## **Supplementary Information**

# Performance enhancement of planar heterojunction perovskite solar cells by *n*-doping of electron transporting layer

Shin Sung Kim, Seunghwan Bae, and Won Ho Jo\*

Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-744, Korea. E-mail: whjpoly@snu.ac.kr

### **Materials and Characterization**

CH<sub>3</sub>NH<sub>3</sub>I and DMBI were synthesized by following the methods reported in the literature.<sup>1,2</sup> PbI<sub>2</sub> purchased Sigma-Aldrich. Poly(3,4-ethylenedioxyfrom was thiophene):poly(styrenesulfonate) (PEDOT:PSS) (Clevious P VP AI 4083) was purchased from H. C. Stark and passed through a 0.45 µm PVDF syringe filter before spin-coating. PCBM was obtained from Nano-C. The absorption spectra were obtained by an UV-Vis spectrophotometer (Lambda 25, Perkin Elmer). UPS measurement was performed using a hemispherical electron energy analyzer (RESOLVE 120, PSP). The base pressure of analysis chamber was maintained under low  $10^{-9}$  Torr. He I (hv = 21.22 eV) discharge lamp was used as an excitation source with sample bias of -15 and -10 V for secondary electron cutoff and valence band region, respectively. Fermi level was calibrated through Ar<sup>+</sup>-sputtered clean Au. The electrical conductivity was measured with device configuration of glass substrate/PCBM or PCBM:DMBI/Au. PCBM or PCBM:DMBI solution was spin-coated on the top of precleaned glass followed by thermal deposition of Au electrode (80 nm thick) in a vacuum below 10<sup>-7</sup> Torr. The electrical conductivity was measured in N<sub>2</sub>-filled glove box by a probe

station with a computer-controlled Keithley 4200 source measurement unit. Devices for electrical conductivity measurement had a channel length of 50  $\mu$ m and a channel width of 1 mm. Film thickness was measured by AFM measurement. *J–V* curves of photovoltaic cells were obtained using the Keithley 4200 source measurement unit under AM 1.5G (100 mW cm<sup>-2</sup>) simulated by an Oriel solar simulator (Oriel 91160A). The light intensity was calibrated using a NREL-certified photodiode prior to each measurement. The EQE spectra were obtained using Polaronix K3100 IPCE measurement system (McScience). The light intensity at each wavelength was calibrated with a standard single-crystal Si cell.

#### **Device Fabrication**

The configuration of the solar cell device used in this work is glass/ITO/PEDOT:PSS/CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub>/PCBM or PCBM:DMBI/Ca/Al. The ITO-coated glass was cleaned with acetone and isopropyl alcohol for 30 min each. After complete drying, the ITO-coated glass was treated with UV-ozone for 15 min. A 40 nm thick PEDOT:PSS was spin-coated on the ITO-coated glass at 3000 rpm for 40 s and annealed at 150  $^\circ$ C for 30 min in ambient condition. Then, substrates were transferred to N<sub>2</sub>-filled glove box for further processing. For the perovskite layer, a 1:1 ratio of CH<sub>3</sub>NH<sub>3</sub>I:PbI<sub>2</sub> was dissolved in DMSO. The precursor solution was spin-coated onto the PEDOT:PSS layer at 3000 rpm. The substrate was immediately transferred onto a hot plate and heated at 110  $^\circ$ C for 30 s. For the ETL, various ratios of PCBM/DMBI were dissolved in chloroform and then spin-coated on CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub> layer at 3000 rpm. Finally, Ca (40 nm) and Al (120 nm) as top electrode were thermally deposited on the ETL under 10<sup>-6</sup> Torr. The device area is 0.1 cm<sup>2</sup>.



**Fig. S1** EQE spectra of devices with (a) thin ETL and (b) thick ETL which are doped with various DMBI concentrations.



**Fig. S2** Hysteresis curves for devices with (a), (b) pure PCBM, (c), (d) 1 wt% doped PCBM, (e), (f) 3 wt% doped PCBM, (g), (h) 5 wt% doped PCBM.

| Solution<br>conc. <sup>a</sup><br>(mg/mL) | Dopant conc.<br>of ETL | $J_{\rm SC}{}^{\rm b}$ (mA cm <sup>-2</sup> ) | V <sub>oc</sub><br>(V) | FF        | PCE<br>(%) | $R_{ m Sh}^{ m c}$<br>( $\Omega  m cm^2$ ) | $R_{\rm S}^{\rm c}$<br>( $\Omega  {\rm cm}^2$ ) |
|-------------------------------------------|------------------------|-----------------------------------------------|------------------------|-----------|------------|--------------------------------------------|-------------------------------------------------|
| 10                                        | Pure PCBM              | 18.2±1.1 (18.2)                               | 0.82±0.05              | 0.72±0.05 | 11.0±1.0   | 1.42×10 <sup>3</sup>                       | 3.52                                            |
| 10                                        | 1 wt% DMBI             | 20.3±0.8 (20.0)                               | 0.84±0.02              | 0.70±0.05 | 12.1±0.8   | 9.97×10 <sup>2</sup>                       | 3.60                                            |
| 10                                        | 3 wt% DMBI             | 20.3±1.3 (20.0)                               | 0.83±0.03              | 0.67±0.04 | 11.1±1.0   | 5.88×10 <sup>2</sup>                       | 3.62                                            |
| 10                                        | 5 wt% DMBI             | 20.5±1.2 (20.6)                               | 0.83±0.03              | 0.65±0.05 | 11.1±0.9   | 4.01×10 <sup>2</sup>                       | 3.85                                            |
| 20                                        | Pure PCBM              | 18.4±0.9 (18.6)                               | 0.82±0.04              | 0.52±0.07 | 7.9±1.2    | 4.11×10 <sup>2</sup>                       | 35.1                                            |
| 20                                        | 1 wt% DMBI             | 20.6±0.8 (20.6)                               | 0.86±0.02              | 0.69±0.05 | 12.2±0.7   | 5.04×10 <sup>2</sup>                       | 3.71                                            |
| 20                                        | 3 wt% DMBI             | 20.0±0.7 (19.9)                               | 0.84±0.03              | 0.69±0.03 | 11.2±0.7   | 5.35×10 <sup>2</sup>                       | 3.96                                            |
| 20                                        | 5 wt% DMBI             | 19.9±1.0 (19.8)                               | 0.84±0.05              | 0.67±0.04 | 11.6±1.0   | 5.17×10 <sup>2</sup>                       | 4.24                                            |

 Table S1. Average device parameters and their standard deviations based on at least 10 devices.

<sup>a</sup>10 and 20 mg/mL chloroform solutions are used for fabrication of 50 and 105 nm thick ETL, respectively.

 ${}^{\mathrm{b}}J_{\mathrm{SC}}$  values calculated from EQE spectra are indicated in parenthesis.

<sup>c</sup>The series and shunt resistance were calculated by the slopes of *J*-*V* curves.

#### References

B. D. Naab, S. Guo, S. Olthof, E. G. B. Evans, P. Wei, G. L. Millhauser, A. Kahn, S. Barlow, S. R. Marder and Z. Bao, *J. Am. Chem. Soc.*, 2013, **135**, 15018-15025.

J. H. Heo, S. H. Im, J. H. Noh, T. N. Mandal, C. -S. Lim, J. A. Chang, Y. H. Lee, H. -J.
 Kim, A. Sarkar, M. K. Nazeeruddin, M. Grätzel and S. I. Seok, *Nat. Photonics*, 2013, 7, 486-491.