Regioselective Aerobic Oxidative Heck Reactions with Electronically Unbiased Alkenes: Efficient Access to α-Alkyl Vinylarenes

Changwu Zheng and Shannon S. Stahl*
Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, United States

Table of Contents

\qquad
General InformationS2
Typical Procedure for Palladium-Catalyzed Oxidative Heck Reactions S2
Procedure for 1 mmol -Scale Reactions. S2
Table S1. Comparison of Different Arylboronic Acid to Alkene Ratios S3
Spectral Data for Products S3
Spectra for the New Products S10

General Information. All commercially available compounds were purchased and used as received. Solvents were dried over activated-alumina columns prior to use; however, purification and drying of commercial solvents is not required for the catalytic reactions described here. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra were recorded on Bruker AC-300 or Varian MercuryPlus 300 instruments, and $\mathrm{CDCl}_{3}, \mathrm{Pd}(\mathrm{TFA})_{2}$, dmphen, 1octene, and N-methylpyrrolidone were purchased from Sigma-Aldrich and used as received. Arylboronic acids were purchased from Sigma-Aldrich, Combi-Blocks or Frontier Scientific and used as received. The chemical shift values are given in parts per million relative to $\mathrm{CDCl}_{3}\left(7.26 \mathrm{ppm}\right.$ for ${ }^{1} \mathrm{H}$, and 77.23 ppm for ${ }^{13} \mathrm{C}$). Gas chromatographic analysis of reactions was conducted with a Shimadzu GC-17A or GC-2010Plus gas chromatograph with either a DB-Wax or a RTX-5 column. Flash chromatography was performed using SiliaFlash ${ }^{\circledR}$ P60 (Silicycle, particle size 40-63 $\mu \mathrm{m}$, 230-400 mesh).

Typical Procedure for Palladium-Catalyzed Oxidative Heck Reactions. In a disposable culture tube, $\operatorname{Pd}(\mathrm{TFA})_{2}(3.3 \mathrm{mg}, 0.01 \mathrm{mmol})$ and dmphen $(4.2 \mathrm{mg}, 0.02 \mathrm{mmol})$ were dissolved in NMP $(0.2 \mathrm{~mL})$. The reaction tube was placed into an aluminum block mounted on a Large Capacity Mixer (Glas-Col) that enabled several reactions to be performed simultaneously under a constant pressure of (approx.) 1 atm with controlled temperature and orbital agitation. The headspace above the tubes was purged with oxygen gas for ca. 5 min . Then a solution of terminal alkene (0.2 mmol) and arylboronic acid (0.3 mmol) in NMP (0.3 mL) was added. The temperature was slowly raised to $60^{\circ} \mathrm{C}$ and continued for 6 hours. After completion, EtOAc (5 mL) was added to the reaction mixture, followed by aq. $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$. The solution was extracted 3 times with $\operatorname{EtOAc}(5 \mathrm{~mL} \times 3)$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The solvent was removed at reduced pressure. The residue was loaded onto a silica gel column and purified by flash chromatography (hexanes/ether mixture).

Procedure for 1 mmol-Scale Reactions.

To a 25 mL three-neck round bottom flask with a stir bar was added $\operatorname{Pd}(\mathrm{TFA})_{2}(16 \mathrm{mg}, 0.05 \mathrm{mmol})$, dmphen ($21 \mathrm{mg}, 0.1 \mathrm{mmol}$) and NMP $(1.5 \mathrm{~mL})$. The flask was evacuated briefly under vacuum, filled with oxygen gas and sealed with a septum. A balloon was filled with O_{2} and connected to a 6-inch needle. The needle attached to the O_{2} balloon was inserted through the septum, and the solution was sparged with O_{2} gas for ca. 10 min . A solution of arylboronic acid (1.5 mmol) and alkene (1 mmol) in NMP (1 mL) was added. The reaction was heated for 6 h at $60^{\circ} \mathrm{C}$ using an oil bath with vigorous stirring under an O_{2} atmosphere supplied by the balloon. Pure product was isolated by using the same procedure described above.

Table S1. Comparison of Different Arylboronic Acid to Alkene Ratios.

A	B	Yield $(\mathrm{A} / \mathrm{B}=1.5)$	Yield $(\mathbf{A} / \mathrm{B}=\mathbf{1})$	Yield $(\mathrm{A} / \mathrm{B}=0.5)$
		83	57	72
		79	43	63
$\overbrace{}^{\mathrm{B}(\mathrm{OH})_{2}}$	отврря	85	51	68
		66	38	60

Spectral data for products

1-Methoxy-4-(oct-1-en-2-yl)benzene ${ }^{1}$ 3a

Yield: 70%, $>20: 1$ regioselectivity. ${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.34(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=$ $8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.18(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 2.46(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, 1.27-1.49 (m, 8H), $0.87(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.2,148.3,134.1,127.4$, $113.8,110.7,55.5,35.7,31.9,29.3,28.5,22.9,14.3$.

1-Methoxy-4-(3-phenylprop-1-en-2-yl)benzene ${ }^{2}$ 3b

Yield: $81 \%, 10: 1$ regioselectivity. ${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.37(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.23-7.26(\mathrm{~m}$, $5 \mathrm{H}), 6.81(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.43(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 2 \mathrm{H}), 3.77(\mathrm{~s}$, $3 \mathrm{H})$.

Prop-2-ene-1,2-diyldibenzene ${ }^{3}$ 3c

Yield: $76 \%, 10: 1$ regioselectivity. ${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.22-7.47(\mathrm{~m}, 10 \mathrm{H}), 5.52(\mathrm{~s}, 1 \mathrm{H}), 5.04$ ($\mathrm{s}, 1 \mathrm{H}$), $3.86(\mathrm{~s}, 2 \mathrm{H})$.

1-Chloro-4-(oct-1-en-2-yl)benzene ${ }^{4}$ 3d

Yield: $71 \%, 10: 1$ regioselectivity. ${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.25-7.34(\mathrm{~m}, 4 \mathrm{H}), 5.23(\mathrm{~d}, J=1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 5.06(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.27-1.44(\mathrm{~m}, 8 \mathrm{H}), 0.87(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$.

Ethyl 4-(4-methoxyphenyl)pent-4-enoate 3e

Yield: 84%, $8: 1$ regioselectivity. ${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=$ $9.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.23(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{q}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H})$, $2.81(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.46(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.24(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathbf{C} \mathbf{N M R}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 173.4, 159.4, 146.4, 133.2, 127.4, 113.9, 111.5, 60.6, 55.5, 33.6, 30.7, 14.4; HRMS (EI) Calcd. for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 235.1329$, found: 235.1332 .

5-(4-Methoxyphenyl)hex-5-en-1-yl acetate 3f

Yield: 80%, $8: 1$ regioselectivity. ${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=$ $9.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.21(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H})$, $2.51(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}), 1.63-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.48-1.56(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $(75 \mathrm{MHz}$,
$\left.\mathrm{CDCl}_{3}\right) \delta 171.4,159.3,147.5,133.7,127.4,113.9,111.3,64.5,55.5,35.1,28.4,24.7,21.2 ;$ HRMS (EI) Calcd. for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{O}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right):$249.1486, found:249.1485.

5-(4-(tert-Butyl)phenyl)hex-5-en-1-yl acetate 3g

Yield: $83 \%, 10: 1$ regioselectivity. ${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.34(\mathrm{~s}, 4 \mathrm{H}), 5.28(\mathrm{~s}, 1 \mathrm{H}), 5.02(\mathrm{~s}, 1 \mathrm{H})$, $4.06(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.53(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}), 1.62-1.71(\mathrm{~m}, 2 \mathrm{H}), 1.48-1.55(\mathrm{~m}, 2 \mathrm{H})$, 1.32 (s, 9H); ${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.4,150.6,147.9,138.2,125.9,124.4,112.1,64.6,35.0$, 34.7, 31.5, 28.4, 24.7, 21.2; HRMS (EI) Calcd. for $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{O}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right): ~ 275.2006$, found: 275.2008.

5-Phenylhex-5-en-1-yl acetate 3h

Yield: 79\%, 8:1 regioselectivity. ${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.26-7.40(\mathrm{~m}, 5 \mathrm{H}), 5.28(\mathrm{~s}, 1 \mathrm{H}), 5.07(\mathrm{~s}$, $1 \mathrm{H}), 4.05(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.53(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}), 1.61-1.71(\mathrm{~m}, 2 \mathrm{H}), 1.46-1.56(\mathrm{~m}$, $2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.4,148.3,141.3,128.5,127.6,126.3,112.8,64.5,35.1,28.4$, 24.7, 21.2; HRMS (EI) Calcd. for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{NO}_{2}\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}\right): 236.1646$, found: 236.1640.

4-(4-Methoxyphenyl)pent-4-enoic acid ${ }^{5}$ 3i

Yield: $76 \%, 12: 1$ regioselectivity. ${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{CD}_{3} \mathrm{OD}=3: 1$) $\delta 7.35(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H})$, $6.92(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.21(\mathrm{~s}, 1 \mathrm{H}), 4.99(\mathrm{~s}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 2.77(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.41(\mathrm{t}, J=8.1$ $\mathrm{Hz}, 2 \mathrm{H})$.

1-(4-(Benzyloxy)but-1-en-2-yl)-4-bromobenzene 3j
Yield: 68%, 4:1 regioselectivity. ${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.43$ (dd, $J=6.6,1.8 \mathrm{~Hz}, 2 \mathrm{H}$), $7.25-$ $7.32(\mathrm{~m}, 7 \mathrm{H}), 5.34(\mathrm{~s}, 1 \mathrm{H}), 5.15(\mathrm{~s}, 1 \mathrm{H}), 4.48(\mathrm{~s}, 2 \mathrm{H}), 3.57(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.80(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H})$; ${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 144.5,140.1,138.5,131.6,128.6,128.0,127.81,127.80,121.6,114.7$, 73.2, 69.1, 35.8; HRMS (EI) Calcd. for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{BrO}\left([\mathrm{M}]^{+}\right): 316.0458$, found: 316.0446.

2-(4-(Benzyloxy)but-1-en-2-yl)furan 3k

Yield: $66 \%, 7: 1$ regioselectivity. ${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.25-7.35(\mathrm{~m}, 6 \mathrm{H}), 6.36-6.37(\mathrm{~m}, 1 \mathrm{H})$, $6.31(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.58(\mathrm{~s}, 1 \mathrm{H}), 5.03(\mathrm{~s}, 1 \mathrm{H}), 4.53(\mathrm{~s}, 2 \mathrm{H}), 3.68(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.70(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.6,142.1,138.6,134.4,128.6,127.9,127.8,111.3,110.9$, 106.4, 73.2, 69.6, 33.8; HRMS (EI) Calcd. for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{O}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right):$229.1224, found: 229.1226.

1-(3,4,5-Trimethoxyphenyl)ethanone ${ }^{6} 31$

Yield: $67 \%{ }^{1} \mathbf{H}$ NMR (300 MHz, CDCl_{3}) $\delta 7.22(\mathrm{~s}, 2 \mathrm{H}), 3.93(\mathrm{~s}, 9 \mathrm{H}), 2.60(\mathrm{~s}, 3 \mathrm{H})$.

3-(p-Tolyl)but-3-en-2-ol ${ }^{7}$ 3m

Yield: 41%, 20:1 regioselectivity. ${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.29(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.32(\mathrm{~s}, 1 \mathrm{H}), 5.26(\mathrm{~s}, 1 \mathrm{H}), 4.78-4.85(\mathrm{~m}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.67(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.33(\mathrm{~d}$, $J=6.3 \mathrm{~Hz}, 3 \mathrm{H})$.

(E)-1-Methyl-4-(3-methylbuta-1,3-dien-1-yl)benzene ${ }^{8}$ 3n

Yield: $43 \%,<1: 20$ regioselectivity. ${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.33(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{~d}, J=$ $8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.83(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{~s}, 1 \mathrm{H}), 5.04(\mathrm{~s}, 1 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H})$, $1.97(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 142.4,137.5,134.8,131.0,129.5,128.8,126.6,117.0,21.4$, 18.8; HRMS (EI) Calcd. for $\mathrm{C}_{12} \mathrm{H}_{14}\left([\mathrm{M}]^{+}\right): 158.1091$, found: 158.1087.

Triisopropyl(2-(4-methoxyphenyl)allyl)silane 3o

Yield: 72%, 20:1 regioselectivity. ${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{~d}, J=$ $9.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.01(\mathrm{~S}, 1 \mathrm{H}), 4.92(\mathrm{~S}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 2.07(\mathrm{~s}, 2 \mathrm{H}), 1.05-1.08(\mathrm{~m}, 3 \mathrm{H}), 0.97(\mathrm{~s}, 18 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ External: 159.1, 147.0, 136.3, 127.8, 113.6, 110.5, 55.46, 18.9, 18.5, 11.5; Internal: 159.2, 152.3, 137.7, 126.9, 120.9, 113.5, 55.55, 22.6, 19.3, 12.6; HRMS (EI) Calcd. for $\mathrm{C}_{19} \mathrm{H}_{33} \mathrm{OSi}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 305.2296$, found: 305.2298 .

4-(5-((tert-Butyldiphenylsilyl)oxy)pent-1-en-2-yl)phenol 3p

Yield: 49\%, 10:1 regioselectivity. ${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.64-7.67(\mathrm{~m}, 4 \mathrm{H}), 7.26-7.42(\mathrm{~m}, 8 \mathrm{H})$, $6.77(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.19(\mathrm{~s}, 1 \mathrm{H}), 4.96(\mathrm{~s}, 1 \mathrm{H}), 4.73(\mathrm{~s}, 1 \mathrm{H}), 3.68(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.57(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 2 \mathrm{H}), 1.66-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.05(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.1,147.5,135.8,134.2$, 134.0, 129.7, 127.8, 127.6, 115.3, 111.0, 63.6, 31.8, 31.6, 27.1, 19.5; HRMS (EI) Calcd. for $\mathrm{C}_{27} \mathrm{H}_{31} \mathrm{O}_{2} \mathrm{Si}$ ([M-H $]^{+}$): 415.2098, found: 415.2108 .

tert-Butyldiphenyl((4-(o-tolyl)pent-4-en-1-yl)oxy)silane 3q

Yield: 85%, 7:1 regioselectivity. ${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.62-7.65(\mathrm{~m}, 4 \mathrm{H}), 7.36-7.44(\mathrm{~m}, 6 \mathrm{H})$, 7.02-7.15 (m, 4H), $5.16(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.85(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.44(\mathrm{t}, J$ $=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 1.60-1.69(\mathrm{~m}, 2 \mathrm{H}), 1.03(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 150.0,143.3$, $135.8,135.0,134.3,130.3,129.7,128.6,127.8,126.9,125.6,114.0,63.7,34.2,31.0,27.1,20.1,19.4 ;$ HRMS (EI) Calcd. for $\mathrm{C}_{28} \mathrm{H}_{38} \mathrm{NOSi}\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}\right): 432.2718$, found: 432.2710 .

((3-([1,1'-Biphenyl]-4-yl)but-3-en-1-yl)oxy)(tert-butyl)diphenylsilane 3r

Yield: 82%, 4:1 regioselectivity. ${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.24-7.67(\mathrm{~m}, 19 \mathrm{H}), 5.40(\mathrm{~s}, 1 \mathrm{H}), 5.10$ $(\mathrm{s}, 1 \mathrm{H}), 3.80(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.80(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.03(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $144.8,141.0,140.3,139.9,135.8,134.1,129.8,129.0,127.8,127.5,127.21,127.18,126.6,114.3,63.3$, 38.7, 27.0, 19.4; HRMS (EI) Calcd. for $\mathrm{C}_{32} \mathrm{H}_{38} \mathrm{NOSi}\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}\right): 480.2718$, found: 480.2739.

N-(1-(4-Methoxyphenyl)vinyl)- N-methylacetamide ${ }^{9} 3 \mathrm{~s}$
Yield: 83%, 20:1 regioselectivity. ${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.34(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}$), $6.90(\mathrm{~d}, J=$ $9.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.57(\mathrm{~s}, 1 \mathrm{H}), 5.11(\mathrm{~s}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.09(\mathrm{~s}, 3 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H})$.

2-(3-(m-Tolyl)but-3-en-1-yl)isoindoline-1,3-dione 3t

Yield: 72%, $4: 1$ regioselectivity. ${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.78-7.81(\mathrm{~m}, 2 \mathrm{H}), 7.67-7.69(\mathrm{~m}, 2 \mathrm{H})$, 7.17-7.26 (m, 3H), $7.00(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.33(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{t}, J$ $=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.89(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.4,145.4,140.4$, 138.1, 134.0, 132.3, 128.5, 127.0, 123.5, 123.3, 114.6, 37.7, 34.2, 21.7; HRMS (EI) Calcd. for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{NO}_{2}\left([\mathrm{M}]^{+}\right): 291.1254$, found: 291.1249.

N-(4-(3-Methoxyphenyl)pent-4-en-1-yl)-4-methylbenzenesulfonamide 3u

Yield: $61 \%,>20: 1$ regioselectivity. ${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.70(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.19-7.29$ $(\mathrm{m}, 3 \mathrm{H}), 6.80-6.91(\mathrm{~m}, 3 \mathrm{H}), 5.24(\mathrm{~d}, J=0.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{br}, 1 \mathrm{H}), 3.81(\mathrm{~s}$, $3 \mathrm{H}), 2.91-2.98(\mathrm{~m}, 2 \mathrm{H}), 2.48(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 1.54-1.64(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 159.8,147.3,143.6,142.4,137.2,129.9,129.6,127.3,118.8,113.6,113.0,112.3,55.4,42.9$, 32.6, 28.2, 21.7; HRMS (EI) Calcd. for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}\right): 363.1737$, found: 363.1746.

5-Phenylhex-5-en-2-one 3v

Yield: 73%, 10:1 regioselectivity. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.26-7.41(\mathrm{~m}, 5 \mathrm{H}), 5.28(\mathrm{~s}, 1 \mathrm{H}), 5.07$ $(\mathrm{s}, 1 \mathrm{H}), 2.79(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.58(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 208.3, 147.4, 140.8, 128.6, 127.8, 126.3, 113.0, 42.6, 30.2, 29.5; HRMS (EI) Calcd. for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{NO}$ $\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}\right): 192.1383$, found: 192.1379 .

2-(2-(2-Fluorophenyl)allyl)cyclohexanone 3w
Yield: 69\%, 4:1 regioselectivity. ${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.20-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.00-7.12(\mathrm{~m}, 2 \mathrm{H})$, $5.22(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.13-3.23(\mathrm{~m}, 1 \mathrm{H}), 1.97-2.42(\mathrm{~m}, 6 \mathrm{H}), 1.78-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.37-1.72(\mathrm{~m}, 2 \mathrm{H})$, $1.26-1.36(\mathrm{~m}, 1 \mathrm{H}){ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 212.7,161.7,158.4,142.5,130.2,130.1,129.5,129.3$, 129.1, 129.0, 124.3, 124.2, 118.1, 118.0, 116.2, 115.9, 48.8, 42.3, 36.7, 36.6, 33.5, 28.2, 25.1; HRMS (EI) Calcd. for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{FO}_{2}\left([\mathrm{M}]^{+}\right): 232.1258$, found: 232.1254.

di-p-Tolylethene $(\alpha: \beta=1: 1)^{11,10} 3 x$
Yield: 93%, $1: 1$ regioselectivity. ${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \alpha$-product: $7.24(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 4 \mathrm{H})$, 7.14 (d, $J=7.5 \mathrm{~Hz}, 4 \mathrm{H}), 5.38(\mathrm{~s}, 2 \mathrm{H}), 2.37$ (s, 6 H); β-product: 7.40 (d, $J=8.1 \mathrm{~Hz}, 4 \mathrm{H}$), 7.16 (d, $J=7.8$ $\mathrm{Hz}, 4 \mathrm{H}), 7.04(\mathrm{~s}, 2 \mathrm{H}), 2.36(\mathrm{~s}, 6 \mathrm{H})$.

(E)-Butyl 3-(p-tolyl)acrylate ${ }^{11} 3 y$

Yield: $95 \%,<1: 20$ regioselectivity. ${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.66(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J$ $=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.40(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H})$, $1.64-1.71(\mathrm{~m}, 2 \mathrm{H}), 1.40-1.48(\mathrm{~m}, 2 \mathrm{H}), 0.97(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.

[^0]
${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR Spectra

(

(

	ल్ల్ల్న్ ஸi mi เi		$\stackrel{N}{\omega} \mathrm{~S}_{\mathrm{O}}^{\mathrm{O}}$ N N		$\stackrel{9}{0}$	$\stackrel{\text { ¢ }}{ }$
	1				\rceil	

[^0]: ${ }^{1}$ Alacid, E.; Najera, C. J. Org. Chem. 2008, 73, 2315.
 ${ }^{2}$ Sabarre, A.; Love, J. Org. Lett. 2008, 10, 3941.
 ${ }^{3}$ Alacid, E.; Najera, C. Org. Lett. 2008, 10, 5011.
 ${ }^{4}$ Shirakawa, E.; Imazaki, Y.; Hayashi, T. Chem. Lett. 2008, 37, 654.
 ${ }^{5}$ Whitehead, D. C.; Yousefi, R.; Jaganathan, A.; Borhan, B. J. Am. Chem. Soc. 2010, 132, 3298.
 ${ }^{6}$ Paredes, M. D.; Alonso, R. J. Org. Chem. 2000, 65, 2292.
 ${ }^{7}$ Katritzky, A. R.; Toader, D.; Chassaing, C.; Aslan, D. C. J. Org. Chem. 1999, 64, 6080.
 ${ }^{8}$ Dubbaka, S. R.; Vogel, P. Tetrahedron 2005, 61, 1523.
 ${ }^{9}$ Ruan, J.; Iggo, J. A.; Berry, N. G.; Xiao, J. J. Am. Chem. Soc. 2010, 132, 16689.
 ${ }^{10}$ Zhao, X.; Jing, J.; Lu, K.; Zhang, Y.; Wang, J. Chem. Commun. 2010, 1724.
 ${ }^{11}$ Yang, F.-L.; Ma, X.-T.; Tian, S.-K. Chem. Eur. J. 2012, 18, 1582.

