Asymmetric cyclopropanation of conjugated cyanosulfones using a novel cupreine organocatalyst : Rapid access to δ^3 -amino acids

Lewis S. Aitken, Lisa E. Hammond, Rajkumar Sundaram, Kenneth Shankland, Geoffrey D. Brown and Alexander J. A. Cobb*

School of Chemistry, Food and Pharmacy (SCFP), University of Reading, Whiteknights, Reading, Berks RG6 6AD UK

General Experimental

All reactions were carried out at room temperature and magnetically stirred unless otherwise stated. Anhydrous solvents were supplied as Sureseal[®] bottles by Aldrich. All reagents and solvents were purchased commercially or prepared according to literature procedures. Chemicals and solvents were supplied by Sigma-Aldrich and Fisher, and were used as supplied unless otherwise stated. Literature procedures were followed for the synthesis of catalysts **I**¹, **II**², **III**³, **IV**⁴, **IX**⁵, **X**⁴, **XIII**⁶, **XIII**⁵ and **XIV**.⁴ Vinyl sulfones **1a-i** were prepared according to literature procedures,⁷ as were *O*-acetylhydroquinine⁸ and *O*-(1-naphthoyl)quinine.⁹ Compound numbering within this supporting information continues from the manuscript.

Chromatography: Thin layer chromatography (TLC) was performed on Merck aluminium backed plates coated with 0.2 mm silica gel 60F254. The spots were visualised using UV light (254 nm) and then permanent staining by solutions of potassium permanganate, ninhydrin or bromocresol green. Flash column chromatography was performed on Sigma-Aldrich silica gel 60Å (230-400 mesh).

NMR data: ¹H NMR spectra were recorded using a Bruker DPX 400 (400 MHz) or a Bruker Avance III 400 (400 MHz) spectrometer. Chemical shifts (δ) are quoted in parts per million using the abbreviations: s, singlet; bs, broad singlet; d, doublet; dd, double doublet; t, triplet; tt, triplet triplet; q, quartet; m, multiplet. ¹³C NMR spectra were recorded at 100 MHz on a Bruker DPX 400 or Bruker Avance III 400. Two-dimensional spectroscopy (COSY, HMQC and HMBC) was used to assist in the assignments.

IR data: Infrared spectra were recorded on a Thermo Scientific Nicolet iS5 FT-IR spectrometer using iD5 ATR accessory. The selected absorptions are quoted in wavenumbers (cm⁻¹).

MS data: High-resolution mass spectra were recorded on a Thermo Scientific LTQ Orbitrap XL using electrospray ionisation (ESI) conditions.

Optical Rotation: Optical rotation readings were taken using a Perkin-Elmer 341 polarimeter. Specific optical rotations ([α \mathbb{P}]) were recorded at the sodium D line (589 nm) in chloroform or methanol and are quoted in units of deg mL g⁻¹ dm⁻¹. Solution concentrations (c) are given in the units of 10⁻² g mL⁻¹. Temperatures (T) are given in degrees Celsius (°C). The prefixes (+) and (–) indicate the sign of the optical rotation.

HPLC Profiles: HPLC analysis was determined on an Agilent Technologies 1200 Series HPLC, using a ratio of HPLC grade hexanes and propan-2-ol as the eluent, using either a Chiralpak AD-H column (0.46 cm ø X 25 cm) or a Chrialcel OD column (0.46 cm ø X 25 cm), and detection by UV at 210 nm or 254 nm.

Single Crystal X-ray: X-ray data was collected on an Oxford Gemini S-ultra diffractometer using K α (λ = 1.54180 Å) radiation.

1. Extended Reaction Screening Data

Figure 1 : Complete catalyst screen

Table 1 : Catalyst and Solvent Screen for the asymmetric cyclopropanation					
$O_{1}O_{2}O_{2}Me$ S CN II II (10 mol%)					
	$Ph \rightarrow HeO \rightarrow HeO \rightarrow PhO_2Sim \rightarrow PhO$				
	Ph Br rt,120 h CN 1a 3a				
Entry	Cat	Solvent	Yield, %	dr	er
1	I	CH ₂ Cl ₂	10	>19:1	68:32
2	I	THF	18	>19:1	59:41
3	I	CHCl ₃	7	>19:1	62:38
4	I	PhMe	Trace	nd	nd
5	I	ⁱ PrOH	Trace	nd	nd
6	II	CH ₂ Cl ₂	12	>19:1	50:50
7	111	CH ₂ Cl ₂	21	>19:1	54.5:45.5
8	IV	CH ₂ Cl ₂	17	>19:1	79.5:20.5
9	v	CH ₂ Cl ₂	17	>19:1	85:15
10	VI	CH ₂ Cl ₂	11	>19:1	83.5:16.5
11	VII	CH ₂ Cl ₂	12	>19:1	86:14
12	VIII	CH ₂ Cl ₂	31	>19:1	50:50
13	IX	CH ₂ Cl ₂	8	>19:1	50:50
14	X	CH ₂ Cl ₂	12	>19:1	50:50
15	ХІ	CH ₂ Cl ₂	31	>19:1	50:50
16	XII	CH ₂ Cl ₂	7	>19:1	51:49
17	XIII	CH ₂ Cl ₂	14	>19:1	64.5:35.5
18	XIV	CH ₂ Cl ₂	19	>19:1	84.5:15.5
19	xv	CH ₂ Cl ₂	13	>19:1	24.5:75.5
20	XVI	CH ₂ Cl ₂	Trace	>19:1	nd
21	XVII	CH ₂ Cl ₂	Trace	>19:1	nd
22	XVIII	CH ₂ Cl ₂	Trace	>19:1	nd

Table 2 : Base Screen for the asymmetric cyclopropanation.						
$Ph \xrightarrow{O}_{Ph} CN + MeO \xrightarrow{O}_{Ph} OMe \xrightarrow{O}_{$						
Entry	Base	Eq	Yield, %	dr	er	
1	K ₂ CO ₃	1	86	>19:1	80.5:19.5	
2	Cs ₂ CO ₃	1	94	>19:1	50:50	
3	Ba(OH) ₂	1	90	>19:1	65:35	
4	LiOH	1	81	>19:1	53.5:46.5	
5	KO ^t Bu	1	87	>19:1	50:50	
6	Et ₃ N	1	75	>19:1	56.5:43.5	
7	Pyridine	1	30	>19:1	50:50	
8	K_2CO_3 (oven dried)	1	90	>19:1	85:15	
9	Na_2CO_3 (oven dried)	1	92	>19:1	85:15	
10	Cs ₂ CO ₃ (oven dried)	1	86	>19:1	53.5:46.5	
11	K ₂ CO ₃ (oven dried)	0.5	88	>19:1	86:14	
12	K ₂ CO ₃ (oven dried)	2	92	>19:1	84.5:15.5	
13	K ₂ CO ₃ (oven dried)	4	90	>19:1	83.5:16.5	
14*	Hünig's Base	1	>99%	>19:1	56:44	
15*	DBU	1	81%	>19:1	53.5:46.5	

*conducted after peer-review

Table 3 : Catalyst loading screen.						
	$Ph \xrightarrow{S} CN + MeO$ 1a 2	OMe (10 mol%) 1 eq K ₂ CO ₃ CH ₂ Cl ₂ rt, 16 h	$\begin{array}{c} MeO_2C \\ PhO_2S^{IIII} \\ CN \\ Sa \end{array} $			
Entry	Loading of VII	Yield	dr	er		
1	0.02 eq.	53	>19:1	80:20		
2	0.05 eq.	85	>19:1	82.5:17.5		
3	0.1 eq.	89	>19:1	86:14		
4	0.2 eq.	89	>19:1	85:15		

Table 4 : Temperature screen						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
Entry	Temperature	Reaction time	Yield	dr	er	
1	21°C	16h	53	>19:1	86:14	
2	1°C	96h	85	>19:1	87:13	
3	-10°C	120h	89	>19:1	88:12	

2. Preparation of New Organocatalysts

Scheme 1 : General procedure for catalyst synthesis

(*R*)-((1*S*,2*S*,4*S*,5*R*)-5-ethylquinuclidin-2-yl)(6-hydroxyquinolin-4-yl)methyl acetate V. *O*acetylhydroquinine (1.22 g, 3.32mmol) was dissolved in dichloromethane (40 mL) and stirred under nitrogen at -78 °C. To this was added 1M BBr₃ solution in heptane (13.5 mL, 13.5 mmol) and the reaction allowed to warm to room temperature. It was then heated to 40 °C for 1h, before being cooled and quenched with 30% NH₄OH solution (15 mL) and stirred for a further 30 min. The reaction was then diluted with dichloromethane (100 mL) and water (80

mL) and the organic phase isolated. The aqueous phase was then extracted with DCM (50 mL) and the combined organic extracts were dried over $MgSO_4$, filtered and removed under reduced pressure to yield the title compound as

a yellow solid (975mg, 83%). MPt = 159-161°C. $[a]_{D}^{20} = -139$ (c = 0.1, CHCl₃). IR (neat, cm⁻¹) 2926.5, 1744.1, 1468.4, 1233.5, 853.0. ¹H NMR (CDCl₃, 400MHz) δ 8.66 (d, 1H, H-c), 7.96 (d, 1H, H-e), 7.61 (s, 1H, H-h), 7.30-7.6 (m, 2H, H-f + H-b), 6.59 (1H, H-1), 3.27-3.14 (m, 2H, H-2 + H-6), 3.00 (t, 1H, H-7), 2.71 (quintet, 1H, H-6), 2.25 (d, 1H, H-7), 2.15 (s, 3H, H-12), 1.80-1.44 (m, 6H, H-3 + H-4 + H-5 + H-8), 1.32-1.6 (quintet, 2H, H-9), 0.71 (t, 3H, H-10). ¹³C NMR (CDCl₃, 100MHz) δ 169.47 (C-12), 157.32 (C-g) , 146.16 (C-c), 143.62 (C-d), 142.46 (C-a), 131.62 (C-e), 126.81 (C-i), 123.15 (C-h), 117.51 (C-f), 104.87 (C-b), 73.48 (C-1), 58.31 (C-2), 57.92 (C-7), 42.87 (C-6), 36.66 (C-8), 29.03 (C-5), 27.45 (C-3), 27.19 (C-9), 25.08 (C-4), 21.20 (C-11), 11.78 (C-10). HRMS required for C₂₁H₂₇O₃N₂ [M+H]⁺ is 355.2016, found 355.2015.

(R)-(6-hydroxyquinolin-4-yl)((1S,2S,4S,5R)-5-vinylquinuclidin-2-yl)methyl-1-

naphthoate VI. *O*-(1-naphthoyl)quinine (500 mg, 1.04mmol) was dissolved in dry dichloromethane (20 mL) and stirred under nitrogen at -78°C. To this solution was added 1M BBr₃ in heptane (4 mL, 4mmol) and the reaction allowed to warm to room temperature. It was then heated to 40°C for 1h, before being cooled and quenched with 30% NH_4OH solution (10 mL) and stirred for 30 min. The reaction was then diluted with water (50 mL) and the aqueous layer washed with dichloromethane (2 x

30 mL). The combined organic extracts were dried over $MgSO_4$ and concentrated under reduced pressure to give the crude residue, which was purified by column chromatography (9:1 EtOAc:Hexane) to yield the title compound as a

white solid (332 mg, 68%). MPt = 212°C (at which decomposition occurs) $[a]_{D}^{20} = +50$ (c = 0.1, CHCl₃). IR (neat, cm⁻¹) 2920.7, 1699.5, 1614.0, 1468.4, 1247.1, 1192.7, 1126.7, 1004.4. ¹H NMR (CDCl₃, 400MHz) δ 8.85 (d, 1H, H-r), 8.67 (d, 1H, H-c), 8.34 (d, 1H, H-k), 8.05 (d, 1H, H-m), 8.00 (d, 1H, H-e), 7.88-7.84 (m, 2H, Hq + Ho). 7.58-7.33 (m, 5H, H-b + H-f + H-h + H-l + H-p), 6.95 (d, 1H, H-1) 5.69 (septet, 1H, H-9), 4.93-4.88 (m, 2H, H-10), 3.44, (m, 1H, H-2) 3.30 (m, 1H, H-6), 2.96 (t, 1H, H-7), 2.71 (quintet, 1H, H-6), 2.56 (d, 1H, H-7), 2.24 (m, 1H, H-8), 1.92-1.78 (m, 4H, H-5 + H-4 + H-3), 1.54 (m, 1H, H-5). ¹³C NMR (CDCl₃, 100MHz) 165.63 (C-11), 157.13 (C-g), 146.19 (C-c), 143.58 (C-a), 142.85 (C-d), 140.47

(C-9), 134.24 (C-m), 133.91 (C-n), 131.53 (C-o), 131.13 (C-s), 130.02 (C-k), 128.69 (C-e), 128.25 (C-p), 127.20 (C-j), 126.91 (C-q), 126.52 (C-r), 125.97 (C-l), 125.58 (C-f), 124.52 (C-b), 123.14 (C-i), 114.88 (C-10), 101.46 (C-h). HRMS required for $C_{30}H_{29}O_3N_2$ [M+H]⁺ is 465.2173, found 465.2172.

(*R*)-((1*S*,2*S*,4*S*,5*R*)-5-ethylquinuclidin-2-yl)(6-methoxyquinolin-4-yl)methylpent-4enoate 11. Hydroquinine (500 mg, 1.53mmol) was dissolved in dry dichloromethane (20 mL) and stirred at 20 °C. To this was added neat 4-pentenoyl chloride (0.51 mL, 4.61mmol) drop-wise, followed by NaOH (1.5 mL of 30% aq. solution) and the reaction mixture stirred for 4h. After this time, the reaction was quenched with water (70 mL) and extracted with DCM (100 mL). The aqueous phase was extracted

with a further 50 mL of dichloromethane, and the combined organic extracts were washed with saturated aqueous NaHCO₃ solution (100 mL). The combined organic extracts were dried over MgSO₄, filtered and removed under reduced pressure to yield the title compound as a colourless oil (620mg, 99%).

 $[a]_{D}^{20} = -13 (c = 0.1, CHCl_3) ^{1}H NMR 400MHz, (CDCl_3) \delta = 8.73 (d, 1H, H-c), 8.01 (d, 1H, H-e), 7.44 (s, 1H, H-h), 7.37-7.34 (m, 2H, H-f + H-b), 6.50 (d, 1H, H-1), 5.78 (octet, 1H, H-14), 5.03-4.95 (m, 2H, H-15), 3.95 (s, 3H, H-16), 3.35 (q, 1H, H-2), 3.38-2.99 (m, 2H, H-6 + H-7), 2.63 (t, 1H, H-6), 2.50 (t, 2H, H-12), 2.44-2.30 (m, 3H, H-13 + H-7), 1.81-1.69 (m, 3H, H-5 + H-4 + H-3), 1.48-1.30 (d, 5H, H-9 + H-5 + H-8 + H-3), 0.88 (t, 3H, H-10). <math>^{13}C$ NMR (CDCl₃, 100MHz) δ 171.90 (C-11), 158.47 (C-g), 147.37 (C-c), 144.84 (C-a), 143.20 (C-d), 136.21 (C-14), 131.77 (C-e), 126.93 (C-i), 122.26 (C-f), 118.76 (C-b), 115.89 (C-15), 101.43 (C-h), 73.39 (C-1), 58.81 (C-2), 58.02 (C-7), 56.07 (C-16), 42.61 (C-6), 37.18 (C-8), 33.64 (C-12), 28.65 (C-13), 27.83 (C-3), 27.60 (C-9), 25.19 (C-4), 23.56 (C-5), 12.04 (C-10) HRMS required for C₂₅H₃₃O₃N₂ [M+H]⁺ is 409.2491, found 409.2489.

(*R*)-((1*S*,2*S*,4*S*,5*R*)-5-ethylquinuclidin-2-yl)(6-hydroxyquinolin-4-yl)methyl pent-4enoate VII. (*R*)-((1*S*,2*S*,4*S*,5*R*)-5-ethylquinuclidin-2-yl)(6-methoxyquinolin-4yl)methylpent-4-enoate **11** (500mg, 1.22mmol) was dissolved in dichloromethane (20 mL) and stirred under nitrogen at -78°C. To this was added 1M BBr₃ solution in heptane (5 mL, 5mmol), and the reaction mixture allowed to warm to room temperature. It was then heated to 40°C for 1h before being cooled and quenched

with 30% NH₄OH solution (10 mL) and stirred for a further 30 min. The reaction was then diluted with water (50 mL) and the aqueous phase washed with dichloromethane (2 x 30 mL). The combined organic layers were then dried over MgSO₄, filtered and removed under reduced pressure to give the crude residue, which was purified by column

chromatography (100% EtOAc) to yield the title compound as a pink solid (380 mg, 79%). $[a]_D^{20} = -27$ (c = 0.1, CHCl₃). MPt = 180-182°C. ¹H NMR 400MHz, (CDCl₃) δ = 8.66 (s, 1H, H-c), 7.96 (d, 1H, H-e), 7.67 (s, 1H, H-h), 7.35 (d, 1H, H-f), 7.31 (d, 1H, H-b), 6.74 (s, 1H, H-1), 5.81 (octet, 1H, H-14), 5.29-4.91 (m, 2H, H-15), 3.30 (m, 1H, H-2), 3.21 (t, 1H, H-6), 3.12 (t, 1H, H-7), 2.73 (t, 1H, H-6), 2.52 (t, 2H, H-12), 2.36 (m, 3H, H-13 + H-7), 1.84-1.67 (m, 4H, H-3 + H-4 + H-5), 1.57 (d, 2H, H-3 + H-8), 1.29 (s, 2H, H-9), 0.88 (t, 3H, H-10). ¹³C NMR (CDCl₃, 100MHz) δ 171.51 (C-11), 156.52 (C-g), 146.40 (C-c), 144.06 (C-a), 142.70 (C-d), 136.28 (C-14), 131.60 (C-e), 126.93 (C-i), 122.84 (C-f), 117.81 (C-b), 116.03 (C-15), 105.71 (C-h), 73.56 (C-1), 58.60 (C-2), 57.84 (C-7), 42.83 (C-6), 36.73 (C-8), 33.67 (C-12), 28.62 (C-13), 27.41 (C-3),

(*S*)-[(1*S*,2*R*,4*S*,5*R*)-5-ethylquinuclidin-2-yl)(6-methoxyquinolin-4-yl)methyl acetate 12. Hydroquinidine (650mg, 2.01mmol) was dissolved in dichloromethane (20 mL) and stirred at 20 °C. To this was added neat acetyl chloride (715 μ L, 10.03 mmol) followed by NaOH (2.8 mL of 30% aq. solution) and the resulting mixture was stirred for 4h. The reaction was quenched with water (70 mL) and extracted with dichloromethane (3 x 50 mL). The

combined organic extracts were dried over MgSO₄, filtered and the solvent removed under reduced pressure to yield

the title compound as a colourless oil (740mg, 100%). $[a]_{D}^{20} = +174 (c = 0.1, CHCl_3) IR (neat, cm⁻¹) 2930.4, 1746.1, 1470.4, 1249.0, 1218.0, 1023.82. ¹H NMR (CDCl_3, 400MHz) <math>\delta$ 8.72 (d, 1H, H-c), 8.01 (d, 1H, H-e), 7.53 (s, 1H, H-b), 7.39 (d, 1H, H-f), 7.29 (d, 1H, H-h), 6.90 (bs, 1H, H-1), 4.04 (s, 3H, H-13), 3.32 (sextet, 1H, H-2), 3.14-2.83 (m, 4H, H-6 + H-7), 2.19 (s, 3H, H-12), 2.02 (t, 1H, H-3), 1.86 (s, 1H, H-8), 1.63-1.55 (m, 5H, H-9 + H-5 + H-4), 1.40 (septet, 1H, H-3), 0.92 (t, 3H, H-10). ¹³C NMR (CDCl_3, 100MHz) δ 168.98 (C-12), 158.60 (C-g) 146.96 (C-c), 144.52 (C-a), 142.31 (C-d), 131.58 (C-e), 126.34 (C-i), 122.70 (C-f), 117.58 (C-h), 101.04 (C-b), 66.19 (C-1), 58.25 (C-2), 56.38 (C-13), 49.95 (C-6), 49.38 (C-7), 36.17 (C-5), 25.65 (C-4), 25.11 (C-9), 22.39 (C-8), 21.14 (C-11), 21.01 (C-3), 11.73 (C-10). HRMS required for C₂₂H₂₉O₃N₂ [M+H]⁺ is 369.2173, found 369.2171.

(*S*)-((1*S*,2*R*,4*S*,5*R*)-5-ethylquinuclidin-2-yl)(6-hydroxyquinolin-4-yl)methyl acetate **XV.** (*S*)-[(1*S*,2*R*,4*S*,5*R*)-5-ethylquinuclidin-2-yl)(6-methoxyquinolin-4-yl)methyl acetate **12** (740 mg, 2 mmol) was dissolved in dichloromethane (40 mL) and stirred under nitrogen at -78°C. To this was added 1M BBr₃ solution in heptane (8 mL, 8 mmol) and the reaction allowed to warm to room temperature. It was then heated to 40°C for 1h, before being cooled and

quenched with 30% NH₄OH solution (25 mL) and stirred for 30 min. The reaction was then diluted with water (50 mL) and the extracted with dichloromethane (2 x 50 mL). The combined organic extracts were dried over MgSO₄, filtered and removed under reduced pressure to give a crude residue that was purified using column chromatography (100%

EtOAc), giving the title compound as a light yellow solid, (316 mg, 55%). MPt = 198-201°C. $[a]_D^{20}$ +245 (c = 0.1, CHCl₃). IR (neat, cm⁻¹) 2934.2, 1749.9, 1621.8, 1507.2, 1229.6, 1027.7. ¹H NMR (CDCl₃, 400MHz) δ 8.66 (d, 1H, H-c), 7.90 (d, 1H, H-e), 7.53 (s, 1H, H-b), 7.29 (d, 1H, H-f), 7.19 (d, 1H, H-h), 6.59 (d, 1H, H-1), 3.27 (q, 1H, H-2), 3.02 (q, 1H, H-6), 2.79 (m, 2H, H-6 + H-7), 2.70 (t, 1H, H-7), 2.11 (s, 3H, H-12), 1.89 (t, 1H, H-3), 1.76 (s, 1H, H-8), 1.57-1.49 (m, 5H, H-9 + H-5 + H-4), 1.37-1.21 (t, 1H, H-3), 0.92 (t, 3H, H-10). ¹³C NMR (CDCl₃, 100MHz) δ 169.61 (C-11), 158.69 (C-g) 146.24 (C-c), 143.69 (C-d), 142.92 (C-a), 131.60 (C-e), 127.04 (C-i), 122.88 (C-h), 118.31 (C-f), 105.69 (C-b), 73.19 (C-1), 58.28 (C-2), 50.76 (C-6), 49.82 (C-7), 37.00(C-5), 26.72 (C-8), 25.70 (C-9), 25.24 (C-4), 22.02 (C-3), 21.16 (C-12), 11.95 (C-10). HRMS required for C₂₁H₂₇O₃N₂ [M+H]⁺ is 355.2016, found 355.2013.

3. Asymmetric Cyclopropanation

Scheme 2 : General scheme for asymmetric cyclopropanation

3.1 General Procedure for the Asymmetric Cyclopropanation

required for C₂₅H₃₃O₃N₂ [M+NH₄]⁺ is 417.1115, found 417.1106.

To an oven-dried flask was added conjugate cyanosulfone **1** (1 eq), organocatalyst **VII** (10 mol%) and oven-dried K_2CO_3 (1 eq), which were dissolved in dry dichloromethane. The reaction was cooled to -10 °C and stirred for 1h. After this time, dimethyl bromomalonate **2** (1.5 eq) was added, and the reaction stirred for 96 h at -10 °C. The reaction was then diluted with saturated aqueous NH₄Cl solution (30 mL) and extracted with DCM (2 x 30 mL). The organic extracts were combined, dried over MgSO₄, filtered and concentrated under reduced pressure. The resulting residue was purified by column chromatography, and then recrystallized to give the title compound.

Dimethyl (2*S*,3*R*)-2-cyano-3-phenyl-2-(phenylsulfonyl)cyclopropane-1,1-dicarboxylate **3a.** Prepared according to the general procedure using (*E*)-3-phenyl-2-(phenylsulfonyl)acrylonitrile (20 mg, 0.074 mmol) **1a**, organocatalyst **VII** (3 mg, 0.007 mmol), oven-dried K_2CO_3 (10 mg, 0.074 mmol) and dimethyl bromomalonate **2** (15 µL, 0.11 mmol). The resulting residue was purified by column chromatography (1:4 EtOAc:Hexane) to give a white crystalline compound (37mg, 92%). The compound was

enantiomerically enriched by recrystallisation in isopropanol to yield white prisms. Mpt = 147–150°C. The enantiomeric excess was determined by HPLC analysis [Chiralpak AD-H column (0.46 cm \emptyset X 25 cm); 1:9 isopropanol:hexane; flow rate = 1 mL/min; detection wavelength = 210 nm] tR 25.70 min, tR 34.34 min. $[a]_D^{20}$ = +42.47 (c = 0.1, CHCl₃) IR (neat, cm⁻¹) 1747.2, 1234.7, 1165.8, 1143.5. ¹H NMR (CDCl₃, 400MHz) δ 8.12 (d, 2H, H-f), 7.81 (t, 1H, H-h), 7.68 (t, 2H, H-g), 7.32 (m, 3H, H-c + H-d) 7.12 (s, 2H, H-b), 4.17 (s, 1H, H-4), 3.97 (s, 3H, H-1), 3.69 (s, 3H, H-1). ¹³C NMR (CDCl₃, 100MHz) δ 163.50 (C-2), 162.46 (C-2), 135.88 (C-e), 135.68 (C-h), 130.14 (C-f), 129.61 (C-g), 129.06 (C-d), 129.02 (C-c), 128.37 (C-a), 128.16 (C-b), 54.25 (C-1), 53.87 (C-1), 48.42 (C-4), 47.43 (C-3), 37.00 (C-5). HRMS

Dimethyl (2*S*,3*R*)-3-(4-chlorophenyl)-2-cyano-2-(phenylsulfonyl)cyclopropane-1,1dicarboxylate 3b. Prepared according to the general procedure using (*E*)-3-(4chlorophenyl)-2-(phenylsulfonyl)acrylonitrile 1b (23mg, 0.075 mmol), organocatalyst **VII** (3 mg, 0.007 mmol), oven-dried K_2CO_3 (10 mg, 0.074 mmol), and dimethyl bromomalonate 2 (15 µL, 0.11 mmol). The resulting residue was purified by column chromatography (1:3 EtOAc:Hexane) to give a white crystalline compound (35 mg,

100%). The compound was enantiomerically enriched by recrystallisation in isopropanol to yield white needles. MPt = $160-162^{\circ}$ C The enantiomeric excess was determined by HPLC analysis [Chiralpak AD-H column (0.46 cm & X 25 cm); 1:9

isopropanol:hexane; flow rate = 1 mL/min; detection wavelength = 210 nm] tR 37.44 min, tR 58.55 min. $[a]_D^{20}$ = +89.63 (c = 0.1, CHCl₃) IR (neat, cm⁻¹) 1746.2, 1252.7, 1229.8, 1162.5. ¹H NMR (CDCl₃, 400MHz) δ 8.11(d, 2H, H-f), 7.82 (t, 1H, H-h), 7.69 (t, 2H, H-g), 7.31 (d, 2H, H-b) 7.08 (d, 2H, H-c), 4.11 (s, 1H, H-5), 3.97 (s, 3H, H-1), 3.70 (s, 3H, H-1). ¹³C NMR (CDCl₃, 100MHz) δ 163.23 (C-2), 162.23 (C-2), 135.78 (C-h), 135.69 (C-a), 135.26 (C-e), 130.15 (C-f), 129.64 (C-g), 129.60 (C-c), 129.38 (C-b), 126.90 (C-d), 111.17 (C-6), 54.30 (C-1), 54.04 (C-1), 48.30 (C-4), 47.26 (C-3), 36.11 (C-5). HRMS required for C₂₀H₁₆O₆NSCINa [M+Na]⁺ is 456.0281, found 456.0279.

Dimethyl (2*S*,3*R*)-3-(3-bromophenyl)-2-cyano-2-(phenylsulfonyl)cyclopropane-1,1dicarboxylate 3c. Prepared according to the general procedure using (*E*)-3-(3bromophenyl)-2-(phenylsulfonyl)acrylonitrile 1c (26 mg, 0.074 mmol), organocatalyst VII (3 mg, 0.007 mmol), oven-dried K₂CO₃ (10 mg, 0.074 mmol), and dimethyl bromomalonate 2 (15 μ L, 0.11 mmol). The resulting residue was purified by column

chromatography (1:3 EtOAc:Hexane) to give a white crystalline compound (37 mg, 100%). The compound was enantiomerically enriched by recrystallisation in isopropanol to yield white prisms. MPt = 116-120°C. The enantiomeric excess was determined by HPLC analysis [Chiralpak AD-H column (0.46 cm \emptyset X 25 cm); 1:4 isopropanol:hexane; flow rate = 1 mL/min; detection wavelength = 210 nm] tR 13.32 min, tR 20.79 min. $[a]_{D}^{20} = +87$ (c = 1, CHCl₃) IR (neat, cm⁻¹) 1746.4, 1240.71, 1160.0. ¹H NMR (CDCl₃, 400MHz) δ 8.11 (d, 2H, H-h), 7.83 (t, 1H, H-j), 7.69 (t, 2H, H-i), 7.47 (d, 1H, H-d) 7.26 (s, 1H, H-b), 7.19 (t, 1H, H-e), 7.08 (d, 1H, H-f), 4.12 (s, 1H, H-5), 3.98 (s, 3H, H-1), 3.72 (s, 3H, H-1). ¹³C NMR (CDCl₃, 100MHz) δ 163.09 (C-2), 162.17 (C-2), 135.82 (C-j) , 135.61 (C-a), 132.27 (C-d), 131.34 (C-b), 130.63 (C-e), 130.57 (C-g), 130.14 (C-h), 129.66 (C-i), 126.90 (C-f), 122.88 (C-c), 111.02 (C-6), 54.32 (C-1), 54.05 (C-1), 48.20 (C-4), 47.19 (C-3), 35.89 (C-5). HRMS required for C₂₀H₁₆O₆NSBrNa [M+Na]⁺ is 499.9774, found

499.9772.

Dimethyl-(2S,3R)-2-cyano-3-(3,5-dimethoxyphenyl)-2-(phenylsulfonyl)-

cyclopropane-1,1-dicarboxylate 3d. Prepared according to the general procedure using (*E*)-3-(3,5-dimethoxyphenyl)-2-(phenylsulfonyl)acrylonitrile **1d** (25 mg, 0.076 mmol), organocatalyst **VII** (3 mg, 0.007 mmol), oven-dried K_2CO_3 (10 mg, 0.074 mmol) and dimethyl bromomalonate **2** (15 µL, 0.11 mmol). The resulting residue was purified by column chromatography (1:4 EtOAc:Hexane) to give a light brown

crystalline compound (30 mg, 86%). The compound was enantiomerically enriched by recrystallisation in isopropanol to yield white prisms. MPt = 145-148°C. The enantiomeric excess was determined by HPLC analysis [Chiralpak AD-H column (0.46 cm \emptyset X 25 cm); 1:4 isopropanol:hexane; flow rate = 1 mL/min; detection wavelength = 210 nm] tR 17.05 min, tR 24.42 min. $\begin{bmatrix} a \end{bmatrix}_{D}^{20} =$ +47.54 (c = 0.1, CHCl₃). IR (neat, cm⁻¹) 1743.6, 1595.8, 1252.5, 1209.1, 1151.1, 1068.3. ¹H

NMR (CDCl₃, 400MHz) δ 8.12 (d, 2H, H-f), 7.81 (t, 1H, H-h), 7.68 (t, 2H, H-g), 6.38 (s, 1H, H-d) 6.22 (s, 2H, H-b), 4.10 (s, 1H, H-5), 3.97 (s, 3H, H-1), 3.72 (s, 3H, H-1), 3.69 (s, 6H, H-7). ¹³C NMR (CDCl3, 100MHz) δ 163.42 (C-2), 162.43 (C-2), 161.09 (C-c), 135.70 (C-e), 135.60 (C-h), 130.16 (C-g), 129.58 (C-f), 111.40 (C-6), 106.07 (C-b), 101.27 (c-d), QUATERNARY 55.34 (C-7), 54.23 (C-1), 53.95 (C-1), 48.15 (C-4), 47.46 (C-3), 37.13 (C-5). HRMS required for C₂₂H₂₁O₈NSNa [M+Na]⁺ is 482.0880, found 482.0880.

Dimethyl (2*S*,3*R*)-2-cyano-3-(4-nitrophenyl)-2-(phenylsulfonyl)cyclopropane-1,1dicarboxylate 3e. Prepared according to the general procedure using (*E*)-3-(4nitrophenyl)-2-(phenylsulfonyl)acrylonitrile 1e (25mg, 0.079mmol), organocatalyst **VII** (3 mg, 0.007mmol), oven-dried K_2CO_3 (10 mg, 0.074mmol), and dimethyl bromomalonate (15 µL, 0.11 mmol). The resulting residue was purified by column chromatography (1:4 EtOAc:Hexane) to give a light brown crystalline compound (34

mg, 96%). The compound was enantiomerically enriched by recrystallisation in isopropanol to yield white prisms. MPt = 152-153°C. The enantiomeric excess was determined by HPLC analysis [Chiralpak AD-H column (0.46 cm ø X 25 cm);

 $[a]_{D}^{20} =$ 1:4 isopropanol:hexane; flow rate = 1 mL/min; detection wavelength = 210 nm] tR 42.67 min, tR 56.55 min. $[a]_{D}^{20} =$ +97 (c = 0.1, CHCl₃) IR (neat, cm⁻¹) 1747.4, 1731.3, 1352.5, 1235.6, 1159.1, 1143.0. ¹H NMR (CDCl₃, 400MHz) & 8.21 (d, 2H, H-c), 8.12 (d, 2H, H-f), 7.85 (t, 1H, H-h), 7.71 (t, 2H, H-g) 7.35 (d, 2H, H-b), 4.20 (s, 1H, H-5), 3.97 (s, 3H, H-1), 3.73 (s, 3H, H-1). ¹³C NMR (CDCl₃, 100MHz) & 162.83 (C-2), 162.03 (C-2), 136.02 (C-h), 148.33 (C-a), 135.62 (C-d), 135.40 (Ce), 130.23 (C-f), 129.73 (C-g), 129.51 (C-b), 124.25 (C-c), 111.00 (C-6), 54.43 (C-1), 54.26 (C-1), 48.25 (C-4), 47.26 (C-3), 35.87 (C-5). HRMS required for C₂₀H₁₆O₈N₂SNa [M+Na]⁺ is 467.0520, found 467.0517.

dimethyl (2*S*,3*R*)-2-cyano-3-(4-methoxyphenyl)-2-(phenylsulfonyl)cyclopropane-1,1-dicarboxylate 3f. Prepared according to the general procedure using (*E*)-3-(4methoxyphenyl)-2-(phenylsulfonyl)acrylonitrile 1f (22 mg, 0.074mmol), organocatalyst VII (3 mg, 0.007 mmol), oven-dried K₂CO₃ (10 mg, 0.074mmol), and dimethyl bromomalonate 2 (15 μ L, 0.11 mmol). The resulting residue was purified by column chromatography (1:4 EtOAc:Hexane) to give a white crystalline compound

(24 mg, 73%). The compound was enantiomerically enriched by recrystallisation in isopropanol to yield white prisms. MPt = 164-166°C. The enantiomeric excess was determined by HPLC analysis [Chiralpak AD-H column (0.46 cm \emptyset X 25 cm); 1:9 isopropanol:hexane; flow rate = 1 mL/min; detection wavelength = 210 nm] tR 53.15 min, tR 75.09 min. [a] $_{D}^{20}$ = +54.74 (c = 0.1, CHCl₃) IR (neat, cm⁻¹) 1726.2, 1246.9, 1231.4, 1021.5. ¹H NMR (CDCl₃, 400MHz) δ 8.11(d, 2H, H-f), 7.81 (t, 1H, H-h), 7.67 (t, 2H, H-g), 7.04 (d, 2H, H-b) 6.83 (d, 2H, H-c), 4.11 (s, 1H, H-5), 3.97 (s, 3H, H-1), 3.77 (s, 3H, H-7), 3.70 (s, 3H, H-1). ¹³C NMR (CDCl₃, 400MHz) δ 163.62 (C-2), 162.44 (C-2), 160.09 (C-d), 135.96 (C-e), 135.63 (C-h), 130.10 (C-g), 129.58 (C-f), 129.44 (C-b), 120.28 (C-a), 114.51 (C-c), 111.54 (C-6), 55.29 (C-7), 54.23 (C-1), 53.91 (C-1), 48.48 (C-4), 47.52 (C-3), 36.58 (C-5). HRMS required for C₂₁H₁₉O₇NSNa [M+Na]⁺ is 452.0774, found 452.0781.

Dimethyl (2*S*,3*R*)-2-cyano-3-(naphthalen-1-yl)-2-(phenylsulfonyl)cyclopropane-1,1dicarboxylate 3g. Prepared according to the general procedure using (*E*)-3-(naphthalen-1-yl)-2-(phenylsulfonyl)acrylonitrile 1g (24 mg, 0.075mmol), organocatalyst VII (3 mg, 0.007 mmol), oven-dried K_2CO_3 (10 mg, 0.074 mmol), and dimethyl bromomalonate 2 (15 µL, 0.11 mmol). The resulting residue was purified by column chromatography (1:4 EtOAc:Hexane) to give a light brown crystalline compound (32mg, 91%). The compound was enantiomerically enriched by recrystalisation in isopropanol to yield white prisms. MPt = 203-206°C. The enantiomeric excess was determined by HPLC analysis [Chiralpak AD-H column (0.46 cm ø X 25 cm); 1:9 isopropanol:hexane; flow rate = 1 mL/min; detection wavelength = 210 nm] tR 12.59 min, tR 24.85 min. $[a]_D^{20}$ = +50.24 (c = 0.1, CHCl₃) IR (neat, cm⁻¹) 1737.5, 1336.4, 1280.1, 1244.8, 1157.7. ¹H NMR (CDCl₃, 400MHz) δ 8.39 (d, 1H, H-c), 8.17 (d, 2H, H-l), 7.86-7.81 (m, 3H, H-n + H-f + H-h), 7.69 (t, 2H, H-m), 7.58-7.49 (m, 2H, H-e + H-i), 7.36 (t, 1H, H-d), 7.26 (d, 1H, H-j), 4.44 (s, 1H, H-5), 4.07 (s, 3H, H-1), 3.34 (s, 3H, H-1). ¹³C NMR (CDCl₃, 100MHz) δ 163.89 (C-2), 162.15 (C-2), 135.99 (C-a), 135.75 (C-n), 133.59 (C-k), 131.78 (C-g), 130.23 (C-l), 129.67 (C-m + C-f), 128.94 (C-h), 127.01 (C-i), 126.82 (C-j), 126.33 (C-e), 125.18 (C-d), 124.39 (C-b), 122.94 (C-c), 111.91 (C-6), 54.28 (C-1), 53.64 (C-1), 48.30 (C-4), 47.03 (C-3), 36.37 (C-5). HRMS required for C₂₄H₁₉O₆NSNa [M+Na]⁺ is 472.0835, found 472.0832.

Dimethyl (25,35)-2-cyano-2-(phenylsulfonyl)-3-(thiophen-2-yl)cyclopropane-1,1dicarboxylate 3h. Prepared according to the general procedure using (*E*)-2-(phenylsulfonyl)-3-(thiophen-2-yl)acrylonitrile 1h (21 mg, 0.075 mmol), organocatalyst VII (3 mg, 0.07 mmol), oven-dried K_2CO_3 (10 mg, 0.074mmol), and dimethyl bromomalonate 2 (15 µL, 0.11 mmol). The resulting residue was purified by column

chromatography (1:4 EtOAc:Hexane) to give a light brown crystalline compound (28 mg, 91%). The compound was enantiomerically enriched by recrystalisation in isopropanol to yield white prisms. MPt = $114-117^{\circ}$ C. The enantiomeric excess was determined by HPLC analysis [Chiralpak AD-H column (0.46 cm & X 25 cm); 1:4 isopropanol:hexane; flow

rate = 1 mL/min; detection wavelength = 210 nm] tR 15.63 min, tR 23.92 min. $[a]_{D}^{20} = -15$ (c = 0.1, CHCl₃) IR (neat, cm⁻¹) 1738.5, 1345.1, 1270.3, 1247.6, 1150.2. ¹H NMR (CDCl₃, 400MHz) δ 8.09 (d, 2H, H-f), 7.81 (t, 1H, H-h), 7.67 (t, 2H, H-g), 7.28 (dd, 1H, H-d) 6.98-6.94 (m, 2H, H-c + H-b), 4.19 (s, 1H), 3.96 (s, 3H), 3.76 (s, 3H). ¹³C NMR (CDCl₃, 100MHz) δ 162.83 (C-2), 161.89 (C-2), 135.86 (C-e), 135.73 (C-h), 129.97 (C-g), 129.65 (C-f), 129.34 (C-a), 128.33 (C-c), 127.46 (C-b), 127.20 (C-d), 111.14 (C-6), 54.36 (C-1), 54.14 (C-1), 48.88 (C-4), 48.06 (C-3), 32.97 (C-5). HRMS required for C₁₈H₁₅O₆NS₂Na [M+Na]⁺ is 428.0233, found 428.0236.

Dimethyl (25,3*R*)-2-cyano-2-(phenylsulfonyl)-3-(pyridin-3-yl)cyclopropane-1,1dicarboxylate 3i. Prepared according to the general procedure using (*E*)-2-(phenylsulfonyl)-3-(pyridin-3-yl)acrylonitrile 1i (20 mg, 0.074 mmol), organocatalyst VII (3 mg, 0.007 mmol), oven-dried K_2CO_3 (10 mg, 0.074 mmol) and dimethyl bromomalonate 2 (15 μ L, 0.11mmol). The resulting residue was purified by column chromatography (1:4 EtOAc:Hexane) to give a light brown crystalline compound (28 mg,

95%). The compound was enantiomerically enriched by recrystalisation in isopropanol to yield white prisms. MPt : 151 °C (evidently decomposes at this temperature). The enantiomeric excess was determined by HPLC analysis [Chiralcel OD column (0.46 cm ø X 25 cm); 1:4 isopropanol:hexane; flow rate = 1 mL/min; detection wavelength = 210 nm] tR 15.29 min, tR 16.66 min. $[a]_D^{20} = +66.92$ (c = 0.1, CHCl₃) IR (neat, cm⁻¹) 1755.5, 1739.4, 1336.4, 1308.2, 1292.1, 1251.76, 1151.0. ¹H NMR (CDCl₃, 400MHz) δ 8.59 (s, 1H, H-b), 8.38 (s, 1H, H-c), 8.11 (d, 2H, H-g), 7.84 (t, 1H, H-i), 7.70 (d, 2H, H-h), 7.52 (d, 1H, H-e), 7.29 (t, 1H, H-d), 4.12 (s, 1H, H-5), 3.99 (s, 3H, H-1), 3.73 (s, 3H, H-1). ¹³C NMR (CDCl₃, 100MHz) δ 163.06 (C-2), 162.26 (C-2), 150.22 (C-b), 149.50 (C-c), 135.90 (C-e), 135.57 (C-a), 130.16 (C-h), 129.71 (C-g),

125.07 (C-f), 123.67 (C-d), 111.17 (C-6), 54.38 (C-1), 54.21 (C-1), 48.23 (C-4), 47.21 (C-3), 34.40 (C-5). HRMS required for $C_{19}H_{17}O_6N_2S$ [M+H]⁺ is 401.0802, found 401.0803.

Dimethyl (*S*)-2-(2-cyano-1-phenylethyl)malonate 6. To an oven-dried flask was added dimethyl (2*S*,3*R*)-2-cyano-3-phenyl-2-(phenylsulfonyl)cyclopropane-1,1-dicarboxylate **3a** of 74% enantiomeric excess (320 mg, 0.81mmol) and magnesium turnings (250 mg, 10 mmol). The system was placed under nitrogen and dry methanol (30 mL) was added. The reaction was then stirred at 60°C for 20 h until TLC showed complete consumption of the starting material.

The reaction was cooled, filtered through Celite[®] which was subsequently washed with MeOH. The collected solvent was removed under reduced pressure, yielding a crude yellow solid which was purified by column chromatography (3:7, EtOAc:Hexane) to yield the title compound as an off-white solid (160 mg, 77%). The enantiomeric excess remained at 74% and was determined by HPLC analysis [Chiralpak AD-H column (0.46 cm \emptyset X 25 cm); 1:9 isopropagol; hexage; flow rate = 1 ml (min; detection wavelength = 210 nml tB 12.59 min tB 24.85 min $\begin{bmatrix} a \end{bmatrix}_{D}^{20} =$

isopropanol:hexane; flow rate = 1 mL/min; detection wavelength = 210 nm] tR 12.59 min, tR 24.85 min. $^{L^{0}}D^{-}$ +61.72 (c = 0.1, CHCl₃) IR (neat, cm⁻¹) 2924.1, 2248.8, 1725.4, 1435.5, 1246.7, 1163.0. ¹H NMR (CDCl₃, 400MHz) δ 7.37-7.26 (m, 5H, H-b + H-c + H-d), 3.89 (d, 1H, H-3), 3.79-3.73 (m, 3H, H-1 + H-4), 3.51 (s, 3H, H-1), 2.91-2.87 (m, 2H, H-5). ¹³C NMR (CDCl3, 100MHz) δ 167.78 (C-2), 166.96 (C-2), 137.83 (C-a), 129.04 (C-c), 128.34 (C-d), 127.61 (c-b), 117.62 (C-6), 55.67 (C-4), 53.06 (C-1), 52.73 (C-1), 41.28 (C-3), 22.59 (C-5). HRMS required for C₁₄H₁₉O₄N₂ [M+NH₄]⁺ is 279.1345, found 279.1338.

(S)-4-cyano-3-phenylbutanoic acid 11. Dimethyl (S)-2-(2-cyano-1-phenylethyl)malonate **6** (70mg, 0.27mmol) was dissolved in ethanol (6 mL). 30% aqueous KOH (2.5 mL) was then added to the reaction mixture, and stirring continued at 20 °C for 16h. After this time, the solvent was removed under reduced pressure, and the aqueous residue acidified to pH 2 with 5M HCl (aq), which was then extracted with ethyl acetate (3 x 50 mL). The combined organic extracts were

dried over MgSO₄, filtered and removed under reduced pressure, yielding the dicarboxylic acid as a yellow oil. This was dissolved in *m*-xylene (5 mL) and refluxed under an atmosphere of nitrogen for 5h. After this time, the reaction was cooled and the solvent removed under reduced pressure to yield the crude product as a brown oil. This was purified by column chromatography (3:7:0.1 EtOAc:Hexane:AcOH) to give the product as a light brown solid (35mg, 70%) IR (neat, cm⁻¹) 3142.0, 3035.2, 2252. 8, 1709.2, 1408.2, 1274.3, 1159.7. ¹H NMR (CDCl₃, 400MHz) δ 8.41 (bs, H-1), 7.39-7.17 (m, 5H, H-b + H-c + H-d), 3.43 (t, 1H, H-4), 2.94-2.75 (m, 2H, H-5), 2.72 (d, 2H, H-3). ¹³C NMR (CDCl₃, 100MHz) δ 140.14 (C-a), 129.21 (C-c), 127.99 (C-d), 126.37 (C-b), 117.80 (C-6), 38.80 (C-5), 37.80 (C-4), 24.44 (C-3). HRMS required for C₁₁H₁₁O₂NNa [M+Na]⁺ is 212.0682, found 212.0681.

(*S*)-5-amino-3-phenylpentanoic acid 7. (*S*)-4-cyano-3-phenylbutanoic acid 11 (30mg, 0.16mmol) and 10% palladium on activated carbon (300 mg) were added to acetic acid (15 mL). The system was placed under 3 atm of hydrogen and shaken for four days. The reaction was vacuum-filtered through a glass fibre pad, and the resulting filtrate syringe-filtered through a 20 μ m PVDF filter. The solvent was then removed under reduced pressure to give

a pink oil. HRMS required for $C_{11}H_{16}NO_2$ [M+H]⁺ is 194.1181, found 194.1176.

Methyl (1*R*,5*S*,6*R*)-6-phenyl-5-(phenylsulfonyl)-3-azabicyclo[3.1.0]hexane-1-carboxylate 8. Dimethyl (2*S*,3*R*)-2-cyano-3-phenyl-2-(phenylsulfonyl)cyclopropane-1,1-dicarboxylate **3a** (300 mg, 0.78 mmol) was dissolved in dry THF (2 mL) and the resulting solution stirred at 0°C. To this was added borane-dimethylsulfide complex (450 μ L, 3.62 mmol), and the reaction stirred for 2h at 0°C, then at 48 h at 20 °C. The reaction was quenched by drop-wise addition of methanol, and the solvents removed by under reduced pressure. The crude product was purified by column chromatography (1:1:0.1 EtOAc:Hexane:Et₃N), to yield the product as a

light yellow oil (86 mg, 31%). IR (neat, cm⁻¹) 2924.5, 2858.7, 1730.5, 1445.1, 1309.2, 1152.0 1084.0, 1027.7. ¹H NMR (CDCl₃, 400MHz) δ 7.90 (d, 2H, H-f), 7.66 (t, 1H, H-h), 7.56 (t, 2H, H-g), 7.22-7.19 (m, 3H, H-b + H-d), 6.94 (t, 2H, H-c), 4.01 (s, 1H, H-4), 3.81 (s, 3H, H-1), 3.54 (d, 1H, H-6), 3.42 (d, 1H, H-7), 3.17 (d, 1H, H-6), 2.97 (d, 1H, H-7). ¹³C NMR (CDCl3, 100MHz) δ 166.95 (C-2), 137.81 (C-e), 133.09 (C-h), 130.43 (C-a), 128.42 (C-g), 128.32 (C-c), 127.45 (C-f), 127.01 (C-d), 125.89 (C-b), 60.59 (C-5), 52.03 (C-1), 49.31 (C-7), 47.82 (C-6), 45.95 (C-3), 30.85 (C-4). HRMS required for C₁₉H₂₀O₄NSNa [M+H]⁺ is 358.1113, found 358.1.

4. References

- 1. X. Xu, A. Kusuda, E. Tokunaga, and N. Shibata, Green Chem., 2011, 13, 46-50
- 2. X. Liu , H. Li , and L. Deng, Org. Lett., 2005, 7, 167-169
- 3. L. Lykke C. R. Esrich and K. A. Jørgensen, J. Am. Chem. Soc., 2011, 133, 14932-14935.
- 4. Y. Deng[,] Z. Zhang, Y. Feng, A. S. C. Chan and G. Lu, *Tet. Asymm*, 2012, 23, 1647-1652
- A. Nakano, S. Kawahara, S. Akamatsu, K. Morokuma, M. Nakatani, Y. Iwabuchi, K. Takahashi, J. Ishihara and S. Hatakeyama, *Tetrahedron*, 2006, 62, 381-389
- 6. M. Shi, Z. Lei, M. Zhao and J. Shi, Tet. Lett., 2007, 48, 5743-5746
- 7. S. Rajkumar, K. Shankland, J. M. Goodman and A. J. A. Cobb, Org. Lett. 2013, 15, 1386.
- 8. B. Mohar, J. Baudoux, J. Plaquevent and D. Cahard, Angew. Chem. Int. Ed., 2001, 40, 4214-4216
- 9. L. Cheng, L. Liu, H. Jia, D. Wang, and Y.Chen, J. Org. Chem, 2009, 74, 4650-4653

5. Spectra of New Catalysts and their Intermediates

5.1 (R)-((15,25,45,5R)-5-ethylquinuclidin-2-yl)(6-hydroxyquinolin-4-yl)methyl acetate V

¹³C NMR (100 MHz, CDCl₃)

IR Spectrum of V

5.2 (S)-((1S,2R,4S,5R)-5-ethylquinuclidin-2-yl)(6-methoxyquinolin-4-yl)methyl acetate 12

IR Spectrum of 12

IR Spectrum of VI

MS Profile of VI

240315_LA_QEX-1P_AJC #337-353_RT: 4.86-5.04_AV: 9_NL: 1.28E7 F: FTMS + p_ESI Full ms

IR Spectrum of 11

5.5 (R)-(6-hydroxyquinolin-4-yl)((1S,2S,4S,5R)-5-vinylquinuclidin-2-yl)methyl pent-4-enoate VII.

MS Profile of **VII**

5.6 (*S*)-((1*S*,2*R*,4*S*,5*R*)-5-ethylquinuclidin-2-yl)(6-hydroxyquinolin-4-yl)methyl acetate **XV**

¹H NMR (400 MHz, CDCl₃)

IR Spectrum of XV

MS Profile of XV

6. Spectra and HPLC Traces for Products of the Substrate Scope and their Derivatives

6.1 Dimethyl-(25,3R)-2-cyano-3-phenyl-2-(phenylsulfonyl)cyclopropane-1,1-dicarboxylate 3a

¹H NMR (400 MHz, CDCl₃)

MS Profile for 3a

6.2 Dimethyl (25,3R)-3-(4-chlorophenyl)-2-cyano-2-(phenylsulfonyl)cyclopropane-1,1-dicarboxylate 3b

¹H NMR (400 MHz, CDCl₃)

IR Spectrum of **3b**

MS Profile of **3b**

HPLC Traces for **3b** : racemic (top), obtained (middle), recrystallized (bottom)

6.3 Dimethyl (25,3R)-3-(3-bromophenyl)-2-cyano-2-(phenylsulfonyl)cyclopropane-1,1-dicarboxylate 3c

IR Spectrum of 3c

HPLC Traces for 3c : racemic (top), obtained (middle), recrystallized (bottom)

6.4 Dimethyl (2S,3R)-2-cyano-3-(3,5-dimethoxyphenyl)-2-(phenylsulfonyl)cyclopropane-1,1-dicarboxylate 3d

IR Spectrum of 3d

MS Profile of 3d

HPLC Traces for 3d : racemic (top), obtained (middle), recrystallized (bottom)

Area 1: 50.0% Area 2: 50.0%

6.5 Dimethyl (2S,3R)-2-cyano-3-(4-nitrophenyl)-2-(phenylsulfonyl)cyclopropane-1,1-dicarboxylate 3e

IR Spectrum of **3e**

MS Profile of **3e**

HPLC Traces for **3e** : racemic (top), obtained (middle), recrystallized (bottom)

6.6 Dimethyl (25,3R)-2-cyano-3-(4-methoxyphenyl)-2-(phenylsulfonyl)cyclopropane-1,1-dicarboxylate 3f

¹H NMR (400 MHz, CDCl₃)

IR Spectrum of **3f**

MS Profile of **3f**

HPLC Traces for **3f** : racemic (top), obtained (middle), recrystallized (bottom)

6.7 Dimethyl (2S,3R)-2-cyano-3-(naphthalen-1-yl)-2-(phenylsulfonyl)cyclopropane-1,1-dicarboxylate 3g

¹H NMR (400 MHz, CDCl₃)

IR Spectrum for **3g**

MS Profile for **3g**

HPLC Traces for 3g : racemic (top), obtained (middle), recrystallized (bottom)

Organocatalytic Cyclopropanation Product **3g**

6.8 Dimethyl (2S,3S)-2-cyano-2-(phenylsulfonyl)-3-(thiophen-2-yl)cyclopropane-1,1-dicarboxylate 3h

IR Spectrum of **3h**

MS Profile for **3h**

HPLC Traces for **3h** : racemic (top), obtained (middle), recrystallized (bottom)

6.9 Dimethyl (25,3R)-2-cyano-2-(phenylsulfonyl)-3-(pyridin-3-yl)cyclopropane-1,1-dicarboxylate 3i

IR Spectrum of 3i

MS Profile for **3i**

HPLC Traces for 3i : racemic (top), obtained (bottom)

IR Spectrum of 6

MS Profile of 6

HPLC Traces for **3h** : HPLC trace of starting material **3a** (top - less pure enantiomeric excess from catalyst screen deliberately used in order to assess the integrity of the stereogenic center), racemic trace of **6** (middle), trace for **6** showing retention of enantiomeric excess (bottom).

6.11 (S)-4-cyano-3-phenylbutanoic acid 11

¹H NMR (400 MHz, CDCl₃)

IR Spectrum of 11

MS Profile for 11

6.12 (S)-5-amino-3-phenylpentanoic acid 7

MS Profile for 7

6.13 Methyl-(1R,5S,6R)-6-phenyl-5-(phenylsulfonyl)-3-azabicyclo[3.1.0]hexane-1-carboxylate 8

¹H NMR (400 MHz, CDCl₃)

IR Spectrum of 8

