃)

Figure S39. 13 C NMR spectrum of **3q** (CDCl₃)

Figure S41. 13 C NMR spectrum of **3r** (CDCl₃)

Figure S48. ESI-MS spectrum of 3t

Figure S52. ¹³C NMR spectrum of **3u** (CDCl₃, 176MHz)

Figure S54. ¹H NMR spectrum of **3v** (CDCl₃, 700MHz)

