Electronic Supplementary Information for

Regioselective Aerobic Oxidative Heck Reactions with Electronically Unbiased Alkenes: Efficient Access to α-Alkyl Vinylarenes

Changwu Zheng and Shannon S. Stahl*

Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, United States

Table of Contents

General Information		
Typical Procedure for Palladium-Catalyzed Oxidative Heck Reactions	S2	
Procedure for 1 mmol-Scale Reactions	S2	
Table S1. Comparison of Different Arylboronic Acid to Alkene Ratios	S3	
Spectral Data for Products		
Spectra for the New Products		

General Information. All commercially available compounds were purchased and used as received. Solvents were dried over activated-alumina columns prior to use; however, purification and drying of commercial solvents is not required for the catalytic reactions described here. ¹H and ¹³C spectra were recorded on Bruker AC-300 or Varian MercuryPlus 300 instruments, and CDCl₃, Pd(TFA)₂, dmphen, 1-octene, and *N*-methylpyrrolidone were purchased from Sigma-Aldrich and used as received. Arylboronic acids were purchased from Sigma-Aldrich, Combi-Blocks or Frontier Scientific and used as received. The chemical shift values are given in parts per million relative to CDCl₃ (7.26 ppm for ¹H, and 77.23 ppm for ¹³C). Gas chromatographic analysis of reactions was conducted with a Shimadzu GC-17A or GC-2010Plus gas chromatograph with either a DB-Wax or a RTX-5 column. Flash chromatography was performed using SiliaFlash® P60 (Silicycle, particle size 40-63 µm, 230-400 mesh).

Typical Procedure for Palladium-Catalyzed Oxidative Heck Reactions. In a disposable culture tube, $Pd(TFA)_2$ (3.3 mg, 0.01 mmol) and dmphen (4.2 mg, 0.02 mmol) were dissolved in NMP (0.2 mL). The reaction tube was placed into an aluminum block mounted on a Large Capacity Mixer (Glas-Col) that enabled several reactions to be performed simultaneously under a constant pressure of (approx.) 1 atm with controlled temperature and orbital agitation. The headspace above the tubes was purged with oxygen gas for ca. 5 min. Then a solution of terminal alkene (0.2 mmol) and arylboronic acid (0.3 mmol) in NMP (0.3 mL) was added. The temperature was slowly raised to 60 °C and continued for 6 hours. After completion, EtOAc (5 mL) was added to the reaction mixture, followed by aq. NH₄Cl (5 mL). The solution was extracted 3 times with EtOAc (5 mL×3), dried over Na₂SO₄ and filtered. The solvent was removed at reduced pressure. The residue was loaded onto a silica gel column and purified by flash chromatography (hexanes/ether mixture).

Procedure for 1 mmol-Scale Reactions.

To a 25 mL three-neck round bottom flask with a stir bar was added $Pd(TFA)_2$ (16 mg, 0.05 mmol), dmphen (21 mg, 0.1 mmol) and NMP (1.5 mL). The flask was evacuated briefly under vacuum, filled with oxygen gas and sealed with a septum. A balloon was filled with O₂ and connected to a 6-inch needle. The needle attached to the O₂ balloon was inserted through the septum, and the solution was sparged with O₂ gas for ca. 10 min. A solution of arylboronic acid (1.5 mmol) and alkene (1 mmol) in NMP (1 mL) was added. The reaction was heated for 6 h at 60 °C using an oil bath with vigorous stirring under an O₂ atmosphere supplied by the balloon. Pure product was isolated by using the same procedure described above.

Table S1. Comparison of Different Arylboronic Acid to Alkene Ratios.

Α	В	Yield (A/B =1.5)	Yield (A/B = 1)	Yield (A/B = 0.5)
B(OH) ₂	UOAc	83	57	72
B(OH) ₂	OAc	79	43	63
B(OH) ₂	OTBDPS	85	51	68
B(OH) ₂	∥OBn	66	38	60

Spectral data for products

1-Methoxy-4-(oct-1-en-2-yl)benzene¹ 3a

Yield: 70%, >20:1 regioselectivity. ¹**H NMR** (300 MHz, CDCl₃) δ 7.34 (d, *J* = 8.4 Hz, 2H), 6.85 (d, *J* = 8.7 Hz, 2H), 5.18 (d, *J* = 1.2 Hz, 1H), 4.96 (d, *J* = 1.2 Hz, 1H), 3.80 (s, 3H), 2.46 (t, *J* = 7.2 Hz, 2H), 1.27-1.49 (m, 8H), 0.87 (t, *J* = 6.9 Hz, 3H); ¹³**C NMR** (75 MHz, CDCl₃) δ 159.2, 148.3, 134.1, 127.4, 113.8, 110.7, 55.5, 35.7, 31.9, 29.3, 28.5, 22.9, 14.3.

1-Methoxy-4-(3-phenylprop-1-en-2-yl)benzene² 3b

Yield: 81%, 10:1 regioselectivity. ¹**H NMR** (300 MHz, CDCl₃) δ 7.37 (d, *J* = 9.0 Hz, 2H), 7.23-7.26 (m, 5H), 6.81 (d, *J* = 9.0 Hz, 2H), 5.43 (d, *J* = 1.2 Hz, 1H), 4.94 (d, *J* = 1.2 Hz, 1H), 3.81 (s, 2H), 3.77 (s, 3H).

Prop-2-ene-1,2-diyldibenzene³ 3c

Yield: 76%, 10:1 regioselectivity. ¹**H NMR** (300 MHz, CDCl₃) δ 7.22-7.47 (m, 10H), 5.52 (s, 1H), 5.04 (s, 1H), 3.86 (s, 2H).

1-Chloro-4-(oct-1-en-2-yl)benzene⁴ 3d

Yield: 71%, 10:1 regioselectivity. ¹**H NMR** (300 MHz, CDCl₃) δ 7.25-7.34 (m, 4H), 5.23 (d, *J* = 1.2 Hz, 1H), 5.06 (d, *J* = 1.2 Hz, 1H), 2.46 (t, *J* = 7.5 Hz, 2H), 1.27-1.44 (m, 8H), 0.87 (t, *J* = 6.9 Hz, 3H).

Ethyl 4-(4-methoxyphenyl)pent-4-enoate 3e

Yield: 84%, 8:1 regioselectivity. ¹**H** NMR (300 MHz, CDCl₃) δ 7.34 (d, *J* = 8.8 Hz, 2H), 6.86 (d, *J* = 9.0 Hz, 2H), 5.23 (d, *J* = 1.5 Hz, 1H), 5.00 (d, *J* = 1.2 Hz, 1H), 4.12 (q, *J* = 6.9 Hz, 2H), 3.81 (s, 3H), 2.81 (t, *J* = 7.2 Hz, 2H), 2.46 (t, *J* = 7.2 Hz, 2H), 1.24 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 173.4, 159.4, 146.4, 133.2, 127.4, 113.9, 111.5, 60.6, 55.5, 33.6, 30.7, 14.4; **HRMS (EI)** Calcd. for C₁₄H₁₉O₃ ([M+H]⁺): 235.1329, found: 235.1332.

5-(4-Methoxyphenyl)hex-5-en-1-yl acetate 3f

Yield: 80%, 8:1 regioselectivity. ¹H NMR (300 MHz, CDCl₃) δ 7.33 (d, J = 8.8 Hz, 2H), 6.86 (d, J = 9.0 Hz, 2H), 5.21 (d, J = 1.5 Hz, 1H), 4.98 (d, J = 1.2 Hz, 1H), 4.05 (t, J = 6.3 Hz, 2H), 3.81 (s, 3H), 2.51 (t, J = 6.3 Hz, 2H), 2.02 (s, 3H), 1.63-1.68 (m, 2H), 1.48-1.56 (m, 2H); ¹³C NMR (75 MHz,

CDCl₃) δ 171.4, 159.3, 147.5, 133.7, 127.4, 113.9, 111.3, 64.5, 55.5, 35.1, 28.4, 24.7, 21.2; **HRMS (EI)** Calcd. for C₁₅H₂₁O₃ ([M+H]⁺): 249.1486, found:249.1485.

5-(4-(tert-Butyl)phenyl)hex-5-en-1-yl acetate 3g

Yield: 83%, 10:1 regioselectivity. ¹H NMR (300 MHz, CDCl₃) δ 7.34 (s, 4H), 5.28 (s, 1H), 5.02 (s, 1H), 4.06 (t, *J* = 6.6 Hz, 2H), 2.53 (t, *J* = 7.2 Hz, 2H), 2.02 (s, 3H), 1.62-1.71 (m, 2H), 1.48-1.55 (m, 2H), 1.32 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 171.4, 150.6, 147.9, 138.2, 125.9, 124.4, 112.1, 64.6, 35.0, 34.7, 31.5, 28.4, 24.7, 21.2; HRMS (EI) Calcd. for C₁₈H₂₇O₂ ([M+H]⁺): 275.2006, found: 275.2008.

5-Phenylhex-5-en-1-yl acetate 3h

Yield: 79%, 8:1 regioselectivity. ¹**H NMR** (300 MHz, CDCl₃) δ 7.26-7.40 (m, 5H), 5.28 (s, 1H), 5.07 (s, 1H), 4.05 (t, *J* = 6.6 Hz, 2H), 2.53 (t, *J* = 7.2 Hz, 2H), 2.04 (s, 3H), 1.61-1.71 (m, 2H), 1.46-1.56 (m, 2H); ¹³**C NMR** (75 MHz, CDCl₃) δ 171.4, 148.3, 141.3, 128.5, 127.6, 126.3, 112.8, 64.5, 35.1, 28.4, 24.7, 21.2; **HRMS (EI)** Calcd. for C₁₄H₂₂NO₂ ([M+NH₄]⁺): 236.1646, found: 236.1640.

4-(4-Methoxyphenyl)pent-4-enoic acid⁵ 3i

Yield: 76%, 12:1 regioselectivity. ¹**H NMR** (300 MHz, CDCl₃/CD₃OD = 3:1) δ 7.35 (d, *J* = 8.7 Hz, 2H), 6.92 (d, *J* = 8.7 Hz, 2H), 5.21 (s, 1H), 4.99 (s, 1H), 3.78 (s, 3H), 2.77 (t, *J* = 7.8 Hz, 2H), 2.41 (t, *J* = 8.1 Hz, 2H).

1-(4-(Benzyloxy)but-1-en-2-yl)-4-bromobenzene 3j

Yield: 68%, 4:1 regioselectivity. ¹H NMR (300 MHz, CDCl₃) δ 7.43 (dd, J = 6.6, 1.8 Hz, 2H), 7.25-7.32 (m, 7H), 5.34 (s, 1H), 5.15 (s, 1H), 4.48 (s, 2H), 3.57 (t, J = 6.9 Hz, 2H), 2.80 (t, J = 6.6 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 144.5, 140.1, 138.5, 131.6, 128.6, 128.0, 127.81, 127.80, 121.6, 114.7, 73.2, 69.1, 35.8; HRMS (EI) Calcd. for C₁₇H₁₇BrO ([M]⁺): 316.0458, found: 316.0446.

2-(4-(Benzyloxy)but-1-en-2-yl)furan 3k

Yield: 66%, 7:1 regioselectivity. ¹**H NMR** (300 MHz, CDCl₃) δ 7.25-7.35 (m, 6H), 6.36-6.37 (m, 1H), 6.31 (d, *J* = 3.3 Hz, 1H), 5.58 (s, 1H), 5.03 (s, 1H), 4.53 (s, 2H), 3.68 (t, *J* = 6.9 Hz, 2H), 2.70 (t, *J* = 7.2 Hz, 2H); ¹³**C NMR** (75 MHz, CDCl₃) δ 154.6, 142.1, 138.6, 134.4, 128.6, 127.9, 127.8, 111.3, 110.9, 106.4, 73.2, 69.6, 33.8; **HRMS (EI)** Calcd. for C₁₅H₁₇O₂ ([M+H]⁺): 229.1224, found: 229.1226.

1-(3,4,5-Trimethoxyphenyl)ethanone⁶ 31

Yield: 67%. ¹H NMR (300 MHz, CDCl₃) δ 7.22 (s, 2H), 3.93 (s, 9H), 2.60 (s, 3H).

3-(*p*-Tolyl)but-3-en-2-ol⁷ 3m

Yield: 41%, 20:1 regioselectivity. ¹**H NMR** (300 MHz, CDCl₃) δ 7.29 (d, J = 8.1 Hz, 2H), 7.15 (d, J = 8.4 Hz, 2H), 5.32 (s, 1H), 5.26 (s, 1H), 4.78-4.85 (m, 1H), 2.35 (s, 3H), 1.67 (d, J = 4.2 Hz, 1H), 1.33 (d, J = 6.3 Hz, 3H).

(E)-1-Methyl-4-(3-methylbuta-1,3-dien-1-yl)benzene⁸ 3n

Yield: 43%, <1:20 regioselectivity. ¹**H NMR** (300 MHz, CDCl₃) δ 7.33 (d, *J* = 8.4 Hz, 2H), 7.12 (d, *J* = 8.1 Hz, 2H), 6.83 (d, *J* = 16.2 Hz, 1H), 6.50 (d, *J* = 16.2 Hz, 1H), 5.09 (s, 1H), 5.04 (s, 1H), 2.33 (s, 3H), 1.97 (s, 3H); ¹³**C NMR** (75 MHz, CDCl₃) δ 142.4, 137.5, 134.8, 131.0, 129.5, 128.8, 126.6, 117.0, 21.4, 18.8; **HRMS (EI)** Calcd. for C₁₂H₁₄ ([M]⁺): 158.1091, found: 158.1087.

Triisopropyl(2-(4-methoxyphenyl)allyl)silane 30

Yield: 72%, 20:1 regioselectivity. ¹H NMR (300 MHz, CDCl₃) δ 7.35 (d, J = 8.4 Hz, 2H), 6.84 (d, J = 9.0 Hz, 2H), 5.01 (S, 1H), 4.92 (S, 1H), 3.81 (s, 3H), 2.07 (s, 2H), 1.05-1.08 (m, 3H), 0.97 (s, 18H); ¹³C NMR (75 MHz, CDCl₃) δ External: 159.1, 147.0, 136.3, 127.8, 113.6, 110.5, 55.46, 18.9, 18.5, 11.5; Internal: 159.2, 152.3, 137.7, 126.9, 120.9, 113.5, 55.55, 22.6, 19.3, 12.6; HRMS (EI) Calcd. for C₁₉H₃₃OSi ([M+H]⁺): 305.2296, found: 305.2298.

4-(5-((tert-Butyldiphenylsilyl)oxy)pent-1-en-2-yl)phenol 3p

Yield: 49%, 10:1 regioselectivity. ¹**H** NMR (300 MHz, CDCl₃) δ 7.64-7.67 (m, 4H), 7.26-7.42 (m, 8H), 6.77 (d, *J* = 9.0 Hz, 2H), 5.19 (s, 1H), 4.96 (s,1H), 4.73 (s, 1H), 3.68 (t, *J* = 6.3 Hz, 2H), 2.57 (t, *J* = 7.2 Hz, 2H), 1.66-1.75 (m, 2H), 1.05 (s, 9H); ¹³**C** NMR (75 MHz, CDCl₃) δ 155.1, 147.5, 135.8, 134.2, 134.0, 129.7, 127.8, 127.6, 115.3, 111.0, 63.6, 31.8, 31.6, 27.1, 19.5; **HRMS (EI)** Calcd. for C₂₇H₃₁O₂Si ([M-H]⁺): 415.2098, found: 415.2108.

tert-Butyldiphenyl((4-(o-tolyl)pent-4-en-1-yl)oxy)silane 3q

Yield: 85%, 7:1 regioselectivity. ¹**H NMR** (300 MHz, CDCl₃) δ 7.62-7.65 (m, 4H), 7.36-7.44 (m, 6H), 7.02-7.15 (m, 4H), 5.16 (d, *J* = 1.2 Hz, 1H), 4.85 (d, *J* = 1.5 Hz, 1H), 3.66 (t, *J* = 6.0 Hz, 2H), 2.44 (t, *J* = 7.8 Hz, 2H), 2.27 (s, 3H), 1.60-1.69 (m, 2H), 1.03 (s, 9H); ¹³**C NMR** (75 MHz, CDCl₃) δ 150.0, 143.3, 135.8, 135.0, 134.3, 130.3, 129.7, 128.6, 127.8, 126.9, 125.6, 114.0, 63.7, 34.2, 31.0, 27.1, 20.1, 19.4; **HRMS (EI)** Calcd. for C₂₈H₃₈NOSi ([M+NH₄]⁺): 432.2718, found: 432.2710.

((3-([1,1'-Biphenyl]-4-yl)but-3-en-1-yl)oxy)(tert-butyl)diphenylsilane 3r

Yield: 82%, 4:1 regioselectivity. ¹**H NMR** (300 MHz, CDCl₃) δ 7.24-7.67 (m, 19H), 5.40 (s, 1H), 5.10 (s, 1H), 3.80 (t, J = 6.9 Hz, 2H), 2.80 (t, J = 6.9 Hz, 2H), 1.03 (s, 9H); ¹³**C NMR** (75 MHz, CDCl₃) δ 144.8, 141.0, 140.3, 139.9, 135.8, 134.1, 129.8, 129.0, 127.8, 127.5, 127.21, 127.18, 126.6, 114.3, 63.3, 38.7, 27.0, 19.4; **HRMS (EI)** Calcd. for C₃₂H₃₈NOSi ([M+NH₄]⁺): 480.2718, found: 480.2739.

N-(1-(4-Methoxyphenyl)vinyl)-N-methylacetamide⁹ 3s

Yield: 83%, 20:1 regioselectivity. ¹**H NMR** (300 MHz, CDCl₃) δ 7.34 (d, *J* = 9.0 Hz, 2H), 6.90 (d, *J* = 9.0 Hz, 2H), 5.57 (s, 1H), 5.11 (s, 1H), 3.83 (s, 3H), 3.09 (s, 3H), 2.03 (s, 3H).

2-(3-(m-Tolyl)but-3-en-1-yl)isoindoline-1,3-dione 3t

Yield: 72%, 4:1 regioselectivity. ¹**H NMR** (300 MHz, CDCl₃) δ 7.78-7.81 (m, 2H), 7.67-7.69 (m, 2H), 7.17-7.26 (m, 3H), 7.00 (d, *J* = 7.5 Hz, 1H), 5.33 (d, *J* = 0.9 Hz, 1H), 5.12 (d, *J* = 0.9 Hz, 1H), 2.83 (t, *J* = 7.5 Hz, 2H), 2.89 (t, *J* = 7.5 Hz, 2H), 2.32 (s, 3H); ¹³**C NMR** (75 MHz, CDCl₃) δ 168.4, 145.4, 140.4, 138.1, 134.0, 132.3, 128.5, 127.0, 123.5, 123.3, 114.6, 37.7, 34.2, 21.7; **HRMS (EI)** Calcd. for C₁₉H₁₇NO₂ ([M]⁺): 291.1254, found: 291.1249.

N-(4-(3-Methoxyphenyl)pent-4-en-1-yl)-4-methylbenzenesulfonamide 3u

Yield: 61%, >20:1 regioselectivity. ¹**H NMR** (300 MHz, CDCl₃) δ 7.70 (d, J = 8.4 Hz, 2H), 7.19-7.29 (m, 3H), 6.80-6.91 (m, 3H), 5.24 (d, J = 0.6 Hz, 1H), 5.00 (d, J = 1.2 Hz, 1H), 4.43 (br, 1H), 3.81 (s, 3H), 2.91-2.98 (m, 2H), 2.48 (t, J = 7.2 Hz, 2H), 2.42 (s, 3H), 1.54-1.64 (m, 2H); ¹³**C NMR** (75 MHz, CDCl₃) δ 159.8, 147.3, 143.6, 142.4, 137.2, 129.9, 129.6, 127.3, 118.8, 113.6, 113.0, 112.3, 55.4, 42.9, 32.6, 28.2, 21.7; **HRMS (EI)** Calcd. for C₁₉H₂₇N₂O₃S ([M+NH₄]⁺): 363.1737, found: 363.1746.

5-Phenylhex-5-en-2-one 3v

Yield: 73%, 10:1 regioselectivity. ¹H NMR (300 MHz, CDCl₃) δ 7.26-7.41 (m, 5H), 5.28 (s, 1H), 5.07 (s, 1H), 2.79 (t, *J* = 7.2 Hz, 2H), 2.58 (t, *J* = 7.2 Hz, 2H), 2.12 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 208.3, 147.4, 140.8, 128.6, 127.8, 126.3, 113.0, 42.6, 30.2, 29.5; HRMS (EI) Calcd. for C₁₂H₁₈NO ([M+NH₄]⁺): 192.1383, found: 192.1379.

2-(2-(2-Fluorophenyl)allyl)cyclohexanone 3w

Yield: 69%, 4:1 regioselectivity. ¹H NMR (300 MHz, CDCl₃) δ 7.20-7.28 (m, 2H), 7.00-7.12 (m, 2H), 5.22 (d, *J* = 8.7 Hz, 2H), 3.13-3.23 (m, 1H), 1.97-2.42 (m, 6H), 1.78-1.85 (m, 1H), 1.37-1.72 (m, 2H), 1.26-1.36 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 212.7, 161.7, 158.4, 142.5, 130.2, 130.1, 129.5, 129.3, 129.1, 129.0, 124.3, 124.2, 118.1, 118.0, 116.2, 115.9, 48.8, 42.3, 36.7, 36.6, 33.5, 28.2, 25.1; **HRMS** (EI) Calcd. for C₁₅H₁₇FO₂ ([M]⁺): 232.1258, found: 232.1254.

di-p-Tolylethene $(\alpha:\beta=1:1)^{11,10}$ 3x

Yield: 93%, 1:1 regioselectivity. ¹**H NMR** (300 MHz, CDCl₃) δ α-product: 7.24 (d, J = 8.1 Hz, 4H), 7.14 (d, J = 7.5 Hz, 4H), 5.38 (s, 2H), 2.37 (s, 6H); β-product: 7.40 (d, J = 8.1 Hz, 4H), 7.16 (d, J = 7.8 Hz, 4H), 7.04 (s, 2H), 2.36 (s, 6H).

(E)-Butyl 3-(p-tolyl)acrylate¹¹ 3y

Yield: 95%, <1:20 regioselectivity. ¹**H NMR** (300 MHz, CDCl₃) δ 7.66 (d, *J* = 16.2 Hz, 1H), 7.43 (d, *J* = 7.5 Hz, 2H), 7.19 (d, *J* = 7.8 Hz, 2H), 6.40 (d, *J* = 16.2 Hz, 1H), 4.20 (t, *J* = 6.6 Hz, 2H), 2.37 (s, 3H), 1.64-1.71 (m, 2H), 1.40-1.48 (m, 2H), 0.97 (t, *J* = 7.2 Hz, 3H).

- ⁸ Dubbaka, S. R.; Vogel, P. *Tetrahedron* **2005**, *61*, 1523.
- ⁹ Ruan, J.; Iggo, J. A.; Berry, N. G.; Xiao, J. J. Am. Chem. Soc. 2010, 132, 16689.
- ¹⁰ Zhao, X.; Jing, J.; Lu, K.; Zhang, Y.; Wang, J. Chem. Commun. **2010**, 1724.
- ¹¹ Yang, F.-L.; Ma, X.-T.; Tian, S.-K. Chem. Eur. J. 2012, 18, 1582.

¹ Alacid, E.; Najera, C. J. Org. Chem. 2008, 73, 2315.

² Sabarre, A.; Love, J. Org. Lett. 2008, 10, 3941.

³ Alacid, E.; Najera, C. Org. Lett. 2008, 10, 5011.

⁴ Shirakawa, E.; Imazaki, Y.; Hayashi, T. Chem. Lett. 2008, 37, 654.

⁵ Whitehead, D. C.; Yousefi, R.; Jaganathan, A.; Borhan, B. J. Am. Chem. Soc. **2010**, 132, 3298.

⁶ Paredes, M. D.; Alonso, R. J. Org. Chem. 2000, 65, 2292.

⁷ Katritzky, A. R.; Toader, D.; Chassaing, C.; Aslan, D. C. J. Org. Chem. **1999**, 64, 6080.

S16

S22

