Copper Catalyzed Sequential Arylation-Oxidative Dimerization of o-Haloanilides: Synthesis of Dimeric HPI Alkaloids

Xianfu Shen, Yongyun Zhou, Yongkai Xi, Jingfeng Zhao, and Hongbin Zhang*
Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, Yunnan 650091, P. R. China.
Email: zhanghb@ynu.edu.cn

Supporting Information

Experimental details and Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra of new compounds

[^0]
Supporting information for
 Copper Catalyzed Sequential Arylation-Oxidative Dimerization of o-Haloanilides: Synthesis of Dimeric HPI Alkaloids

Xianfu Shen, Yongyun Zhou, Yongkai Xi, Jingfeng Zhao, and Hongbin Zhang*
Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, Yunnan 650091, P. R. China
Fax: 86-871-5035538. E-mail: zhanghb@ynu.edu.cn

General Experimental: Proton nuclear magnetic resonance ($\left.{ }^{1} \mathrm{H}-\mathrm{NMR}\right)$ spectra were recorded on a Bruker Avance 300 or 400 spectrometer at 300 or 400 MHz . Carbon-13 nuclear magnetic resonance (${ }^{13} \mathrm{C}-\mathrm{NMR}$) was recorded on Bruker Avance 300 or 400 spectrometer at 75 or 100 MHz . Chemical shifts are reported as δ values in parts per million (ppm) relative to tetramethylsilane (TMS) for all recorded NMR spectra. Low-resolution Mass spectra were recorded on a VG Auto Spec-3000 magnetic sector MS spectrometer. High Resolution Mass spectra were taken on AB QSTAR Pulsar mass spectrometer or Agilent G6230 TOF MS spectrometer. Chiral HPLC analyses were performed on Agilent 1100 series with a tunable UV detector at wavelength $\lambda=254 \mathrm{~nm}$. Melting points were determined on a capillary melting point apparatus and are uncorrected. Optical rotations were obtained on a UV210A spectrometer. Starting materials and reagents used in reactions were obtained commercially from Acros, Aldrich, J\&K and were used without purification, unless otherwise indicated. THF and toluene used in the reactions were dried by distillation over metallic sodium; dichloromethane were distilled over $\mathrm{P}_{2} \mathrm{O}_{5}$. Unless otherwise stated, all reactions were conducted in dried glassware under a positive pressure of dry nitrogen. Silica gel (Qingdao, 200300 mesh) was used for column chromatography.

2-Bromoaniline ($12.04 \mathrm{~g}, 70.0 \mathrm{mmol}$) was dissolved in toluene (200 mL) under nitrogen. To this mixture, a solution of trimethylaluminum in toluene $\left(2.0 \mathrm{M}, 49 \mathrm{~mL}, 98.0 \mathrm{mmol}, 1.4 \mathrm{eq}\right.$.) was added dropwise at $0{ }^{\circ} \mathrm{C}$. The resulting mixture was then stirred at room temperature for 45 minutes. γ-Butyrolactone ($7.5 \mathrm{~mL}, 98 \mathrm{mmol}, 1.4 \mathrm{eq}$.) was added via syringe and the reaction mixture was stirred at room temperature overnight. The solidified mixture was then cooled to $0^{\circ} \mathrm{C}$, and $\mathrm{HCl}(1 \mathrm{~N}, 150 \mathrm{~mL})$ was added slowly. After 30 minutes, the resulting mixture was extracted with ethyl acetate $(4 \times 80 \mathrm{~mL})$. The combined organic phases were washed with brine $(50 \mathrm{~mL})$ and dried over anhydrous sodium sulfate. After removal of the solvent, the crude products were chromatographed on silica gel (Petroleum ether $60-90^{\circ} \mathrm{C}$: ethyl acetate $\left.=1: 2\right)$ to provide amide $\mathbf{1 5 a}(17.34 \mathrm{~g}, 96 \%)$ as a white solid.
m.p.: $65-67^{\circ} \mathrm{C} . R_{\mathrm{f}}: 0.55$ (Petroleum ether: ethyl acetate $=1: 2$). FTIR $\left(\mathrm{KBr}\right.$, thin film) $\mathrm{cm}^{-1}: 3271,2943,2875,1660$, 1527, 1430, 1285, 1051, 755, 673. ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta(\mathrm{ppm}): 8.27(1 \mathrm{H}, d, J=7.8 \mathrm{~Hz}), 7.81(1 \mathrm{H}, \mathrm{brs})$, $7.53(1 \mathrm{H}, d, J=7.8 \mathrm{~Hz}), 7.30(1 \mathrm{H}, t, J=7.8 \mathrm{~Hz}), 6.98(1 \mathrm{H}, t, J=7.8 \mathrm{~Hz}), 3.75(2 \mathrm{H}, t, J=5.7 \mathrm{~Hz}), 2.59(3 \mathrm{H}, t, J=$ $6.9 \mathrm{~Hz}), 2.05-1.91(2 \mathrm{H}, m) .{ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 171.73,135.72,132.41,128.48,125.48,122.42$, 113.71, 62.06, 34.80, 28.04. +TOF-MS m/z (\%) : $282\left(\mathrm{M}^{+}+1+\mathrm{Na}, 100 \%\right), 281\left(\mathrm{M}^{+}+\mathrm{Na}, 8 \%\right), 280\left(\mathrm{M}^{+}+\mathrm{Na}, 96 \%\right)$, 260 (42), 258 (40), 240 (20), 200 (9), 174 (29), 172 (30). HRMS m / z Found: 258.0124, Calcd. for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}_{2} \mathrm{Br}$ $(\mathrm{M}+1)^{+}: 258.0129$.

To a mixture of cesium carbonate ($17.43 \mathrm{~g}, 53.5 \mathrm{mmol}, 1.5$ eq.) in acetonitrile (90 mL) and N, N-dimethylformamide (DMF, 45 mL) at $0{ }^{\circ} \mathrm{C}$ was added dropwise a solution of amide $15 \mathrm{a}(9.20 \mathrm{~g}, 35.7 \mathrm{mmol})$ in acetonitrile (10 mL) and DMF (5 mL). Benzyl bromide ($6.4 \mathrm{~mL}, 53.5 \mathrm{mmol}, 1.5 \mathrm{eq}$.) was then added. The resulting mixture was allowed to stir at room temperature for 8 h . After filtration through a short column of silica gel and washed with ethyl acetate $(180 \mathrm{~mL})$, the combined organic phases were concentrated under reduced pressure and the residue was chromatographed on silica gel (Petroleum ether $60-90^{\circ} \mathrm{C}$: ethyl acetate $=1: 1$) to afford alcohol 16a ($11.86 \mathrm{~g}, 96 \%$) as a colorless oil.
$R_{\mathrm{f}}: 0.60$ (Petroleum ether: ethyl acetate $=1: 1$). FTIR $\left(\mathrm{KBr}\right.$, thin film) $\mathrm{cm}^{-1}: 3417,2963,1651,1402,1270,1203$, 1050, 728. ${ }^{1} \mathbf{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta(\mathrm{ppm}): 7.68(1 \mathrm{H}, d d, J=2.7,7.8 \mathrm{~Hz}), 7.37-7.12(7 \mathrm{H}, m), 6.77(1 \mathrm{H}, d d, J$ $=3.3,7.8 \mathrm{~Hz}), 5.64(1 \mathrm{H}, d, J=14.4 \mathrm{~Hz}), 4.01(1 \mathrm{H}, d, J=14.4 \mathrm{~Hz}), 3.71-3.55(2 \mathrm{H}, m), 2.89-2.68(1 \mathrm{H}, m), 2.14(2 \mathrm{H}$, $t, J=6.6 \mathrm{~Hz}), 1.98-1.78(2 \mathrm{H}, m) .{ }^{13} \mathbf{C}-\mathbf{N M R}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 173.43,140.71,136.99,134.07,131.52$, $130.03,129.46,128.55,127.72,123.86,62.78,51.77,32.06,27.85 .+$ TOF-MS $m / z(\%): 372\left(\mathrm{M}^{+}+1+\mathrm{Na}, 99 \%\right), 371$ $\left(\mathrm{M}^{+}+\mathrm{Na}, 9 \%\right), 370\left(\mathrm{M}^{+}+\mathrm{Na}, 100 \%\right), 350$ (32), 348 (34), 330 (2), 264 (3). HRMS m / z Found: 370.0410, Calcd. for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{NO}_{2} \mathrm{NaBr}(\mathrm{M}+23)^{+}: 370.0418$.

Alcohol 16a (11.86g, 34.1 mmol) was dissolved in dichloromethane $(120 \mathrm{~mL})$. To this solution, a powder of DessMartin periodinane ($21.67 \mathrm{~g}, 51.1 \mathrm{mmol}, 1.5 \mathrm{eq}$.) was added. The resulting mixture was then stirred at room temperature for 6 h . After filtration through a short column of silica gel and washed with ethyl acetate (150 mL), the combined organic phases were concentrated under reduced pressure and the residue was chromatographed on silica gel (Petroleum ether $60-90^{\circ} \mathrm{C}$: ethyl acetate $=3: 1$) to afford aldehyde $10 \mathrm{a}(10.85 \mathrm{~g}, 92 \%)$ as white plates.
m.p.: 52-54 ${ }^{\circ} \mathrm{C} . R_{\mathrm{f}}$: 0.53 (Petroleum ether: ethyl acetate $=3: 1$). FTIR (KBr , thin film) $\mathrm{cm}^{-1}: 3419,3060$, 2921, 2827, $2730,1657,1400,1265,1196,1020,727 .{ }^{1} \mathbf{H}-N M R\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta(\mathrm{ppm}): 9.81(1 \mathrm{H}, s), 7.72-7.62(1 \mathrm{H}, m)$, 7.38-7.12 ($7 \mathrm{H}, m$), $6.92-6.82(1 \mathrm{H}, m), 5.62(1 \mathrm{H}, d, J=14.4 \mathrm{~Hz}), 4.03(1 \mathrm{H}, d, J=14.4 \mathrm{~Hz}), 2.91(1 \mathrm{H}, d d d, J=6.9$, $7.8,18.6 \mathrm{~Hz}), 2.68(1 \mathrm{H}, d t, J=6.3,18.6 \mathrm{~Hz}), 2.42-2.16(2 \mathrm{H}, m){ }^{13} \mathbf{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta(\mathrm{ppm}): 200.99$, $171.12,140.45,136.88,133.99$, 131.60, 130.08, 129.29, 128.62, 128.50, 127.64, 123.87, 51.75, 38.98, 27.18. +TOF-MS $m / z(\%): 370\left(\mathrm{M}^{+}+1+\mathrm{Na}, 98 \%\right), 369\left(\mathrm{M}^{+}+\mathrm{Na}, 13 \%\right), 368\left(\mathrm{M}^{+}+\mathrm{Na}, 100 \%\right), 348(81), 346(90), 332(30)$, 330 (31), 262 (3). HRMS m / z Found: 368.0266, Calcd. for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{NO}_{2} \mathrm{NaBr}(\mathrm{M}+\mathrm{Na})^{+}: 368.0262$.

To a solution of aldehyde $10 \mathrm{a}(5.85 \mathrm{~g}, 16.8 \mathrm{mmol})$ in toluene $(60 \mathrm{~mL})$ was added a powder of (S)-(-)-tertbutanesulfinamide ($4.1 \mathrm{~g}, 33.7 \mathrm{mmol}, 2.0$ eq.) and $\mathrm{KHSO}_{4}(4.56 \mathrm{~g}, 33.7 \mathrm{mmol}, 2.0$ eq.). The resulting mixture was stirred at $45^{\circ} \mathrm{C}$ for 3 h . After filtration through a short column of silica gel and washed with ethyl acetate (80 mL), the combined organic phases were concentrated under reduced pressure and the residue was flash chromatographed on silica gel (Petroleum ether $60-90^{\circ} \mathrm{C}$: ethyl acetate $=3: 1$) to afford the sulfinyl imine ($\mathbf{1 7 a}: 7.36 \mathrm{~g}, 97 \%$) as colorless syrup. The sulfinyl imine was re-dissolved in anhydrous methanol (60 mL) and the resulting solution was cooled to $0^{\circ} \mathrm{C}$. A powder of sodium borohydride ($1.87 \mathrm{~g}, 49.2 \mathrm{mmol}, 3.0 \mathrm{eq}$.) was added in small portion over a period of 30 minutes. The resulting mixture was then allowed to stir at $0{ }^{\circ} \mathrm{C}$ for 4 h . After which, a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$ was introduced and the resulting mixture was concentrated (ca. $20-30 \mathrm{~mL}$). The mixture was diluted with water $(100 \mathrm{~mL})$ and extracted with ethyl acetate $(4 \times 50 \mathrm{~mL})$. The combined organic phases were washed with brine (60 mL) and dried over anhydrous sodium sulfate. After removal of the solvent, the crude products were chromatographed on silica gel (Petroleum ether $60-90^{\circ} \mathrm{C}$: ethyl acetate $=1: 2$) to provide sulfinamide 17c ($6.6 \mathrm{~g}, 89 \%$) as a white solid.
m.p.: $102-103{ }^{\circ} \mathrm{C} .[\alpha]^{20}{ }_{\mathrm{D}}+71\left(\mathrm{c} 0.90, \mathrm{CHCl}_{3}\right.$). $R_{\mathrm{f}}: 0.45$ (Petroleum ether: ethyl acetate $=1: 2$). FTIR (KBr, thin film) $\mathrm{cm}^{-1}: 3244,3063,2950,2868,1662,1559,1468,1398,1266,1203,1063,947,767,732,628 .{ }^{1} \mathbf{H}-\mathrm{NMR}$ (as a mixture of rotamers, $\left.300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta(\mathrm{ppm}): 7.71-7.61(1 \mathrm{H}, m), 7.31-7.12(7 \mathrm{H}, m), 6.81-6.70(1 \mathrm{H}, m), 5.58(1 \mathrm{H}$, $d, J=14.1 \mathrm{~Hz}), 4.00(0.5 \mathrm{H}, d, J=14.1 \mathrm{~Hz})[3.99(0.5 \mathrm{H}, d, J=14.1 \mathrm{~Hz})], 3.42-3.23(1 \mathrm{H}, m), 3.22-3.10(1 \mathrm{H}, m)$, 3.10-2.94 ($1 \mathrm{H}, m$), 2.11-1.97 $(2 \mathrm{H}, m), 1.93-1.78(2 \mathrm{H}, m), 1.13(9 \mathrm{H}, s) .{ }^{13} \mathbf{C}$-NMR (rotamer in brackets, 75 MHz , CDCl_{3}), $\delta(\mathrm{ppm}): 172.16,140.67,137.02,134.00$ (133.94), 131.57 (131.50), 129.94, 129.41, 128.47, 127.63, 123.85, $55.64,51.58,45.07$ (44.99), 31.62, 26.15, 22.71. +TOF-MS $m / z(\%): 475\left(\mathrm{M}^{+}+1+\mathrm{Na}, 60 \%\right), 474\left(\mathrm{M}^{+}+\mathrm{Na}, 8 \%\right), 473$ $\left(\mathrm{M}^{+}+\mathrm{Na}, 65 \%\right), 453$ (98), 452 (12), 451 (100), 435 (25), 433 (23), 402 (4), 400 (4), 294 (2), 282 (6), 280 (5), 262 (2). HRMS m / z Found: 473.0878, Calcd. for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{NaSBr}(\mathrm{M}+\mathrm{Na})^{+}$: 473.0874.

To a mixture of sodium hydride $(60 \%$ in mineral oil, $1.32 \mathrm{~g}, 33 \mathrm{mmol}, 1.5$ eq., freshly washed with anhydrous hexane 3 times under nitrogen) in anhydrous THF (30 mL) at $0^{\circ} \mathrm{C}$ was added a solution of sulfonamide $\mathbf{1 7 c}(9.9 \mathrm{~g}$, 22 mmol) in THF (80 mL) via syringe. After stirring at $0^{\circ} \mathrm{C}$ for 30 min , benzyl bromide ($3.9 \mathrm{~mL}, 33 \mathrm{mmol}, 1.5 \mathrm{eq}$.) was added. The resulting mixture was then stirred at $0{ }^{\circ} \mathrm{C}$ for 2 h , then at room temperature for 12 h under nitrogen. A powder of $\mathrm{NH}_{4} \mathrm{Cl}(1.62 \mathrm{~g}, 30.0 \mathrm{mmol})$ was added and the mixture was stirred for 10 min . After concentrated under reduced pressure, the residue was diluted with water $(60 \mathrm{~mL})$ and extracted with ethyl acetate $(3 \times 50 \mathrm{~mL})$. The combined organic phases were washed with brine $(30 \mathrm{~mL})$ and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration, the solvent was removed under reduced pressure and the residue was chromatographed on silica gel (Petroleum ether $60-90^{\circ} \mathrm{C}$: ethyl acetate $=2: 1$) to afford the product (11a: $11.2 \mathrm{~g}, 94 \%$) as an off-yellow oil.
$[\alpha]^{20}{ }_{\mathrm{D}}-3.9\left(\mathrm{c} 0.40, \mathrm{CHCl}_{3}\right) . R_{\mathrm{f}}: 0.51$ (Petroleum ether: ethyl acetate $\left.=2: 1\right)$. FTIR $\left(\mathrm{KBr}\right.$, thin film) $\mathrm{cm}^{-1}: 3421,2960$, $1665,1467,1396,1278,1204,1070,1024,928,700 .{ }^{1} \mathbf{H}$-NMR (as a mixture of rotamers, $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$), δ (ppm): 7.71-7.61 (1H, m), 7.37-7.11 (12H, $m), 6.77-6.67(1 H, m), 5.59(0.5 \mathrm{H}, d, J=14.4 \mathrm{~Hz})[5.59(0.5 \mathrm{H}, d, J=$ $14.1 \mathrm{~Hz})$], $4.26(1 \mathrm{H}, d, J=15.6 \mathrm{~Hz}), 4.10(0.5 \mathrm{H}, d, J=15.6 \mathrm{~Hz})[4.08(0.5 \mathrm{H}, d, J=15.3 \mathrm{~Hz})], 3.98(0.5 \mathrm{H}, d, J=$ $14.1 \mathrm{~Hz})\left[3.97(0.5 \mathrm{H}, d, J=14.4 \mathrm{~Hz})\right.$], $3.03-2.85(1 \mathrm{H}, m), 2.84-2.68(1 \mathrm{H}, m), 1.97-1.76(4 \mathrm{H}, m), 1.16(9 \mathrm{H}, s) .{ }^{13} \mathrm{C}-$ NMR (rotamer in brackets, $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta(\mathrm{ppm}): 171.69,140.56,137.24,137.02,133.92,131.52,131.45$, $129.88,129.32,128.54,128.44,127.57,127.35,123.85,58.22,51.47$ (51.07), 48.23 (47.92), 31.79 (31.71), 23.93 (23.81), 23.39. EI-MS $m / z(\%): 543\left(\mathrm{M}^{+}+2,6 \%\right), 541\left(\mathrm{M}^{+}+1,6 \%\right), 486(10), 486(34), 484(30), 430(25), 395(26)$,

330 (16), 263 (31), 261 (30), 212 (17), 174 (16), 147 (11), 91 (48), 90 (100), 85 (4), 76 (12), 57 (29). HRMS m/z Found: 540.1448, Calcd. for $\mathrm{C}_{28} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{SBr}(\mathrm{M})^{+}$: 540.1446 .

To a solution of aldehyde $\mathbf{1 0 a}(17.3 \mathrm{~g}, 50 \mathrm{mmol})$ in THF (60 mL) was added a powder of (R)-(-)-tertbutanesulfinamide ($12.1 \mathrm{~g}, 100 \mathrm{mmol}, 2.0 \mathrm{eq}$.) and $\mathrm{Ti}(\mathrm{OEt})_{4}(22.8 \mathrm{~g}, 100 \mathrm{mmol}, 2.0 \mathrm{eq}$.$) . The resulting mixture was$ stirred at $60^{\circ} \mathrm{C}$ for 12 h . The reaction mixture was then cooled to room temperature and treated with saturated NaCl aqueous solution $(100 \mathrm{~mL})$ for 1 h . After filtration through a short column of celite and washed with ethyl acetate $(80 \mathrm{~mL})$, the combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent under reduced pressure, the residue was flash chromatographed on silica gel (Petroleum ether $60-90^{\circ} \mathrm{C}$: ethyl acetate $=3: 1$) to afford the sulfinyl imine (17a': $20.8 \mathrm{~g}, 93 \%$) as pale yellow syrup. The sulfinyl imine was re-dissolved in anhydrous methanol $(200 \mathrm{~mL})$ and the resulting solution was cooled to $0^{\circ} \mathrm{C}$. A powder of sodium borohydride (5.27 $\mathrm{g}, 139.2 \mathrm{mmol}, 3.0$ eq.) was added in small portion over a period of 30 minutes. The resulting mixture was then stirred at $0{ }^{\circ} \mathrm{C}$ for 4 h . A saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}(80 \mathrm{~mL})$ was introduced and the resulting mixture was concentrated (ca. 80-90 mL). The mixture was diluted with water (150 mL) and extracted with ethyl acetate ($3 \times$ $150 \mathrm{~mL})$. The combined organic phases were washed with brine $(100 \mathrm{~mL})$ and dried over anhydrous sodium sulfate. After removal of the solvent, the crude products were chromatographed on silica gel (Petroleum ether $60-90{ }^{\circ} \mathrm{C}$: ethyl acetate $=1: 2)$ to provide sulfinamide $\mathbf{1 7} \mathbf{c}^{\prime}(19.8 \mathrm{~g}, 88 \%$ over two steps $)$ as a white solid.

17c': m.p.: 102-104 ${ }^{\circ} \mathrm{C} \cdot[\alpha]^{20}{ }_{\mathrm{D}}-70\left(\mathrm{c} 0.95, \mathrm{CHCl}_{3}\right.$). $R_{\mathrm{f}}: 0.45$ (Petroleum ether: ethyl acetate $=1: 2$). FTIR (KBr , thin film) $\mathrm{cm}^{-1}: 3371,2971,1654,1402,1278,1046,881,731 .{ }^{1} \mathbf{H}-\mathbf{N M R}$ (as a mixture of rotamers, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$), δ (ppm): 7.72-7.64 (1H, m), 7.30-7.14 (7H, m), 6.81-6.74 ($1 \mathrm{H}, m$), $5.62(0.5 \mathrm{H}, d, J=14.4 \mathrm{~Hz})[5.61(0.5 \mathrm{H}, d, J=14.4$ $\mathrm{Hz})], 4.03(0.5 \mathrm{H}, d, J=14.4 \mathrm{~Hz})[4.03(0.5 \mathrm{H}, d, J=14.4 \mathrm{~Hz})], 3.42(0.5 \mathrm{H}, t, J=6.0 \mathrm{~Hz})[3.34(0.5 \mathrm{H}, t, J=6.0 \mathrm{~Hz})]$, 3.24-3.14 $(1 \mathrm{H}, m), 3.12-2.98(1 \mathrm{H}, m), 2.13-1.97(2 \mathrm{H}, m), 1.94-1.84(2 \mathrm{H}, m), 1.16(9 \mathrm{H}, s) .{ }^{13} \mathbf{C}-\mathrm{NMR}$ (rotamer in brackets, $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta(\mathrm{ppm}): 172.19$ (172.10), $140.67,137.03$ (136.99), 134.02 (133.96), 131.58 (131.51), 129.97, 129.42, 128.56 (128.49), 127.65, 123.92 (123.85), 55.66, 51.60, 45.09 (45.01), 31.63 (31.57), 26.19 (26.16), 22.73. +TOF-MS $m / z(\%): 475\left(\mathrm{M}^{+}+1+\mathrm{Na}, 60 \%\right), 474\left(\mathrm{M}^{+}+\mathrm{Na}, 8 \%\right), 473\left(\mathrm{M}^{+}+\mathrm{Na}, 65 \%\right), 453(98), 452(12), 451$ (100), 435 (25), 433 (23), 402 (4), 400 (4), 294 (2), 282 (6), 280 (5), 262 (2). HRMS m / z Found: 473.0878, Calcd. for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{NaSBr}(\mathrm{M}+\mathrm{Na})^{+}: 473.0874$.

To a mixture of sodium hydride (60% in mineral oil, $2.64 \mathrm{~g}, 66 \mathrm{mmol}, 1.5 \mathrm{eq}$., freshly washed with anhydrous hexane 3 times under nitrogen) in anhydrous THF (50 mL) at $0^{\circ} \mathrm{C}$ was added a solution of sulfonamide $\mathbf{1 7 c}$ (19.8 g , $44 \mathrm{mmol})$ in THF (150 mL) via syringe. After stirring at $0^{\circ} \mathrm{C}$ for 30 min , benzyl bromide ($7.8 \mathrm{~mL}, 66 \mathrm{mmol}, 1.5 \mathrm{eq}$.) was added. The resulting mixture was then stirred at $0^{\circ} \mathrm{C}$ for 2 h , then at room temperature for 12 h under nitrogen. A powder of $\mathrm{NH}_{4} \mathrm{Cl}(3.24 \mathrm{~g}, 60.0 \mathrm{mmol})$ was added and the mixture was stirred for 10 min . After concentrated under reduced pressure, the residue was diluted with water $(100 \mathrm{~mL})$ and extracted with ethyl acetate $(3 \times 100 \mathrm{~mL})$. The combined organic phases were washed with brine (50 mL) and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration, the solvent was removed under reduced pressure and the residue was chromatographed on silica gel (Petroleum ether $60-90^{\circ} \mathrm{C}$: ethyl acetate $=2: 1$) to afford the product (11a': $23.1 \mathrm{~g}, 97 \%$) as an off-yellow oil.

11a': $[\alpha]^{20}{ }_{\mathrm{D}}+4.1\left(\mathrm{c} 0.51, \mathrm{CHCl}_{3}\right) . R_{\mathrm{f}}: 0.51$ (Petroleum ether: ethyl acetate $\left.=2: 1\right)$. FTIR $\left(\mathrm{KBr}\right.$, thin film) $\mathrm{cm}^{-1}: 3431$, $2968,1660,1471,1400,1054 .{ }^{1} \mathbf{H}-N M R\left(\right.$ as a mixture of rotamers, $\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta(\mathrm{ppm}): 7.68-7.62(1 \mathrm{H}, m)$, 7.32-7.11 $(12 \mathrm{H}, m), 6.74-6.67(1 \mathrm{H}, m), 5.60(0.5 \mathrm{H}, d, J=14.4 \mathrm{~Hz})[5.58(0.5 \mathrm{H}, d, J=14.4 \mathrm{~Hz})], 4.27(0.5 \mathrm{H}, d, J=$ $15.6 \mathrm{~Hz})[4.26(0.5 \mathrm{H}, d, J=15.6 \mathrm{~Hz})], 4.10(0.5 \mathrm{H}, d, J=15.6 \mathrm{~Hz})[4.08(0.5 \mathrm{H}, d, J=15.6 \mathrm{~Hz})], 3.98(0.5 \mathrm{H}, d, J=$ $14.4 \mathrm{~Hz})\left[3.97(0.5 \mathrm{H}, d, J=14.4 \mathrm{~Hz})\right.$], $3.01-2.88(1 \mathrm{H}, m), 2.83-2.72(1 \mathrm{H}, m), 1.97-1.77(4 \mathrm{H}, m), 1.16(9 \mathrm{H}, s) .{ }^{13} \mathrm{C}-$ NMR (rotamer in brackets, $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta(\mathrm{ppm}): 171.76,140.60,137.27,137.05,133.95,131.56,131.49$, $129.92,129.39,129.36,128.58,128.47,127.61,127.40,123.86,58.28,51.51$ (51.14), 48.26 (47.97), 31.84 (31.75), 23.97 (23.85), 23.44 (23.41). EI-MS $m / z(\%): 543$ ($\mathrm{M}^{+}+2,9 \%$), 541 ($\mathrm{M}^{+}, 9 \%$), 486 (7\%), 484 (6), 395 (3), 393 (3), 263 (5), 261 (5), 174 (6), 106 (7), 91 (100), 57 (52). HRMS m / z Found: 540.1461, Calcd. for $\mathrm{C}_{28} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{SBr}(\mathrm{M})^{+}$: 540.1456; Found: 541.1513, Calcd. for $\mathrm{C}_{28} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{SBr}(\mathrm{M}+\mathrm{H})^{+}: 541.1524$.

2-Iodoaniline ($21.9 \mathrm{~g}, 100.0 \mathrm{mmol}$) was dissolved in toluene (300 mL) under nitrogen. To this mixture, a solution of trimethylaluminum in toluene ($2.0 \mathrm{M}, 60 \mathrm{~mL}, 120 \mathrm{mmol}, 1.2 \mathrm{eq}$.) was added dropwise at $0{ }^{\circ} \mathrm{C}$. The resulting mixture was then stirred at room temperature for 45 minutes, after which, γ-butyrolactone ($9.2 \mathrm{~mL}, 120 \mathrm{mmol}, 1.2 \mathrm{eq}$.) was
added via syringe and the reaction mixture was stirred at room temperature overnight. The solidified mixture was then cooled to $0^{\circ} \mathrm{C}$ and $\mathrm{HCl}(1 \mathrm{~N}, 360 \mathrm{~mL})$ was added slowly. After 1 hour, the resulting mixture was extracted with ethyl acetate $(4 \times 150 \mathrm{~mL})$. The combined organic phases were washed with brine $(100 \mathrm{~mL})$ and dried over anhydrous sodium sulfate. After removal of the solvent, the crude products were chromatographed on silica gel (Petroleum ether $60-90^{\circ} \mathrm{C}$: ethyl acetate $=1: 2$) to provide amide $\mathbf{1 5 b}(29.30 \mathrm{~g}, 96 \%)$ as a white solid.
m.p.: $65-66^{\circ} \mathrm{C} . R_{\mathrm{f}}: 0.59$ (Petroleum ether: ethyl acetate $=1: 2$). FTIR $\left(\mathrm{KBr}\right.$, thin film) $\mathrm{cm}^{-1}: 3268,2935,1658,1528$, 1430, 1287, 1059, 749, 664. ${ }^{1} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta(\mathrm{ppm}): 8.02(1 \mathrm{H}, d, J=8.0 \mathrm{~Hz}), 7.76(1 \mathrm{H}, s), 7.75(1 \mathrm{H}$, $d, J=8.0 \mathrm{~Hz}), 7.30(1 \mathrm{H}, t, J=7.6 \mathrm{~Hz}), 6.83(1 \mathrm{H}, t, J=7.6 \mathrm{~Hz}), 3.72(2 \mathrm{H}, t, J=6.0 \mathrm{~Hz}), 3.32(1 \mathrm{H}, b r s), 2.56(3 \mathrm{H}, t$, $J=6.9 \mathrm{~Hz}), 2.05-1.91(2 \mathrm{H}, m) .{ }^{13} \mathbf{C}-\mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 171.92,138.90,138.16,129.16,126.43$, 123.11, 91.14, 61.76, 34.52, 28.06. EI-MS m/z (\%) : 304 (${ }^{+}, 28 \%$), 268 (89%), 224 (12\%), 182 (30), 180 (40), 152 (10), 128 (6), 104 (12), 91 (100). HRMS m / z Found: 304.9969, Calcd. for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{NO}_{2} \mathrm{I}(\mathrm{M})^{+}: 304.9913$.

To a mixture of amide $\mathbf{1 5 b}(29.3 \mathrm{~g}, 96 \mathrm{mmol})$, cesium carbonate ($46.9 \mathrm{~g}, 144 \mathrm{mmol}, 1.5 \mathrm{eq}$.$) in acetonitrile (200 \mathrm{~mL}$) and N, N-dimethylformamide (DMF, 100 mL) at $0^{\circ} \mathrm{C}$ was added dropwise a solution of benzyl bromide (17.1 mL , $144 \mathrm{mmol}, 1.5 \mathrm{eq}$.) was then added. The resulting mixture was then stirred at room temperature for 12 h . After filtration through a short column of silica gel and washed with ethyl acetate (200 mL), the combined organic phases were concentrated under reduced pressure and the residue was chromatographed on silica gel (Petroleum ether 60$90^{\circ} \mathrm{C}$: ethyl acetate $\left.=1: 1\right)$ to afford alcohol $\mathbf{1 6 b}(36.03 \mathrm{~g}, 95 \%)$ as a white powder.
m.p.: $72-74{ }^{\circ} \mathrm{C} . R_{\mathrm{f}}: 0.55$ (Petroleum ether: ethyl acetate $=1: 1$). FTIR $\left(\mathrm{KBr}\right.$, thin film) $\mathrm{cm}^{-1}: 3500,2940,2871,1631$, 1405, 1322, 1051, 1008, 731, 616, 491. ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta(\mathrm{ppm}): 7.93(1 \mathrm{H}, d d, J=1.2,8.0 \mathrm{~Hz}), 7.28-$ $7.15(6 \mathrm{H}, m), 7.03(1 \mathrm{H}, d d d, J=1.2,7.8,8.0 \mathrm{~Hz}), 6.71(1 \mathrm{H}, d d, J=1.2,7.8 \mathrm{~Hz}), 5.67(1 \mathrm{H}, d, J=14.4 \mathrm{~Hz}), 3.91$ $(1 \mathrm{H}, d, J=14.4 \mathrm{~Hz}), 3.70-3.53(2 \mathrm{H}, m), 3.12-3.04(1 \mathrm{H}, m), 2.10(2 \mathrm{H}, t, J=6.6 \mathrm{~Hz}), 1.92-1.78(2 \mathrm{H}, m) .{ }^{13} \mathbf{C}-\mathbf{N M R}$ ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 173.18,143.80,140.31,136.83,130.83,130.00,129.43,129.35,128.47,127.65$, 100.36, 62.51, 51.81, 32.23, 27.79. EI-MS m/z (\%) : 395 ($\mathrm{M}^{+}, 10 \%$), 351 (3\%), 309 (20\%), 224 (4), 203 (5), 182 (15), 180 (30), 152 (6), 134 (9), 119 (17), 104 (7), 91 (100), 77 (14). HRMS m/z Found: 395.0378, Calcd. for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{NO}_{2} \mathrm{I}(\mathrm{M})^{+}: 395.0382$.

Alcohol 16b ($36.0 \mathrm{~g}, 91.1 \mathrm{mmol}$) was dissolved in dichloromethane $(300 \mathrm{~mL})$. To this solution, a powder of DessMartin periodinane ($46.4 \mathrm{~g}, 109.3 \mathrm{mmol}, 1.2 \mathrm{eq}$.) was added. The resulting mixture was then stirred at room temperature for 3 h . After filtration through a short column of silica gel and washed with ethyl acetate (150 mL), the combined organic phases were concentrated and the residue was chromatographed on silica gel (Petroleum ether 60$90^{\circ} \mathrm{C}$: ethyl acetate $=3: 1$) to afford aldehyde $\mathbf{1 0 b}(32.94 \mathrm{~g}, 92 \%)$ as pale yellow plates.
m.p.: 76-78 ${ }^{\circ} \mathrm{C} . R_{\mathrm{f}}: 0.53$ (Petroleum ether: ethyl acetate $=3: 1$). FTIR $\left(\mathrm{KBr}\right.$, thin film) $\mathrm{cm}^{-1}: 3433,3056,2826,1713$, $1651,1400,1268,1017,771,724 .{ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta(\mathrm{ppm}): 9.77(1 \mathrm{H}, s), 7.93(1 \mathrm{H}, d d, J=1.2,8.0$ $\mathrm{Hz}), 7.29-7.13(6 \mathrm{H}, m), 7.01(1 \mathrm{H}, d d d, J=1.2,7.8,8.0 \mathrm{~Hz}), 6.83(1 \mathrm{H}, d d, J=1.2,7.8 \mathrm{~Hz}), 5.65(1 \mathrm{H}, d, J=14.4 \mathrm{~Hz})$, $3.92(1 \mathrm{H}, d, J=14.4 \mathrm{~Hz}), 2.86(1 \mathrm{H}, d d d, J=6.0,7.6,18.7 \mathrm{~Hz}), 2.65(1 \mathrm{H}, d t, J=6.0,18.7 \mathrm{~Hz}), 2.32(1 \mathrm{H}, d d d, J=$ $6.0,7.6,17.1 \mathrm{~Hz}), 2.18(1 \mathrm{H}, d t, J=6.0,17.1 \mathrm{~Hz}) .{ }^{13} \mathbf{C}-\mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta(\mathrm{ppm}): 200.64,170.60,143.34$, $139.98,136.49,130.65,129.86,129.21,128.99,128.18,127.33,100.11,51.54,38.57,27.26$. EI-MS $m / z(\%): 393$ $\left(\mathrm{M}^{+}, 12 \%\right), 369$ (3\%), 351 (3\%), 309 (28), 282 (5), 268 (70), 230 (4), 224 (4), 203 (9), 182 (23), 180 (63), 152 (12), 104 (7), 91 (100), 77 (13). HRMS m / z Found: 393.0265, Calcd. for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{NO}_{2} \mathrm{I}(\mathrm{M})^{+}: 393.0226$.

To a solution of aldehyde $\mathbf{1 0 b}(19.7 \mathrm{~g}, 50 \mathrm{mmol})$ in THF $(200 \mathrm{~mL})$ was added a powder of (S)-(-)-tertbutanesulfinamide ($12.1 \mathrm{~g}, 100 \mathrm{mmol}, 2.0$ eq. $)$ and $\operatorname{Ti}(\mathrm{OEt})_{4}(22.8 \mathrm{~g}, 100 \mathrm{mmol}, 2.0 \mathrm{eq}$.$) . The resulting mixture was$ stirred at $60^{\circ} \mathrm{C}$ under nitrogen for 12 h . The reaction mixture was then cooled to room temperature and treated with saturated NaCl aqueous solution $(100 \mathrm{~mL})$ for 1 h . After filtration through a short column of celite and washed with ethyl acetate (80 mL), the combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent under reduced pressure, the residue was flash chromatographed on silica gel (Petroleum ether $60-90{ }^{\circ} \mathrm{C}$: ethyl acetate $=3: 1$) to afford the sulfinyl imine ($\mathbf{1 7 b}: 22.85 \mathrm{~g}, 92 \%$) as a pale yellow syrup.
$[\alpha]^{20}{ }_{\mathrm{D}}+52\left(\mathrm{c} 0.19, \mathrm{CHCl}_{3}\right) \cdot R_{\mathrm{f}}: 0.51$ (Petroleum ether: ethyl acetate $\left.=3: 1\right)$. FTIR $\left(\mathrm{KBr}\right.$, thin film) $\mathrm{cm}^{-1}: 3445,2964$, 1663, 1466, 1400, 1079. ${ }^{1} \mathbf{H}$-NMR (as a mixture of rotamers, $\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta(\mathrm{ppm}): 8.09(1 \mathrm{H}$, brs), $7.93(1 \mathrm{H}$, $d, J=8.0 \mathrm{~Hz}), 7.28-7.14(6 \mathrm{H}, m), 7.08-7.01(1 \mathrm{H}, m), 6.75(0.5 \mathrm{H}, d, J=7.6 \mathrm{~Hz})[6.74(0.5 \mathrm{H}, d, J=7.6 \mathrm{~Hz})], 5.67$ $(0.5 \mathrm{H}, d, J=14.4 \mathrm{~Hz})[5.59(0.5 \mathrm{H}, d, J=14.0 \mathrm{~Hz})], 3.97(0.5 \mathrm{H}, d, J=14.0 \mathrm{~Hz})[3.92(0.5 \mathrm{H}, d, J=14.4 \mathrm{~Hz})], 3.00-$ $2.87(1 \mathrm{H}, m), 2.81-2.68(1 \mathrm{H}, m), 2.46-2.18(2 \mathrm{H}, m), 1.14(4.5 \mathrm{H}, s)[1.12(4.5 \mathrm{H}, s)] .{ }^{\mathbf{1 3}} \mathbf{C}$-NMR (rotamer in brackets, $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta(\mathrm{ppm}): 170.51$ (170.39), 168.11 (168.06), $143.54,140.20$ (140.13), 136.69 (136.60), 130.76 (130.65), 129.89, 129.45 (129.24), 129.13, 128.24, 127.45 (127.42), 100.24, 56.57 (56.53), 51.71 (51.55), 31.13 (30.99), 29.88 (29.83), 22.25 (22.22). EI-MS $m / z(\%): 496\left(\mathrm{M}^{+}, 10 \%\right), 395$ (3), 378 (16), 309 (10), 298 (15), 268 (20), 253 (4), 224 (2), 201 (7), 182 (11), 180 (20), 152 (5), 133 (21), 119 (46), 103 (6), 91 (100), 77 (14). HRMS m / z Found: 496.0663, Calcd. for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{SI}(\mathrm{M})^{+}$: 496.0682.

A solution of imine $\mathbf{1 7 b}(19.8 \mathrm{~g}, 40 \mathrm{mmol})$ in dichloromethane $(200 \mathrm{~mL})$ was stirred at $-78^{\circ} \mathrm{C}$ for 10 minutes. To this mixture was added slowly a solution of vinyl magnesium bromide in THF ($1.0 \mathrm{M}, 60 \mathrm{~mL}, 60 \mathrm{mmol}, 1.5 \mathrm{eq}$.$) .$ The reaction mixture was then stirred at $-78^{\circ} \mathrm{C}$ for 5 h before warming up to room temperature. Saturated $\mathrm{NH}_{4} \mathrm{Cl}$ aqueous solution (80 mL) was introduced and the resulting mixture was stirred at room temperature for 1 h . The mixture was diluted with water (150 mL) and extracted with dichloromethane (3 x 100 mL) and the combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration and concentrated, the residue was chromatographed on silica gel (Petroleum ether $60-90^{\circ} \mathrm{C}$: ethyl acetate $=2: 1$) to afford the major amide ($\mathbf{1 8 b}$: 16.35 $\mathrm{g}, 78 \%$) as a yellow syrup. Further elution with solvents (Petroleum ether $60-90^{\circ} \mathrm{C}$: ethyl acetate $=1: 2$) provided the minor sulfinamide $\mathbf{1 8 b}$ ' $(1.64 \mathrm{~g}, 7.8 \%)$ as a pale yellow oil.

Major: 18b: $[\alpha]^{20}{ }_{\mathrm{D}}+20\left(\mathrm{c} 0.50, \mathrm{CHCl}_{3}\right) . R_{\mathrm{f}}$: 0.56 (Petroleum ether: ethyl acetate $=1: 1$). FTIR (KBr, thin film) cm^{-1} : $3223,2963,1640,1462,1397,1269,1199,1061 .{ }^{1} \mathbf{H}-N M R\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta(\mathrm{ppm}): 7.92(1 \mathrm{H}, d, J=8.0 \mathrm{~Hz})$, $7.30-7.13(6 \mathrm{H}, m), 7.03(1 \mathrm{H}, t, J=7.6 \mathrm{~Hz}), 6.68(1 \mathrm{H}, d, J=8.0 \mathrm{~Hz}), 5.78(1 \mathrm{H}, d d d, J=6.4,10.8,17.2 \mathrm{~Hz}), 5.65$ $(1 \mathrm{H}, d, J=14.4 \mathrm{~Hz}), 5.18(1 \mathrm{H}, d d, J=10.8,17.2 \mathrm{~Hz}), 5.09(1 \mathrm{H}, d, J=10.4 \mathrm{~Hz}), 3.91(1 \mathrm{H}, d, J=14.4 \mathrm{~Hz}), 3.73-$ $3.63(1 \mathrm{H}, m), 3.37(1 \mathrm{H}, t, J=8.4 \mathrm{~Hz}), 2.12-1.88(4 \mathrm{H}, m), 1.11(9 \mathrm{H}, s) .{ }^{13} \mathbf{C}-\mathrm{NMR}$ (rotamer in brackets, 100 MHz , CDCl_{3}), $\delta(\mathrm{ppm}): 171.89,143.84,140.27,139.42,136.90,130.84$ (130.81), 129.92, 129.45 (129.43), 129.29, 128.42, $127.60,116.67$ (116.56), 100.44, 58.62 (58.39), $55.97,51.69,31.07$ (30.93), 30.68 (30.46), 22.65. EI-MS $m / z(\%):$
$524\left(\mathrm{M}^{+}, 36 \%\right), 467(100), 419(6), 404$ (47), 351 (14), 309 (77), 278 (12), 238 (13), 224 (17), 182 (21), 180 (30), 146 (5), 140 (9), 110 (8), 91 (88), 77 (9). HRMS m / z Found: 524.1001, Calcd. for $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{SI}(\mathrm{M})^{+}: 524.0995$.

Minor: 18b': $[\alpha]^{20}{ }_{\mathrm{D}}+41\left(\mathrm{c} 0.20, \mathrm{CHCl}_{3}\right.$). $R_{\mathrm{f}}: 0.53$ (Petroleum ether: ethyl acetate $=1: 1$). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{~} \mathbf{N M R}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right), \delta(\mathrm{ppm}): 7.37-7.13(7 \mathrm{H}, m), 6.99-6.90(2 \mathrm{H}, m), 5.76(1 \mathrm{H}, d d d, J=6.0,9.0,18.0 \mathrm{~Hz}), 5.17(1 \mathrm{H}, d, J=18.0$ $\mathrm{Hz}), 5.08(1 \mathrm{H}, d, J=9.0 \mathrm{~Hz}), 4.87(2 \mathrm{H}, s), 3.66(1 \mathrm{H}, d t, J=6.0,15.0 \mathrm{~Hz}), 3.50(1 \mathrm{H}, d, J=9.0 \mathrm{~Hz}), 2.20-2.05(2 \mathrm{H}$, $m), 1.96-1.84(2 \mathrm{H}, m), 1.11(9 \mathrm{H}, s) .{ }^{13} \mathbf{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta(\mathrm{ppm}): 172.35,142.19,139.47,137.42,129.68$, $128.91,128.43,128.14,127.46,116.62,58.79,56.07,53.13,30.92,30.75,22.65$. EI-MS $m / z(\%): 525\left(\mathrm{M}^{+}+1\right.$, 10%), 511 (5), 467 (30), 404 (10), 341 (100), 309 (21), 278 (37), 250 (4), 238 (6), 225 (36), 183 (79), 180 (15), 140 (11), 112 (6), 110 (9), 91 (78), 77 (12). HRMS m / z Found: 524.0996, Calcd. for $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{SI}(\mathrm{M})^{+}: 524.0995$.

(S)-N-benzyl-4-((S)-N-benzyl-2-methylpropan-2-ylsulfinamido)- N -
(2-iodophenyl)hex-5-enamide

11b $\quad \mathrm{C}_{30} \mathrm{H}_{35} \mathrm{IN}_{2} \mathrm{O}_{2} \mathrm{~S}$ Mol. Wt.: 614.15, 614.58

To a mixture of sodium hydride (60% in mineral oil, $1.87 \mathrm{~g}, 46.7 \mathrm{mmol}, 1.5$ eq., freshly washed with anhydrous hexane 3 times under nitrogen) in anhydrous THF (50 mL) at $0^{\circ} \mathrm{C}$ was added a solution of sulfonamide $\mathbf{1 8 b}(16.3 \mathrm{~g}$, 31.1 mmol) in THF (150 mL) via syringe. After stirring at $0^{\circ} \mathrm{C}$ for 10 min , benzyl bromide ($5.5 \mathrm{~mL}, 46.7 \mathrm{mmol}, 1.5$ eq.) was added. The resulting mixture was then stirred at $0{ }^{\circ} \mathrm{C}$ for 2 h , then at room temperature for 12 h under nitrogen. A powder of $\mathrm{NH}_{4} \mathrm{Cl}(2.7 \mathrm{~g}, 50.0 \mathrm{mmol})$ was added and the mixture was stirred for 10 min . After concentrated under reduced pressure, the residue was diluted with water $(150 \mathrm{~mL})$ and extracted with ethyl acetate $(3 \times 100 \mathrm{~mL})$. The combined organic phases were washed with brine $(50 \mathrm{~mL})$ and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration, the solvent was removed under reduced pressure and the residue was chromatographed on silica gel (Petroleum ether $60-90^{\circ} \mathrm{C}$: ethyl acetate $=2: 1$) to afford the product $(\mathbf{1 1 b}: 18.1 \mathrm{~g}, 95 \%)$ as a pale yellow oil.
$[\alpha]^{20}{ }_{\mathrm{D}}-37\left(\mathrm{c} 0.12, \mathrm{CHCl}_{3}\right) \cdot R_{\mathrm{f}}: 0.54$ (Petroleum ether: ethyl acetate $=2: 1$). ${ }^{\mathbf{1}} \mathbf{H}$-NMR (as a mixture of rotamers, 400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta(\mathrm{ppm}): 7.90(1 \mathrm{H}, d, J=8.0 \mathrm{~Hz}), 7.34-7.06(11 \mathrm{H}, m), 7.00(1 \mathrm{H}, t, J=7.6 \mathrm{~Hz}), 6.64(0.5 \mathrm{H}, d d, J=$ $1.2,7.6 \mathrm{~Hz}), 6.60(0.5 \mathrm{H}, d d, J=1.2,7.6 \mathrm{~Hz}), 5.74-5.59(2 \mathrm{H}, m), 5.06(1 \mathrm{H}, d d, J=6.8,10.0 \mathrm{~Hz}), 4.97(1 \mathrm{H}, t, J=$ $18.0 \mathrm{~Hz}), 4.41(1 \mathrm{H}, d d, J=10.0,16.4 \mathrm{~Hz}), 4.02(1 \mathrm{H}, d, J=16.4 \mathrm{~Hz}), 3.85(1 \mathrm{H}, t, J=14.0 \mathrm{~Hz}), 3.59-3.38(1 \mathrm{H}, m)$, 2.35-2.17 ($1 \mathrm{H}, m$), 2.03-1.80 ($3 \mathrm{H}, m$), $1.12(9 \mathrm{H}, s) .{ }^{13} \mathbf{C}-\mathrm{NMR}$ (rotamer in brackets, $\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta(\mathrm{ppm})$: 171.61 (171.44), $143.81,140.21$ (140.19), 138.64 (138.54), $137.54,137.08$ (137.02), 131.00, 130.87, 129.83, 129.38, $129.35,129.21,128.44$ (128.39), 128.11 (128.08), 127.51, $127.00,117.75$ (117.69), 100.49 (100.45), 63.29 (63.08), 58.14 (58.09), 51.56, $46.27,31.72$ (31.59), 26.94 (26.88), 23.57. EI-MS $m / z(\%): 614\left(\mathrm{M}^{+}, 4 \%\right), 509(7), 482$ (3), 458 (1), 420 (4), 405 (5), 309 (5), 278 (4), 236 (2), 182 (8), 180 (13), 146 (7), 128 (5), 106 (12), 91 (100). HRMS m / z Found: 614.1480, Calcd. for $\mathrm{C}_{30} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{SI}(\mathrm{M})^{+}: 614.1464$.

11a

(S,S)-N,N'-(((3S,3'S)-1,1'-dibenzyl-2,2'-dioxo-[3,3'-
biindoline]-3,3'-diyl)bis(ethane-2,1-diyl))bis(N -
benzyl-2-methylpropane-2-sulfinamide)
$(S, S)-N, N^{\prime}-\left(\left(\left(3 R, 3^{\prime} R\right)-1,1^{\prime}-\right.\right.$ dibenzyl-2,2'-dioxo-[3,3'-biindoline]-3,3'-diyl)bis(ethane-2,1-diyl))bis(N -benzyl-2-methylpropane-2-sulfinamide) $\mathrm{C}_{56} \mathrm{H}_{62} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}_{2}$ Mol. Wt.: 919.25

A mixture of copper iodide [CuI, $133.3 \mathrm{mg}, 0.7 \mathrm{mmol}, 0.1 \mathrm{eq}$.] and bromoanilide 11a ($3.78 \mathrm{~g}, 7.0 \mathrm{mmol}$) in anhydrous toluene (140 mL) was degassed and purged with argon (3 times). A solution of lithium bis(trimethylsilyl)amide (1.0 M in THF, $14 \mathrm{~mL}, 14 \mathrm{mmol}, 2.0 \mathrm{eq}$.) was added and the resulting mixture was stirred at $80^{\circ} \mathrm{C}$ (oil bath) under argon for 5 h . After cooling to room temperature then to $0{ }^{\circ} \mathrm{C}$, a solution of anhydrous t BuOOH (degassed and purged with argon, $\sim 3.0 \mathrm{M}$ in toluene, $3.5 \mathrm{~mL}, 10.5 \mathrm{mmol}, 1.5 \mathrm{eq}$.) was added. The reaction mixture was allowed to stir at $0{ }^{\circ} \mathrm{C}$ under argon for 3 h . Saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(8 \mathrm{~mL})$ was added. After 30 min , the mixture was diluted with water $(100 \mathrm{~mL})$. The aqueous phase was extracted with ethyl acetate ($3 \times$ 60 mL). The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvents, the residue was chromatographed on silica gel (Petroleum ether $60-90^{\circ} \mathrm{C}$: ethyl acetate $=2: 1 \rightarrow 1: 1 \rightarrow 1: 2$) to afford the major product ($\mathbf{1 3 a}+\mathbf{1 3 b}$, as a mixture of C3-C3a diasteromers, $2.51 \mathrm{~g}, 78.1 \%$) as pale yellow syrup. Further elution afforded the minor product (13c: meso-isomer, $0.23 \mathrm{~g}, 7.2 \%$) as a pale yellow oil, which was characterized after removal of the tert-butylsulfinyl group (13d).

* The anhydrous tert-butylhydroperoxide ($t-\mathrm{BuOOH}$) in toluene ($\mathrm{ca} . \sim 3.0 \mathrm{M}$) was prepared by the following procedure: 70% aqueous solution of $t-\mathrm{BuOOH}(40.6 \mathrm{~mL}$, density $=0.93 \mathrm{~g} / \mathrm{mL})$ was added to toluene (46 mL) and the resulting water (ca. 10 mL) was separated and back-extracted with toluene $(2 \times 10 \mathrm{~mL})$. The combined organic phases were then dried over anhydrous sodium sulfate. After filtration, the resulting solution was kept with $4 \AA$ molecular sieve and could be used for this reaction without further purification.
$\mathbf{1 3 a}+\mathbf{1 3 b}$: An 83:17 mixture of diastereomers at C3-C3' position: R_{f} : 0.45 (Petroleum ether: ethyl acetate $=1: 1$). FTIR (KBr, thin film) $\mathrm{cm}^{-1}: 3396,3057,2957,1705,1609,1460,1360,1176,1072,982,929,746,703 .{ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}$
(400 MHz, CDCl_{3}, major C3S-C3'S-isomer reported), $\delta(\mathrm{ppm})$: $7.34-7.18(2 \times 8 \mathrm{H}, m), 7.11-7.03(2 \times 2 \mathrm{H}, m), 6.81$ $(2 \times 1 \mathrm{H}, t, J=7.6 \mathrm{~Hz}), 6.68(2 \times 1 \mathrm{H}, d, J=7.2 \mathrm{~Hz}), 6.49(2 \times 1 \mathrm{H}, t, J=7.6 \mathrm{~Hz}), 6.27(2 \times 1 \mathrm{H}, d, J=7.6 \mathrm{~Hz}), 4.92$ $(2 \times 1 \mathrm{H}, d, J=15.6 \mathrm{~Hz}), 4.36(2 \times 1 \mathrm{H}, d, J=15.6 \mathrm{~Hz}), 4.21(2 \times 2 \mathrm{H}, s), 3.10(2 \times 1 \mathrm{H}, d d d, J=4.8,12.4,12.8 \mathrm{~Hz}), 2.51$ $(2 \times 1 \mathrm{H}, d d d, J=3.6,12.4,12.8 \mathrm{~Hz}), 2.37(2 \times 1 \mathrm{H}, d d d, J=4.0,13.2,13.6 \mathrm{~Hz}), 2.21-2.11(2 \times 1 \mathrm{H}, m), 1.17(2 \times 9 \mathrm{H}, s)$. ${ }^{13} \mathbf{C}$-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, major $\mathrm{C} 3 S$-C3' S-isomer reported), $\delta(\mathrm{ppm}): 176.69,142.50,137.07,135.38,129.02$, $128.87,128.54,128.39,127.75,127.69,127.50,126.79,123.58,122.17,108.69,58.37,54.28,52.40,44.02,43.58$, 27.78, 23.45. EI-MS $m / z(\%): 919\left(\mathrm{M}^{+}, 1 \%\right), 862(5), 813$ (3), 756 (50), 709 (12), 662 (25), 647 (24), 629 (12), 601 (16), 575 (49), 551 (51), 537 (39), 523 (56), 404 (18), 354 (28), 313 (22), 261 (18), 236 (25), 195 (17), 118 (27), 106 (27), 91 (100), 65 (18). HRMS m / z Found: 941.4114, Calcd. for $\mathrm{C}_{56} \mathrm{H}_{62} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{NaS}_{2}(\mathrm{M}+\mathrm{Na})^{+}: 941.4110$.

13c: $R_{\mathrm{f}}: 0.48$ (Petroleum ether: ethyl acetate $=1: 3$). HRMS m / z Found: 941.4113, Calcd. for $\mathrm{C}_{56} \mathrm{H}_{62} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{NaS}_{2}$ $(\mathrm{M}+\mathrm{Na})^{+}: 941.4110$.

13c: meso
(3R,3'S)-1,1'-dibenzyl-3,3'-bis(2-(benzylamino)ethyl)-[3,3'-biindoline]-2,2'-dione

13c \rightarrow 13d: meso-isomer: Sulfinamide (13c: $257 \mathrm{mg}, 0.28 \mathrm{mmol}$) was dissolved in methanol (6 mL). To this mixture was added an aqueous solution of $\mathrm{HCl}(4 \mathrm{~N}, 0.21 \mathrm{~mL}, 0.84 \mathrm{mmol}, 3 \mathrm{eq}$.). The resulting mixture was allowed to stir at room temperature under nitrogen for 1 h . The reaction mixture was then treated with saturated aqueous solution of sodium bicarbonate $(\sim 3 \mathrm{~mL})$ and concentrated under reduced pressure. The mixture was diluted with water (10 mL) and extracted with dichloromethane $(3 \times 5 \mathrm{~mL})$, the combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent, the residue was chromatographed on silica gel (Dichloromethane : Methanol = 20:1) to afford the amine (13d) (175mg, 88\%) as pale yellow syrup.
$R_{\mathrm{f}}: 0.35\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}: \mathrm{Et}_{3} \mathrm{~N}=20: 1: 0.01\right)$. FTIR $(\mathrm{KBr}$, thin film $) \mathrm{cm}^{-1}: 3475,2921,1704,1614,1454,1362$, 1102, 745. ${ }^{1} \mathbf{H}-\mathbf{N M R}$ (as a mixture of rotamers, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta(\mathrm{ppm})$: 7.32-6.29 $(2 \times 14 \mathrm{H}, m), 5.00-4.89(2 \times 1 \mathrm{H}$, $m), 4.76(2 \times 0.17 \mathrm{H}, d, J=16.0 \mathrm{~Hz}), 4.72(2 \times 0.17 \mathrm{H}, d, J=16.0 \mathrm{~Hz}), 4.43(2 \times 0.17 \mathrm{H}, d, J=15.2 \mathrm{~Hz}), 4.33(2 \times 0.34 \mathrm{H}$, $d, J=15.2 \mathrm{~Hz}), 4.19(2 \times 0.17 \mathrm{H}, d, J=15.2 \mathrm{~Hz}), 3.62-3.45(2 \times 2 \mathrm{H}, m), 3.24-3.12(2 \times 0.66 \mathrm{H}, m), 2.63-2.10(2 \times 3.34 \mathrm{H}$, $m), 1.18(2 \times 1 \mathrm{H}, b r s) .{ }^{13} \mathbf{C}-\mathbf{N M R}$ (as a mixture of rotamers, $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta(\mathrm{ppm}): 178.20$ (177.90), 143.07 (142.89), 140.82 (140.61), 140.33 (140.21), 136.12 (136.03), 135.78 (135.62), 131.83 (131.45), 128.87 (128.84), 128.65 (128.46), 128.31 (128.19), 128.15 (128.02), $127.91,127.86$ (127.72), 127.52 (127.45), 127.32, 127.00, $126.73,124.85$ (124.80), 123.92, 122.62 (122.56), 121.71 (121.59), 120.06 (119.86), $109.40,108.50$ (108.31),
107.32 (107.01), $55.19,53.97$ (53.64), 45.44, 44.19 (44.02), 29.10 (28.96). HRMS m / z Found: 711.3658 , Calcd. for $\mathrm{C}_{48} \mathrm{H}_{47} \mathrm{~N}_{4} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H})^{+}: 711.3699$.

A mixture of tris(dibenzylideneacetone)dipalladium $\left[\mathrm{Pd}_{2}(\mathrm{dba})_{3}\right.$, $\left.\mathrm{FW} 915.72,46.0 \mathrm{mg}, 0.05 \mathrm{mmol}, 0.025 \mathrm{eq}.\right]$ and triphenylphosphine (FW 262.29, $52 \mathrm{mg}, 0.2 \mathrm{mmol}, 0.1 \mathrm{eq}$.$) and bromoanilide 11a (1.08 \mathrm{~g}, 2.0 \mathrm{mmol}$) in anhydrous toluene (40 mL) was degassed and purged with argon (3 times). A solution of lithium bis(trimethylsilyl)amide (1.0 M in THF, $4 \mathrm{~mL}, 4 \mathrm{mmol}, 2.0$ eq.) was added and the resulting mixture was stirred at $80^{\circ} \mathrm{C}$ (oil bath) under argon for 6 h . After cooling to room temperature then $0^{\circ} \mathrm{C}$, a solution of anhydrous $t-\mathrm{BuOOH}(\sim 3.0 \mathrm{M}$ in toluene, 1.0 mL , $3 \mathrm{mmol}, 1.5 \mathrm{eq}$.) was added and the reaction mixture was stirred at $0^{\circ} \mathrm{C}(\mathrm{ca} .5 \mathrm{~h})$. Saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(0.5 \mathrm{~mL})$ was added. After 10 min , anhydrous sodium sulfate ($\mathrm{ca} .2-3 \mathrm{~g}$) was added. The resulting mixture was then filtered and washed with ethyl acetate $(3 \times 5 \mathrm{~mL})$. After removal of the solvents, the residue was chromatographed on silica gel (Petroleum ether $60-90^{\circ} \mathrm{C}$: ethyl acetate $=2: 1 \rightarrow 1: 1$) to afford the minor product (20b, $276 \mathrm{mg}, 28 \%$) as white plates. Further elution afforded the major product (20a, $489 \mathrm{mg}, 51 \%$) as a yellow solid.

20a: m.p.: $125-127^{\circ} \mathrm{C} . R_{\mathrm{f}}: 0.54$ (Petroleum ether: ethyl acetate $=1: 1$). FTIR (KBr , thin film) $\mathrm{cm}^{-1}: 3321$, 3057, $2958,2866,1722,1611,1460,1359,1273,1174,1068,928,743,704,633,596,464 .{ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}$ (as a mixture of rotamers, $\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta(\mathrm{ppm}): 7.30-7.11(12 \mathrm{H}, m), 7.08(0.5 \mathrm{H}, t, J=7.6 \mathrm{~Hz}), 7.07(0.5 \mathrm{H}, t, J=7.6 \mathrm{~Hz}), 6.92$ $(0.5 \mathrm{H}, t, J=7.6 \mathrm{~Hz}), 6.91(0.5 \mathrm{H}, t, J=7.6 \mathrm{~Hz}), 6.61(0.5 \mathrm{H}, d, J=7.6 \mathrm{~Hz}), 6.60(0.5 \mathrm{H}, d, J=7.6 \mathrm{~Hz}), 5.07(0.5 \mathrm{H}, s)$, $5.04(0.5 \mathrm{H}, s), 4.86(0.5 \mathrm{H}, d, J=15.6 \mathrm{~Hz}), 4.83(0.5 \mathrm{H}, d, J=15.6 \mathrm{~Hz}), 4.61(0.5 \mathrm{H}, d, J=15.6 \mathrm{~Hz}), 4.59(0.5 \mathrm{H}, d, J$ $=15.6 \mathrm{~Hz}), 4.19(0.5 \mathrm{H}, d, J=15.2 \mathrm{~Hz}), 4.17(0.5 \mathrm{H}, d, J=15.2 \mathrm{~Hz}), 4.02(0.5 \mathrm{H}, d, J=15.2 \mathrm{~Hz}), 4.01(0.5 \mathrm{H}, d, J=$ $15.2 \mathrm{~Hz}), 3.10-2.95(1 \mathrm{H}, m), 2.93-2.70(1 \mathrm{H}, m), 2.38-2.18(2 \mathrm{H}, m), 1.10(4.5 \mathrm{H}, s), 1.09(4.5 \mathrm{H}, s) .{ }^{13} \mathbf{C}$-NMR (rotamer in brackets, $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta(\mathrm{ppm}): 177.54,141.86,136.62$ (136.56), 135.29, 129.86 (129.80), 129.21, 128.60, 128.36 (128.30), 127.41 (127.20), 127.03 (127.00), 123.73 (123.68), 122.88, 109.24, 74.75 (74.71), 57.97, $51.24,43.46,42.72,36.55$ (36.43), 23.09. HRMS m / z Found: 499.2028, Calcd. for $\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{NaO}_{3} \mathrm{~S}(\mathrm{M}+\mathrm{Na})^{+}$: 499.2031 .

20b: m.p.: $113-115{ }^{\circ} \mathrm{C} . R_{\mathrm{f}}: 0.52$ (Petroleum ether: ethyl acetate $=2: 1$). FTIR $\left(\mathrm{KBr}\right.$, thin film) $\mathrm{cm}^{-1}: 3415,3059$, $2980,2930,1718,1612,1462,1360,1310,1172,1124,996,934,743,702,645,521 .{ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}$ (as a mixture of rotamers, $\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta(\mathrm{ppm}): 7.39-7.10(12 \mathrm{H}, m), 6.95(1 \mathrm{H}, t, J=7.6 \mathrm{~Hz}), 6.63(1 \mathrm{H}, t, J=7.6 \mathrm{~Hz}), 4.90$
$(0.4 \mathrm{H}, d, J=16.0 \mathrm{~Hz}), 4.89(0.6 \mathrm{H}, d, J=16.0 \mathrm{~Hz}), 4.62(0.4 \mathrm{H}, d, J=15.6 \mathrm{~Hz}), 4.61(0.6 \mathrm{H}, d, J=15.6 \mathrm{~Hz}), 4.51-$ $4.37(1 \mathrm{H}, b r s), 4.05(0.4 \mathrm{H}, s), 3.99(0.6 \mathrm{H}, s), 3.32-3.11(2 \mathrm{H}, m), 2.27-2.15(2 \mathrm{H}, m), 1.40(4.5 \mathrm{H}, s), 1.39(4.5 \mathrm{H}, s)$. ${ }^{13}$ C-NMR (100 MHz, CDCl_{3}), $\delta(\mathrm{ppm}): 177.44,141.95,136.04,135.31,129.61,129.37,128.82,128.57,127.79$, 127.66, 127.15, 123.77, 123.18, 109.52, 74.81, 61.62, 52.20, 43.69, 42.52, 36.79, 24.79. HRMS m/z Found: 515.1974, Calcd. for $\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{NaO}_{4} \mathrm{~S}(\mathrm{M}+\mathrm{Na})^{+}$: 515.1975.

$\mathrm{C}_{60} \mathrm{H}_{66} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}_{2}$ Mol. Wt.: 970.45
21a: $(S, S)-N, N^{\prime}-\left(\left(2 S, 2^{\prime} S\right)-\left((3 S, 3 ' S)-1,1^{\prime}-d i b e n z y l-2,2^{\prime}-\right.\right.$ dioxo-[3,3'-biindoline]-3,3'-diyl)bis(but-3-ene-2,1-dioxo-[3,3'-biindoline]-3,3'-diyl)bis(but-3-ene-2,1diyl))bis(N-benzyl-2-methylpropane-2-sulfinamide)

To a mixture of copper iodide [CuI, $190 \mathrm{mg}, 1.0 \mathrm{mmol}, 0.1 \mathrm{eq}$.$] and o$-iodoanilide $\mathbf{1 1 b}(6.14 \mathrm{~g}, 10.0 \mathrm{mmol})$ in anhydrous toluene (200 mL) was added a solution of lithium bis(trimethylsilyl)amide (1.0 M in THF, $20 \mathrm{~mL}, 20$ $\mathrm{mmol}, 2.0 \mathrm{eq}$.$) . The resulting mixture was degassed and purged with argon (3$ times). The reaction mixture was then allowed to stir at $60^{\circ} \mathrm{C}$ (oil bath) under argon for 5 h . After cooling to room temperature then to $0^{\circ} \mathrm{C}$, a solution of anhydrous t - BuOOH (degassed and purged with argon, $\sim 3.0 \mathrm{M}$ in toluene, $5.0 \mathrm{~mL}, 15 \mathrm{mmol}, 1.5 \mathrm{eq}$.) was added. The reaction mixture was then stirred at $0{ }^{\circ} \mathrm{C}$ under argon for 3 h . Saturated aqueous solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(10 \mathrm{~mL})$ was added followed by saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$. After 30 min , the resulting mixture was diluted with water $(200 \mathrm{~mL})$ and extracted with ethyl acetate $(3 \times 100 \mathrm{~mL})$. The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvents, the residue was chromatographed on silica gel (Petroleum ether $60-90^{\circ} \mathrm{C}$: ethyl acetate $=2: 1 \rightarrow 1: 1 \rightarrow 1: 2$) to afford the major product ($21 \mathrm{a}, 2.42 \mathrm{~g}, 50 \%$) as a pale yellow syrup. Further elution afforded the meso-isomer (21c, characterized after removal of tert-butylsulfinyl group, $0.205 \mathrm{~g}, 4.2 \%$), followed by minor product ($\mathbf{2 1 b}$, characterized after removal of the tert-butylsulfinyl group, 0.40 g , 8.2%) as a pale yellow oil.

21a (major isomer): $[\alpha]^{20}{ }_{\mathrm{D}}-211$ (c $0.14, \mathrm{CHCl}_{3}$). R_{f} : 0.55 (Petroleum ether: ethyl acetate $=1: 1$). FTIR (KBr , thin film) $\mathrm{cm}^{-1}: 3440,2960,1702,1609,1465,1361,1177,1071,924,745,701 .{ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta(\mathrm{ppm})$: $7.45(2 \times 2 \mathrm{H}, d, J=8.0 \mathrm{~Hz}), 7.42(2 \times 2 \mathrm{H}, d, J=8.0 \mathrm{~Hz}), 7.32-7.25(2 \times 1 \mathrm{H}, m), 7.21-7.11(2 \times 3 \mathrm{H}, m), 7.01(2 \times 2 \mathrm{H}, d, J$ $=7.2 \mathrm{~Hz}), 6.85(2 \times 1 \mathrm{H}, d, J=7.6 \mathrm{~Hz}), 6.79(2 \times 1 \mathrm{H}, t, J=7.6 \mathrm{~Hz}), 6.52(2 \times 1 \mathrm{H}, t, J=7.6 \mathrm{~Hz}), 6.21(2 \times 1 \mathrm{H}, d, J=8.0$
$\mathrm{Hz}), 5.21(2 \times 1 \mathrm{H}, d d d, J=9.6,10.4,16.8 \mathrm{~Hz}), 4.80(2 \times 1 \mathrm{H}, d, J=15.2 \mathrm{~Hz}), 4.58(2 \times 1 \mathrm{H}, d, J=16.8 \mathrm{~Hz}), 4.14(2 \times 1 \mathrm{H}$, $d, J=15.2 \mathrm{~Hz}), 4.13(2 \times 1 \mathrm{H}, d, J=10.4 \mathrm{~Hz}), 3.90(2 \times 1 \mathrm{H}, d, J=17.2 \mathrm{~Hz}), 3.84(2 \times 1 \mathrm{H}, d, J=17.2 \mathrm{~Hz}), 3.29(2 \times 1 \mathrm{H}$, $d d, J=11.2,13.0 \mathrm{~Hz}), 3.02-2.89(2 \times 2 \mathrm{H}, m), 1.18(2 \times 9 \mathrm{H}, s) .{ }^{13} \mathbf{C}-\mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta(\mathrm{ppm}): 176.36,142.92$, 138.63, 137.51, 135.60, 128.65, 128.57, 128.24, 128.11, 127.93, 127.59, 127.29, 126.97, 125.34, 121.21, 115.89, 108.09, 62.93, 58.10, 54.96, 45.28, 43.83, 33.08, 23.35. HRMS m / z Found: 971.4619 , Calcd. for $\mathrm{C}_{60} \mathrm{H}_{67} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}_{2}$ $(\mathrm{M}+\mathrm{H})^{+}: 971.4604$.

21b (minor-isomer): HRMS m / z Found: 993.4416, Calcd. for $\mathrm{C}_{60} \mathrm{H}_{66} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}_{2} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}: 993.4423$.
21c (meso-isomer): HRMS m / z Found: 993.4426, Calcd. for $\mathrm{C}_{60} \mathrm{H}_{66} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}_{2} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}$: 993.4423.

21b: minor isomer

(3R,3'R)-1,1'-dibenzyl-3,3'-bis((S)-2-(benzylamino)but-3-en-1-yl)-[3,3'-biindoline]-2,2'-dione

21d $\mathrm{C}_{52} \mathrm{H}_{50} \mathrm{~N}_{4} \mathrm{O}_{2}$ Mol. Wt.: 762.98

21b $\boldsymbol{\rightarrow}$ 21d (minor-isomer): Sulfinamide (21b: $400 \mathrm{mg}, 0.41 \mathrm{mmol}$) was dissolved in methanol (6 mL). To this mixture was added an aqueous solution of $\mathrm{HCl}(4 \mathrm{~N}, 0.31 \mathrm{~mL}, 1.23 \mathrm{mmol}, 3 \mathrm{eq}$.$) . The resulting mixture was allowed$ to stir at room temperature under nitrogen for 1 h . The reaction mixture was then treated with saturated aqueous solution of sodium bicarbonate ($\sim 8 \mathrm{~mL}$) and concentrated under reduced pressure. The mixture was diluted with water (10 mL) and extracted with dichloromethane $(3 \times 10 \mathrm{~mL})$, the combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent, the residue was chromatographed on silica gel (Petroleum ether $60-90^{\circ} \mathrm{C}$: ethyl acetate $\left.=2: 1\right)$ to afford the diamine $(\mathbf{2 1 d})(290 \mathrm{mg}, 92 \%)$ as yellow oil.

21d (minor isomer): $[\alpha]^{20}{ }_{\mathrm{D}}-153$ (c $0.18, \mathrm{CHCl}_{3}$). R_{f} : 0.42 (Petroleum ether: ethyl acetate $=1: 1$). FTIR (KBr , thin film) $\mathrm{cm}^{-1}: 3420,3061,2925,2843,2357,1712,1608,1482,1460,1358,1175,1110,991,921,743,701 .{ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}$ (as a mixture of rotamers, $\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta(\mathrm{ppm}): 7.50-6.31(2 \times 14 \mathrm{H}, m), 5.62-5.46(2 \times 1 \mathrm{H}, m), 5.10-4.72$ $(2 \times 2.35 \mathrm{H}, m), 4.56(2 \times 0.33 \mathrm{H}, d, J=16.0 \mathrm{~Hz}), 4.44(2 \times 0.33 \mathrm{H}, d, J=15.6 \mathrm{~Hz}), 4.33(2 \times 0.67 \mathrm{H}, d d, J=11.6,15.6$ $\mathrm{Hz}), 4.03(2 \times 0.33 \mathrm{H}, d, J=15.6 \mathrm{~Hz}), 3.66(2 \times 0.33 \mathrm{H}, d, J=13.2 \mathrm{~Hz}), 3.55(2 \times 0.33 \mathrm{H}, d, J=13.2 \mathrm{~Hz}), 3.49(2 \times 0.33 \mathrm{H}$, $d, J=12.8 \mathrm{~Hz}), 3.43-3.31(2 \times 0.67 \mathrm{H}, m), 3.14(2 \times 0.33 \mathrm{H}, d, J=13.2 \mathrm{~Hz}), 3.02(2 \times 0.33 \mathrm{H}, d, J=13.2 \mathrm{~Hz}), 2.91-2.80$ $(2 \times 0.33 \mathrm{H}, m), 2.77(2 \times 0.33 \mathrm{H}, d, J=12.8 \mathrm{~Hz}), 2.67-2.50(2 \times 1 \mathrm{H}, m), 2.50-2.38(2 \times 0.67 \mathrm{H}, m), 2.22-2.14(2 \times 0.33 \mathrm{H}$, $m), 0.97(2 \times 1 \mathrm{H}$, brs $) .{ }^{13} \mathbf{C}-\mathbf{N M R}$ (rotamer in brackets, $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta(\mathrm{ppm}): 179.54$ (179.21), 143.82 (143.70), $141.22,140.53$ (140.42), $140.35,140.14$ (140.09), 136.39, 136.06 (135.86), 130.91, 128.87 (128.61), 128.49
(128.45), 128.36, 128.21 (128.13), 128.04, 127.86 (127.83), 127.52, 127.39 (127.34), $127.24,126.76$ (126.59), 126.42 (126.35), $125.26,124.76,121.94$ (121.29), $119.45,115.73,115.44$ (115.21), 109.33, 108.16 (107.18), 58.37, 58.09 (57.68), 54.81, 54.74 (54.59), $50.81,50.75$ (50.42), 44.57 (44.42), 44.11 (44.06), 34.89. HRMS m / z Found: 763.4008, Calcd. for $\mathrm{C}_{52} \mathrm{H}_{51} \mathrm{~N}_{4} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H})^{+}: 763.4012$.

21c \rightarrow 21e (meso-isomer): Sulfinamide (21c: $205 \mathrm{mg}, 0.21 \mathrm{mmol}$) was dissolved in methanol (6 mL). To this mixture was added an aqueous solution of $\mathrm{HCl}(4 \mathrm{~N}, 0.16 \mathrm{~mL}, 0.63 \mathrm{mmol}, 3 \mathrm{eq}$.$) . The resulting mixture was allowed to stir at$ room temperature under nitrogen for 1 h . The reaction mixture was then treated with saturated aqueous solution of sodium bicarbonate $(\sim 4 \mathrm{~mL})$ and concentrated under reduced pressure. The mixture was diluted with water (10 mL) and extracted with dichloromethane $(3 \times 5 \mathrm{~mL})$, the combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent, the residue was chromatographed on silica gel ((Petroleum ether $60-90{ }^{\circ} \mathrm{C}$: ethyl acetate $=1: 2)$) to afford the diamine (21e) $(145 \mathrm{mg}, 91 \%)$ as yellow syrup.

21e (meso-isomer): $[\alpha]^{20}{ }_{\mathrm{D}}-29$ (c $0.18, \mathrm{CHCl}_{3}$). $R_{\mathrm{f}}: 0.41$ (Petroleum ether: ethyl acetate $=1: 3$). FTIR (KBr , thin film) $\mathrm{cm}^{-1}: 3311,3062,2975,2924,2846,1704,1613,1492,1455,1354,1257,1182,1113,995,921,742,703,634 .{ }^{1} \mathbf{H}-$ NMR (as a mixture of rotamers, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta(\mathrm{ppm}): 7.23-7.01(2 \times 9 \mathrm{H}, m), 6.96-6.60(2 \times 4 \mathrm{H}, m), 6.48$ $(2 \times 0.5 \mathrm{H}, d, J=8.0 \mathrm{~Hz}), 6.45(2 \times 0.5 \mathrm{H}, d, J=8.0 \mathrm{~Hz}), 5.56-5.35(2 \times 1 \mathrm{H}, m), 4.98(2 \times 0.5 \mathrm{H}, d, J=16.0 \mathrm{~Hz}), 4.87$ $(2 \times 0.5 \mathrm{H}, d, J=10.0 \mathrm{~Hz}), 4.87(2 \times 0.5 \mathrm{H}, d, J=10.0 \mathrm{~Hz}), 4.76(2 \times 0.5 \mathrm{H}, d, J=15.6 \mathrm{~Hz}), 4.68(2 \times 0.5 \mathrm{H}, d, J=16.8$ $\mathrm{Hz}), 4.54(2 \times 0.5 \mathrm{H}, d, J=16.8 \mathrm{~Hz}), 4.32(2 \times 0.5 \mathrm{H}, b r s), 3.88(2 \times 0.5 \mathrm{H}, b r s), 3.55(2 \times 0.5 \mathrm{H}, d, J=13.2 \mathrm{~Hz}), 3.49$ $(2 \times 0.5 \mathrm{H}, d, J=13.2 \mathrm{~Hz}), 3.13(2 \times 0.5 \mathrm{H}, d, J=13.2 \mathrm{~Hz}), 3.01(2 \times 0.5 \mathrm{H}, d, J=13.2 \mathrm{~Hz}), 3.00(2 \times 0.5 \mathrm{H}, b r s), 2.92$ $(2 \times 1 \mathrm{H}, b r s), 2.68-2.50(2 \times 2 \mathrm{H}, m), 0.97(2 \times 1 \mathrm{H}, b r s) .{ }^{13} \mathbf{C}-\mathrm{NMR}$ (rotamer in brackets, $\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta(\mathrm{ppm}):$ 178.05 (176.96), 145.05 (144.20), 140.49 (140.39), 140.31 (140.19), 136.17 (135.85), 128.56 (128.44), 128.22 (128.00), 127.55, 127.25 (127.21), $126.95,126.69$ (126.56), 125.10, 124.54, 121.74 (121.45), 115.99 (115.44), 109.41 (109.30), 58.75 (58.56), 55.83 (55.34), 50.92 (50.85), $44.37,37.69$ (36.62). HRMS m / z Found: 763.4003, Calcd. for $\mathrm{C}_{52} \mathrm{H}_{51} \mathrm{~N}_{4} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H})^{+}: 763.4012$.

(S,S)-N,N'-((2S,2'S)-((3S,3'S)-1,1'-dibenzyl-2,2'-dioxo-[3,3'-biindoline]-3,3'-diyl)bis(1-hydroxypropane-3,2-diyl))bis(N-benzyl-2-methylpropane-2-sulfinamide)

22: $\mathrm{C}_{58} \mathrm{H}_{66} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{~S}_{2}$ Mol. Wt.: 979.30

A solution of 21a ($485 \mathrm{mg}, 0.5 \mathrm{mmol}$) in dichloromethane and methanol ($20 \mathrm{~mL}, 1: 1 \mathrm{mixture}$) was cooled to $-78{ }^{\circ} \mathrm{C}$ (dry ice-acetone bath). Ozone was then passed through the solution for 10 minutes. The reaction progress was monitored by TLC. Sodium borohydride ($189 \mathrm{mg}, 5 \mathrm{mmol}, 10$ eq.) was added. The reaction mixture was then gradurally warmed up to room termperature under argon at stirration overnight. Saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ was added. The resulting mixture was diluted with water (20 mL) and extracted with dichloromethane $(3 \times 20 \mathrm{~mL})$. The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvents, the residue was chromatographed on silica gel (Petroleum ether $60-90^{\circ} \mathrm{C}$: ethyl acetate $=1: 2$) to afford the product ($22,401 \mathrm{mg}, 82 \%$) as a pale yellow syrup.

22: $[\alpha]^{20}{ }_{\mathrm{D}}-332\left(\mathrm{c} 0.14, \mathrm{CHCl}_{3}\right) . R_{\mathrm{f}}: 0.45$ (Petroleum ether: ethyl acetate $=1: 2$). FTIR (KBr , thin film) $\mathrm{cm}^{-1}: 3730$, 3436, 2921, 2351, 1703, 1609, 1460, 1364, 1174, 1046, 745. ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta(\mathrm{ppm}): 7.51(2 \times 2 \mathrm{H}, d$, $J=7.6 \mathrm{~Hz}), 7.35(2 \times 2 \mathrm{H}, t, J=7.6 \mathrm{~Hz}), 7.25-7.16(2 \times 4 \mathrm{H}, m), 7.04(2 \times 2 \mathrm{H}, d d, J=1.6,7.6 \mathrm{~Hz}), 6.92(2 \times 1 \mathrm{H}, d, J=$ $6.8 \mathrm{~Hz}), 6.88(2 \times 1 \mathrm{H}, d, J=8.0 \mathrm{~Hz}), 6.63(2 \times 1 \mathrm{H}, t, J=7.6 \mathrm{~Hz}), 6.32(2 \times 1 \mathrm{H}, d, J=8.0 \mathrm{~Hz}), 4.84(2 \times 1 \mathrm{H}, d, J=15.6$ $\mathrm{Hz}), 4.52(2 \times 1 \mathrm{H}, d, J=16.8 \mathrm{~Hz}), 4.35(2 \times 1 \mathrm{H}, d, J=15.6 \mathrm{~Hz}), 3.90(2 \times 1 \mathrm{H}, d, J=16.8 \mathrm{~Hz}), 3.12(2 \times 1 \mathrm{H}, d d d, J=3.6$, $11.0,12.8 \mathrm{~Hz}), 3.03(2 \times 1 \mathrm{H}, d d, J=9.2,14.0 \mathrm{~Hz}), 2.92(2 \times 1 \mathrm{H}, d, J=14.0 \mathrm{~Hz}), 2.59(2 \times 1 \mathrm{H}, d d d, J=3.2,9.2,12.8$ $\mathrm{Hz}), 2.05-1.97(2 \times 1 \mathrm{H}, m), 1.20(2 \times 9 \mathrm{H}, s) .{ }^{13} \mathbf{C}-\mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta(\mathrm{ppm}): 176.31,142.80,138.33,135.12$, 129.09 , 128.92, 128.78, 128.38, 127.78, 127.63, 127.35, 124.16, 122.28, 109.11, 63.92, 63.28, 58.37, 55.42, 45.36, 44.02, 30.25, 23.75. HRMS m / z Found: 979.4513, Calcd. for $\mathrm{C}_{58} \mathrm{H}_{67} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{~S}_{2}(\mathrm{M}+\mathrm{H})^{+}: 979.4502$.

(S,2S,2'S)-((3S,3'S)-1,1'-dibenzyl-2,2'-dioxo-[3,3'-biindoline]-3,3'-diyl)bis(2-((S)-N-benzyl-2-methylpropan-2-ylsulfinamido)propane-3,1-diyl) bis(4-fluorobenzenesulfonate)

23: $\mathrm{C}_{70} \mathrm{H}_{72} \mathrm{~F}_{2} \mathrm{~N}_{4} \mathrm{O}_{10} \mathrm{~S}_{4}$ Mol. Wt.: 1295.60

To a mixture of diol $22(49 \mathrm{mg}, 0.05 \mathrm{mmol})$, trimethylamine ($20 \mathrm{mg}, 0.027 \mathrm{~mL}, 0.2 \mathrm{mmol}$) and DMAP ($3 \mathrm{mg}, 0.025$ mmol) in dichloromethane (5 mL) was added 4-fluorobenzene-1-sulfonyl chloride ($39 \mathrm{mg}, 0.2 \mathrm{mmol}, 4.0$ eq.). The resulting mixture was then allowed to stir at room termperature for 6 h . A solution of saturated aqueous solution of $\mathrm{NaHCO}_{3}(2 \mathrm{~mL})$ was added and diluted with water $(5 \mathrm{~mL})$. The mixture was extracted with dichloromethane $(3 \times 4$ mL). The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvents, the residue was chromatographed on silica gel (Petroleum ether $60-90^{\circ} \mathrm{C}$: ethyl acetate $=1: 1$) to afford the product (23, 60 mg , 92%) as a plate. An X-ray crystallography analysis of compound 23 was conducted to determine the absolute configuration.*

23: m.p.: $127-129{ }^{\circ} \mathrm{C} .[\alpha]^{20}{ }_{\mathrm{D}}-160\left(\mathrm{c} 0.72, \mathrm{CHCl}_{3}\right.$). $R_{\mathrm{f}}: 0.55$ (Petroleum ether: ethyl acetate $=1: 1$). FTIR (KBr , thin film) $\mathrm{cm}^{-1}: 3730,3456,2921,2351,1703,1459,1368,1016,752 .{ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta(\mathrm{ppm}): 7.46$ $(2 \times 2 \mathrm{H}, d, J=7.6 \mathrm{~Hz}), 7.42-7.31(2 \times 4 \mathrm{H}, m), 7.28-7.20(2 \times 2 \mathrm{H}, m), 7.16(2 \times 2 \mathrm{H}, t, J=7.6 \mathrm{~Hz}), 6.96-6.76(2 \times 6 \mathrm{H}, m)$, $6.52(2 \times 1 \mathrm{H}, m), 6.23(2 \times 1 \mathrm{H}, d, J=7.2 \mathrm{~Hz}), 4.64(2 \times 1 \mathrm{H}, d, J=15.6 \mathrm{~Hz}), 4.63(2 \times 1 \mathrm{H}, d, J=17.2 \mathrm{~Hz}), 4.13(2 \times 1 \mathrm{H}$, $d, J=15.6 \mathrm{~Hz}), 3.83(2 \times 1 \mathrm{H}, d, J=17.2 \mathrm{~Hz}), 3.82(2 \times 1 \mathrm{H}, d, J=10.8 \mathrm{~Hz}), 3.20-3.01(2 \times 2 \mathrm{H}, m), 2.84(2 \times 1 \mathrm{H}, d d, J=$ $2.8,10.8 \mathrm{~Hz}), 2.71-2.61(2 \times 1 \mathrm{H}, m), 1.27(2 \times 9 \mathrm{H}, s) .{ }^{13} \mathbf{C}-\mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta(\mathrm{ppm}): 176.36,166.80,164.25$, $142.70,137.16,135.09,131.64,130.51,130.41,129.61,129.14,128.95,128.70,128.61,128.33,127.75,127.53$, $127.32,126.55,124.09,122.18,116.52,116.29,109.37,70.58,58.80,58.48,55.14,46.39,44.03,30.62,23.60$. HRMS m / z Found: 1317.3994, Calcd. for $\mathrm{C}_{70} \mathrm{H}_{72} \mathrm{~N}_{4} \mathrm{O}_{10} \mathrm{~S}_{4} \mathrm{~F}_{2} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}$: 1317.3997.
*Dr. Xiaonian Li in Kunming Institute of Botany is gratefully acknowledged for X-ray crystallography analysis of compound 23.

Crystal data for mo_zhb_s3_0m: $\mathrm{C}_{70} \mathrm{H}_{72} \mathrm{~F}_{2} \mathrm{~N}_{4} \mathrm{O}_{10} \mathrm{~S}_{4} \cdot \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}, M=1383.66$, orthorhombic, $a=$ 10.1404(9) $\AA, b=25.087(2) \AA, c=27.663(3) \AA, \alpha=90.00^{\circ}, \beta=90.00^{\circ}, \gamma=90.00^{\circ}, V=7037.4(11)$ $\AA^{3}, T=100(2) \mathrm{K}$, space group $P 212121, Z=4, \mu(\mathrm{MoK} \alpha)=0.205 \mathrm{~mm}^{-1}, 70275$ reflections measured, 17497 independent reflections $\left(R_{\text {int }}=0.0645\right)$. The final R_{l} values were $0.0434(I>2 \sigma(I))$. The final $w R\left(F^{2}\right)$ values were $0.0969(I>2 \sigma(I))$. The final R_{I} values were 0.0596 (all data). The final $w R\left(F^{2}\right)$ values were 0.1063 (all data). The goodness of fit on F^{2} was 1.030. Flack parameter $=0.03(4)$.

View of the molecules in an asymmetric unit.
Displacement ellipsoids are drawn at the 30% probability level.

View of a molecule of zhb_s3 with the atom-labelling scheme.
Displacement ellipsoids are drawn at the 30% probability level.

Prediction of stereochemistry for copper catalyzed arylation-oxidative dimerization of \boldsymbol{o}-bromoanilides.

Favored approach, resulting in the major dimeric diastereoisomer (C3S-C3'S) $+$

Unfavored approach, resulting in the minor dimeric diastereoisomer (C3R-C3'R)
resulting in the meso-form

13a': $(R, R)-N, N-\left(\left(\left(3 R, 3^{\prime} R\right)-1,1^{\prime}\right.\right.$-dibenzyl-2,2'-dioxo-[3,3'-biindoline]-3,3'-diyl)bis(ethane-2,1-diyl))bis(N-benzyl-2-methylpropane-2sulfinamide)

13b': $(R, R)-N, N-(((3 S, 3 ' S)-1,1$ '-dibenzyl-2,2'-dioxo-[3,3'-biindoline]-3,3'-diyl)bis(ethane-2,1-diyl))bis(N-benzyl-2-methylpropane-2sulfinamide)
$\mathrm{C}_{56} \mathrm{H}_{62} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}_{2}$ Mol. Wt.: 919.25

To a mixture of copper iodide [CuI, $190.4 \mathrm{mg}, 1.0 \mathrm{mmol}, 0.1 \mathrm{eq}$.$] and bromoanilide 11 \mathbf{a}^{\prime}(5.41 \mathrm{~g}, 10 \mathrm{mmol})$ in anhydrous toluene $(200 \mathrm{~mL})$ was added a solution of lithium bis(trimethylsilyl)amide (1.0 M in THF, $20 \mathrm{~mL}, 20$ mmol, 2.0 eq.). The resulting mixture was degassed and purged with argon (3 times). After which, the reaction mixture was stirred at $80^{\circ} \mathrm{C}$ (oil bath) under argon for 5 h . After cooling to room temperature then to $0{ }^{\circ} \mathrm{C}$, a solution of anhydrous t - $\mathrm{BuOOH}(\sim 3 \mathrm{M}$ in toluene, $5.0 \mathrm{~mL}, 15 \mathrm{mmol}, 1.5 \mathrm{eq}$.) was added. The reaction mixture was allowed to stir at $0{ }^{\circ} \mathrm{C}$ under argon for 3 h . Saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ was added. After 30 min , the mixture was diluted with water $(200 \mathrm{~mL})$. The resulting mixture was then extracted with ethyl acetate $(3 \times 100$ mL). The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvents, the residue was chromatographed on silica gel (Petroleum ether $60-90^{\circ} \mathrm{C}$: ethyl acetate $=1: 1 \rightarrow 1: 2 \rightarrow 1: 3$) to afford the major product ($\mathbf{1 3} \mathbf{a}^{\prime}+\mathbf{1 3} \mathbf{b}^{\prime}, 3.59 \mathrm{~g}, 78 \%$) as a pale yellow syrup. Further elution afforded the minor product ($\mathbf{1 3} \mathbf{c}^{\prime}, 0.32 \mathrm{~g}$, 7%) as a pale yellow oil, which was characterized after removal of tert-butylsulfinyl group (see 13d).

13a' + 13b': An 84:16 mixture of diastereomers at C3-C3' position: $R_{\mathrm{f}}: 0.45$ (Petroleum ether: ethyl acetate $=1: 1$). FTIR (KBr, thin film) $\mathrm{cm}^{-1}: 3429,2969,2352,1702,1612,1456,1365,1052 .{ }^{1} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, major C3R-C3' R-isomer reported), $\delta(\mathrm{ppm})$: 7.37-7.19 $(2 \times 8 \mathrm{H}, m), 7.10-7.03(2 \times 2 \mathrm{H}, m), 6.81(2 \times 1 \mathrm{H}, t, J=7.6 \mathrm{~Hz}), 6.68$ $(2 \times 1 \mathrm{H}, d, J=7.6 \mathrm{~Hz}), 6.49(2 \times 1 \mathrm{H}, t, J=7.6 \mathrm{~Hz}), 6.26(2 \times 1 \mathrm{H}, d, J=8.0 \mathrm{~Hz}), 4.91(2 \times 1 \mathrm{H}, d, J=15.6 \mathrm{~Hz}), 4.36$ $(2 \times 1 \mathrm{H}, d, J=15.6 \mathrm{~Hz}), 4.21(2 \times 2 \mathrm{H}, s), 3.11(2 \times 1 \mathrm{H}, d d d, J=4.4,12.4,12.8 \mathrm{~Hz}), 2.48(2 \times 1 \mathrm{H}, d d d, J=3.6,12.4$, $12.8 \mathrm{~Hz}), 2.37(2 \times 1 \mathrm{H}, d d d, J=3.6,13.2,13.6 \mathrm{~Hz}), 2.22-2.10(2 \times 1 \mathrm{H}, m), 1.17(2 \times 9 \mathrm{H}, s) .{ }^{13} \mathbf{C}-\mathrm{NMR}(100 \mathrm{MHz}$, CDCl_{3}, major $\mathrm{C} 3 R$-C3' R-isomer reported), $\delta(\mathrm{ppm})$: $176.63,142.44,137.01,135.32,128.96,128.81,128.49$, $128.34,127.70,127.64,127.45,126.80,126.72,123.52,122.11,108.63,58.31,54.22,52.40,43.96,43.51,27.70$, 23.40. EI-MS $m / z(\%): 919$ (${ }^{+}, 1 \%$), 918 (1\%), 706 (2), 588 (3), 575 (1), 354 (3), 249 (2), 236 (4), 223 (4), 132
(10), 118 (19), 106 (7), 91 (100), 65 (5). HRMS m/z Found: 918.4224, Calcd. for $\mathrm{C}_{56} \mathrm{H}_{62} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}_{2}(\mathrm{M})^{+}: 918.4213$; Found: 919.4307, Calcd. for $\mathrm{C}_{56} \mathrm{H}_{63} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}_{2}(\mathrm{M}+\mathrm{H})^{+}$: 919.4291 .

$24 \mathrm{C}_{48} \mathrm{H}_{46} \mathrm{~N}_{4} \mathrm{O}_{2}$
Mol. Wt.: 710.90

24: (3R,3'R)-1,1'-dibenzyl-3,3'-bis(2-(benzylamino)ethyl)-[3,3'-biindoline]-2,2(3R,3'R)-1,1'-dibenzyl-3,3'-bis(2-(benzylamino)ethyl)-[3,3'-biindoline]-2,2'-dione

Sulfinamide (13a' + 13b': 3.59 g , 3.9 mmol) was dissolved in methanol (60 mL). To this mixture was added an aqueous solution of $\mathrm{HCl}(4 \mathrm{~N}, 2.9 \mathrm{~mL}, 11.7 \mathrm{mmol}, 3 \mathrm{eq}$.$) . The resulting mixture was allowed to stir at room$ temperature under nitrogen for 1 h . The reaction mixture was then treated with saturated aqueous solution of sodium bicarbonate ($\sim 50 \mathrm{~mL}$) and concentrated under reduced pressure. The mixture was diluted with water (100 mL) and extracted with dichloromethane $(3 \times 50 \mathrm{~mL})$, the combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent, the residue was chromatographed on silica gel (Dichloromethane : Methanol = $20: 1$) to afford the amine (24) (2.63g, 95%) as white foam. $*^{1}$ The diamine was dissolved in methanol (20 mL) and HCl $(2 \mathrm{~N}, 5.6 \mathrm{~mL}, 11.1 \mathrm{mmol}, 3.0 \mathrm{eq}$.$) was added. This solution was allowed to crystallize at room temperature. The$ needle-like crystals were collected and subjected to HPLC analysis (a $1: 1$ mixture of $\mathrm{C} 3 R-\mathrm{C} 3{ }^{\prime} R$ and $\mathrm{C} 3 S-\mathrm{C} 3{ }^{\prime} S$ enantiomers). The mother liquid was then treated with saturated aqueous solution of sodium bicarbonate to $\mathrm{pH}=8$, and extracted with dichloromethane (3). The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvents, the enantiomeric pure product 24 was obtained $(1.60 \mathrm{~g}, 61 \%)$ as a pale yellow syrup. $*^{2}$

24: $[\alpha]^{20}{ }_{\mathrm{D}}+171(\mathrm{c} 0.12, \mathrm{MeOH}) . e e=99.1 \% . R_{\mathrm{f}}: 0.40\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}: \mathrm{Et}_{3} \mathrm{~N}=20: 1: 0.01\right)$. FTIR (KBr, thin film) $\mathrm{cm}^{-1}: 3426,2967,1701,1611,1456,1365,1174,1047,746,700 .{ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta(\mathrm{ppm}): 7.32-7.16$ $(2 \times 9 \mathrm{H}, m), 7.10(2 \times 2 \mathrm{H}, d, J=7.2 \mathrm{~Hz}), 7.04(2 \times 1 \mathrm{H}, d, J=7.2 \mathrm{~Hz}), 6.97(2 \times 1 \mathrm{H}, t, J=7.6 \mathrm{~Hz}), 6.71(2 \times 1 \mathrm{H}, t, J=7.6$ $\mathrm{Hz}), 6.39(2 \times 1 \mathrm{H}, d, J=7.6 \mathrm{~Hz}), 5.03(2 \times 1 \mathrm{H}, d, J=15.6 \mathrm{~Hz}), 4.45(2 \times 1 \mathrm{H}, d, J=15.6 \mathrm{~Hz}), 3.60(2 \times 1 \mathrm{H}, d, J=13.6$ $\mathrm{Hz}), 3.53(2 \times 1 \mathrm{H}, d, J=13.6 \mathrm{~Hz}), 3.26(2 \times 1 \mathrm{H}, d d d, J=5.6,6.0,13.2 \mathrm{~Hz}), 2.64(2 \times 1 \mathrm{H}, d d d, J=7.6,8.0,13.2 \mathrm{~Hz})$, 2.27-2.17 ($2 \times 2 \mathrm{H}, \mathrm{m}$) ${ }^{13} \mathbf{C}$-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta(\mathrm{ppm}): 178.03,143.09,140.31,135.85,128.68,128.32$, $128.06,128.01,127.85,127.58,126.74,124.12,121.76,108.52,55.14,53.65,45.41,44.12,29.22$. EI-MS $m / z(\%):$ 710 ($\mathrm{M}^{+}, 2 \%$), 577 (1), 356 (4), 344 (2), 262 (3), 236 (4), 223 (4), 134 (8), 118 (12), 106 (21), 91 (100). HRMS m / z Found: 710.3622, Calcd. for $\mathrm{C}_{48} \mathrm{H}_{46} \mathrm{~N}_{4} \mathrm{O}_{2}(\mathrm{M})^{+}: 710.3621$.
(24 racemic) ${ }^{* 1}$ Chiral HPLC analysis: $25^{\circ} \mathrm{C}$; column: DAICEL Chiralcel OD-H ($0.46 \mathrm{~cm} \Phi \times 25 \mathrm{~cm}$); mobile phase: hexane / iso-propanol $85 / 15$; flow rate: $0.500 \mathrm{~mL} / \mathrm{min}$; detection, UV 254 nm ; $\mathrm{tR}_{1}=48.247 \mathrm{~min}$, Area $=$ $39.4094 ; \mathrm{tR}_{2}=53.887 \mathrm{~min}, \mathrm{Area}=60.5906$.
(24)* ${ }^{2}$ Chiral HPLC analysis: $25^{\circ} \mathrm{C}$; column: DAICEL Chiralcel OD-H ($0.46 \mathrm{~cm} \Phi \times 25 \mathrm{~cm}$); mobile phase: hexane / iso-propanol 85/ 15; flow rate: $0.500 \mathrm{~mL} / \mathrm{min}$; detection, UV $254 \mathrm{~nm} ; \mathrm{tR}_{1}=50.183 \mathrm{~min}$, Area $=0.4883 ; \mathrm{tR}_{2}=$ 52.932 min, Area $=99.5117$.

(3R,3'R)-1,1'-dibenzyl-3,3'-bis(2-(benzyl(methyl)amino)ethyl)-[3,3'-biindoline]-2,2'-dione

To diamine $24(0.82 \mathrm{~g}, 1.15 \mathrm{mmol})$ in acetonitrile (10 mL) was added a solution of formaldehyde (37% aqueous solution, $0.44 \mathrm{~mL}, 5.75 \mathrm{mmol}, 5.0 \mathrm{eq}$.$) . Sodium triacetoxyborohydride (1.22 \mathrm{~g}, 5.75 \mathrm{mmol}, 5.0 \mathrm{eq}$.$) was added and$ the resulting mixture was stirred at room temperature under argon for 2 h . A solution of methanol in dichloromethane $\left(\mathrm{MeOH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}=5: 95,10 \mathrm{~mL}\right)$ saturated with ammonia was added. The mixture was then allowed to stir at room temperature for 5 min . After removal of the solvent under reduced pressure, the residue was chromatographed on silica gel (Dichloromethane: $\mathrm{MeOH}: \mathrm{NH}_{3}-\mathrm{H}_{2} \mathrm{O}=300: 10: 1$) to afford the product (25, 0.82 g , 96% yield) as a pale yellow syrup.
$[\alpha]^{20}{ }_{\mathrm{D}}+171(\mathrm{c} 0.10, \mathrm{MeOH}) . R_{\mathrm{f}}: 0.45\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}=30: 1\right)$. FTIR $(\mathrm{KBr}$, thin film $) \mathrm{cm}^{-1}: 3436,2930,2789$, 1702, 1608, 1462, 1361, 1177, 1036, 744, 700. ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta(\mathrm{ppm}): 7.18-7.01(2 \times 10 \mathrm{H}, m), 6.89$ $(2 \times 1 \mathrm{H}, d, J=7.5 \mathrm{~Hz}), 6.79(2 \times 1 \mathrm{H}, t, J=7.5 \mathrm{~Hz}), 6.55(2 \times 1 \mathrm{H}, t, J=7.5 \mathrm{~Hz}), 6.25(2 \times 1 \mathrm{H}, d, J=7.5 \mathrm{~Hz}), 4.92(2 \times 1 \mathrm{H}$, $d, J=15.0 \mathrm{~Hz}), 4.32(2 \times 1 \mathrm{H}, d, J=15.0 \mathrm{~Hz}), 3.26(2 \times 1 \mathrm{H}, d, J=12.9 \mathrm{~Hz}), 3.15(2 \times 1 \mathrm{H}, d, J=12.9 \mathrm{~Hz}), 3.18-3.07$ $(2 \times 1 \mathrm{H}, m), 2.67-2.53(2 \times 1 \mathrm{H}, m), 1.94(2 \times 3 \mathrm{H}, s), 1.98-1.86(2 \times 1 \mathrm{H}, m), 1.79-1.67(2 \times 1 \mathrm{H}, m) .{ }^{13} \mathbf{C}-\mathrm{NMR}(75 \mathrm{MHz}$, CDCl_{3}), $\delta(\mathrm{ppm}): 177.53,142.97,138.34,135.84,129.27,128.62,128.05,128.01,127.86,127.56,126.83,124.02$, $121.75,108.35,61.81,55.00,53.04,43.99,41.80,26.11$. EI-MS m/z (\%) : 738 (${ }^{+}, 9 \%$), 647 (21), 591 (43), 444 (4), 370 (23), 293 (2), 277 (13), 235 (12), 148 (17), 134 (93), 120 (25), 91 (100), 65 (10). HRMS m / z Found: 738.3931, Calcd. for $\mathrm{C}_{50} \mathrm{H}_{50} \mathrm{~N}_{4} \mathrm{O}_{2}(\mathrm{M})^{+}: 738.3934$.

(3R,3'R)-1,1'-dibenzyl-3,3'-bis(2-(methylamino)ethyl)-[3,3'-biindoline]-2,2'-dione

Diamine 25 ($369 \mathrm{mg}, 0.5 \mathrm{mmol}$) in anhydrous 1,2-dichloroethane (15 mL) was stirred with a solution of α chloroethyl chloroformate (ACE-Cl, $0.54 \mathrm{~mL}, 5 \mathrm{mmol}, 10.0$ eq.) at $0^{\circ} \mathrm{C}$ for 2 h , then at room temperature for 1 h . After which, the reaction mixture was allowed to stir at $80^{\circ} \mathrm{C}$ (oil bath) for 12 h . After removal of the solvents, the residue was diluted with methanol (15 mL) and stirred at $70{ }^{\circ} \mathrm{C}$ (oil bath) for 3 h . The resulting mixture was concentrated under reduced pressure and diluted with dichloromethane (5 mL), ice ($\sim 10 \mathrm{~g}$) and saturated aqueous solution of $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$. The mixture was then extracted with dichloromethane $(3 \times 15 \mathrm{~mL})$, and the combined organic phases was dried over anhydrous sodium sulfate. After filtration and removal of the solvent under reduced pressure, the residue was chromatographed on silica gel (Dichloromethane: $\mathrm{MeOH}: \mathrm{NH}_{3}-\mathrm{H}_{2} \mathrm{O}=100: 100: 1$) to afford the product $(\mathbf{2 6}, 265 \mathrm{mg}, 95 \%$ yield) as a pale yellowish syrup.
$[\alpha]^{20}{ }_{\mathrm{D}}+203(\mathrm{c} 0.10, \mathrm{MeOH}) \cdot R_{\mathrm{f}}: 0.44\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}=1: 1\right)$. FTIR (KBr, thin film) $\mathrm{cm}^{-1}: 3431,2970,2352,1628$, 1397, 1089. ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta(\mathrm{ppm}): 7.32-7.11(2 \times 5 \mathrm{H}, m), 7.03(2 \times 1 \mathrm{H}, d, J=7.2 \mathrm{~Hz}), 6.92(2 \times 1 \mathrm{H}, d t$, $J=0.8,7.6 \mathrm{~Hz}), 6.70(2 \times 1 \mathrm{H}, t, J=7.6 \mathrm{~Hz}), 6.35(2 \times 1 \mathrm{H}, d, J=7.6 \mathrm{~Hz}), 5.10(2 \times 1 \mathrm{H}, d, J=15.6 \mathrm{~Hz}), 4.40(2 \times 1 \mathrm{H}, d$, $J=15.6 \mathrm{~Hz}), 3.25-3.13(2 \times 1 \mathrm{H}, m), 2.58-2.49(2 \times 1 \mathrm{H}, m), 2.21(2 \times 3 \mathrm{H}, s), 2.12-2.03(2 \times 3 \mathrm{H}, m) .{ }^{13} \mathbf{C}-\mathbf{N M R}(100 \mathrm{MHz}$, CDCl_{3}), $\delta(\mathrm{ppm}): 177.73,142.98,135.88,128.74,128.20,128.00,127.86,127.66,124.02,121.84,108.54,55.04$, 47.81, 44.05, 36.12, 29.00. EI-MS m/z (\%) : 558 (M ${ }^{+}, 21 \%$), 526 (5), 501 (100), 470 (12), 444 (43), 280 (52), 248 (7), 236 (38), 223 (28), 187 (7), 158 (13), 91 (56). HRMS m / z Found: 558.2989, Calcd. for $\mathrm{C}_{36} \mathrm{H}_{38} \mathrm{~N}_{4} \mathrm{O}_{2}(M)$: 558.2995.

Diamine 26 ($558 \mathrm{mg}, 1.0 \mathrm{mmol}$) in THF (25 mL) was degassed and purged with argon (3 times). A solution of diisobutylaminium hydride (DIBAL-H, 1.1 M in THF, $10 \mathrm{~mL}, 10 \mathrm{mmol}, 10.0 \mathrm{eq}$.) was added and the resulting mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h , then at room temperature for 2 h and finally at $80^{\circ} \mathrm{C}$ (oil bath) under argon for 15 h . After cooling to room temperature, a saturated aqueous solution of potassium sodium tartrate (10 mL) was added and the resulting mixture was stirred at room temperature for 2 h . The mixture was diluted with water (30 mL) and extracted with ethyl acetate $(3 \times 30 \mathrm{~mL})$. The combined organic phases were dried over anhydrous sodium sulfate. After filtration and removal of the solvent under reduced pressure, the residue was chromatographed on silica gel (Petroleum ether $60-90^{\circ} \mathrm{C}$: ethyl acetate $=1: 4$) to afford the product ($27,284 \mathrm{mg}, 54 \%$ yield) as white foam.
$[\alpha]^{20}{ }_{\mathrm{D}}+248\left(\mathrm{c} 0.11, \mathrm{CHCl}_{3}\right.$). $R_{\mathrm{f}}: 0.54$ (Petroleum ether: ethyl acetate $=1: 4$). FTIR (KBr, thin film) $\mathrm{cm}^{-1}: 3419,3029$, 2919, 2791, 1598, 1488, 1350, 1258, 1147, 1039, 736. ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta(\mathrm{ppm}): 7.31-7.21(2 \times 4 \mathrm{H}, m)$, $7.20-7.13(2 \times 1 \mathrm{H}, m), 6.90(2 \times 1 \mathrm{H}, d, J=6.8 \mathrm{~Hz}), 6.82(2 \times 1 \mathrm{H}, t, J=7.6 \mathrm{~Hz}), 6.46(2 \times 1 \mathrm{H}, t, J=7.6 \mathrm{~Hz}), 6.10(2 \times 1 \mathrm{H}$, $d, J=7.6 \mathrm{~Hz}), 4.49(2 \times 1 \mathrm{H}, b r s), 4.42(2 \times 1 \mathrm{H}, d, J=16.4 \mathrm{~Hz}), 4.36(2 \times 1 \mathrm{H}, d, J=16.4 \mathrm{~Hz}), 2.57-2.50(2 \times 2 \mathrm{H}, m)$, $2.42-2.33(2 \times 1 \mathrm{H}, m), 2.18(2 \times 3 \mathrm{H}, s), 1.94-1.87(2 \times 1 \mathrm{H}, m) .{ }^{13} \mathbf{C}-\mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta(\mathrm{ppm}): 152.69,139.44$, 133.08, 128.54, 128.09, 127.39, 126.87, 126.73, 124.13, 117.29, 106.80, 92.96, 63.27, 53.21, 52.61, 38.99, 35.74. EI-MS m/z (\%) : 526 ($\mathrm{M}^{+}, 10 \%$), 482 (6), 439 (26), 392 (3), 309 (12), 263 (49), 262 (100), 220 (15), 172 (26), 171 (19), 130 (8), 91 (42). HRMS m / z Found: 526.3099, Calcd. for $\mathrm{C}_{36} \mathrm{H}_{38} \mathrm{~N}_{4}(\mathrm{M})^{+}: 526.3096$.

To a solution of liquid ammonia (freshly distilled and collected by Birch condenser, acetone-dry ice, 50-60 ml) at $78^{\circ} \mathrm{C}$ was added sodium metal (ca. $124 \mathrm{mg}, 5.4 \mathrm{mmol}, 10 \mathrm{eq}$.). A solution of chimonanthine precursor (27, 284 mg , $0.54 \mathrm{mmol})$ in anhydrous THF $(10 \mathrm{~mL})$ was added to this dark blue solution of liquid ammonia. After stirring at -78 ${ }^{\circ} \mathrm{C}$ for 15 min , a powder of $\mathrm{NH}_{4} \mathrm{Cl}(433 \mathrm{mg}, 8.1 \mathrm{mmol})$ was added in one portion followed by saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$. The resulting mixture was allowed to evaporate in fume hood. The residue was then diluted with water $(20 \mathrm{ml})$ and extracted with dichloromethane $(3 \times 20 \mathrm{ml})$. The organic phases were combined and dried over anhydrous sodium sulfate. After filtration, the solvent was removed under reduced pressure and the crude product was chromatographed on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}: \mathrm{NH}_{3}-\mathrm{H}_{2} \mathrm{O}=200: 10: 1\right)$ to afford the product (1, 177 $\mathrm{mg}, 95 \%$) as white plates.
m.p.: $170-172{ }^{\circ} \mathrm{C},[\alpha]^{20}{ }_{\mathrm{D}}+285$ (c 0.12 , EtOH). $R_{\mathrm{f}}: 0.48\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}: \mathrm{NH}_{3}-\mathrm{H}_{2} \mathrm{O}=200: 10: 1\right)$. FTIR (KBr, thin film) $\mathrm{cm}^{-1}: 3404,3219,2930,2856,2797,1601,1480,1252,1161,1031,739,648 .{ }^{1} \mathbf{H}-\mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta$ $(\mathrm{ppm}): 7.19(2 \times 1 \mathrm{H}, d, J=7.2 \mathrm{~Hz}), 6.99(2 \times 1 \mathrm{H}, t, J=7.2 \mathrm{~Hz}), 6.67(2 \times 1 \mathrm{H}, t, J=7.2 \mathrm{~Hz}), 6.54(2 \times 1 \mathrm{H}, d, J=7.2 \mathrm{~Hz})$, $4.34(2 \times 1 \mathrm{H}, b r s), 4.12(2 \times 1 \mathrm{H}, b r s), 2.63-2.48(2 \times 3 \mathrm{H}, m), 2.30(2 \times 3 \mathrm{H}, s), 2.18-2.01(2 \times 1 \mathrm{H}, m) .{ }^{13} \mathbf{C}-\mathrm{NMR}(75 \mathrm{MHz}$, CDCl_{3}), $\delta(\mathrm{ppm}): 150.74,133.27,128.27,124.58,118.78,109.41,85.40,63.41,52.83,37.38,35.66$. EI-MS m / z (\%) : 346 ($\mathrm{M}^{+}, 7 \%$), 302 (2), 259 (2), 245 (3), 231 (3), 190 (11), 173 (37), 172 (100), 157 (6), 143 (8), 130 (30), 117 (6), 103 (5), 85 (24), 83 (28). HRMS m / z Found: 346.2151, Calcd. for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{4}(\mathrm{M})^{+}: 346.2157$. $\left([\alpha]^{20}{ }_{\mathrm{D}}=+285, c 0.12, \mathrm{EtOH}\right.$, lit. ${ }^{6 \mathrm{p}}[\alpha]^{20}{ }_{\mathrm{D}}=+279, c 0.1, \mathrm{EtOH} ;$ lit. $\left.{ }^{4 \mathrm{a}}[\alpha]^{20}{ }_{\mathrm{D}}=+254, c 1.0, \mathrm{EtOH}\right)$

To a solution of amine $1(35 \mathrm{mg}, 0.1 \mathrm{mmol})$ in acetonitrile (3 ml) was added a solution of formalin ($37 \% \mathrm{HCHO}$ in water, $39 \mu \mathrm{~L}, 0.52 \mathrm{mmol}, 5.2$ eq.) and sodium triacetoxyborohydride $\left[\mathrm{NaBH}(\mathrm{OAc})_{3}, 110 \mathrm{mg}, 0.52 \mathrm{mmol}\right.$. The resulting mixture was then stirred at room temperature under argon for 1 h . The mixture was then treated with a solution of methanol in dichloromethane saturated with ammonia (ca. $5 \mathrm{~mL}, \mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}=95$: 5). After stirring for 5 minutes, the mixture was concentrated and the residue was chromatographed on silica gel (Dichloromethane : Methanol : $\left.\mathrm{NH}_{3}-\mathrm{H}_{2} \mathrm{O}=500: 10: 1\right)$ to afford the product $(2,35.5 \mathrm{mg}, 95 \%)$ as white plates.
m.p.: 183-185 ${ }^{\circ} \mathrm{C},[\alpha]^{20}{ }_{\mathrm{D}}+315$ (c $0.10, \mathrm{MeOH}$). $R_{\mathrm{f}}: 0.48\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}: \mathrm{NH}_{3}-\mathrm{H}_{2} \mathrm{O}=200: 10: 1\right)$. FTIR (KBr , thin film) $\mathrm{cm}^{-1}: 3434,2944,2784,1601,1488,1345,1156,1034,730 .{ }^{1} \mathbf{H}-\mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta(\mathrm{ppm}): 7.02-$ $6.88(2 \times 2 \mathrm{H}, m), 6.50(2 \times 1 \mathrm{H}, t, J=7.5 \mathrm{~Hz}), 6.26(2 \times 1 \mathrm{H}, d, J=7.5 \mathrm{~Hz}), 4.38(2 \times 1 \mathrm{H}, b r s), 3.00(2 \times 3 \mathrm{H}, s), 2.70-2.58$ $(2 \times 1 \mathrm{H}, m), 2.51-2.33(2 \times 2 \mathrm{H}, m), 2.41(2 \times 3 \mathrm{H}, s), 2.04-1.91(2 \times 1 \mathrm{H}, m) .{ }^{13} \mathbf{C}-\mathbf{N M R}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta(\mathrm{ppm}):$ $153.00,132.95,128.14,123.70,116.71,105.90,92.03,62.74,52.72,38.03,35.52,35.39$. EI-MS $m / z(\%): 374\left(\mathrm{M}^{+}\right.$, 11\%), 273 (2), 187 (45), 186 (100), 172 (9), 157 (8), 145 (14), 144 (31), 130 (7), 115 (5), 85 (19), 83 (22). HRMS m / z Found: 374.2480, Calcd. for $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{~N}_{4}(\mathrm{M})^{+}: 374.2470$.
$\left([\alpha]^{20}{ }_{\mathrm{D}}=+315, c 0.10, \mathrm{MeOH}\right.$, lit. ${ }^{60}[\alpha]^{20}{ }_{\mathrm{D}}=+318, c 0.11, \mathrm{MeOH} ;$ lit. $\left.{ }^{6 \mathrm{p}}[\alpha]^{20}{ }_{\mathrm{D}}=+314, c 0.25, \mathrm{MeOH}\right)$

4: (-)-Calycanthine

To a solution of acetic acid in $\mathrm{D}_{2} \mathrm{O}(0.43 \mathrm{M}, 4 \mathrm{~mL})$ was added chimonanthine $1(35 \mathrm{mg}, 0.1 \mathrm{mmol})$. The resulting mixture was then stirred at $95^{\circ} \mathrm{C}$ for 18 h under an atmosphere of argon. After cooling down to room temperature, the mixture was diluted with dichloromethane $(10 \mathrm{~mL})$ and treated with a saturated aqueous solution of sodium bicarbonate (until $\mathrm{pH}=8$). The combined aqueous phases were back-extracted with dichloromethane ($3 \times 8 \mathrm{~mL}$). The organic phases were combined and dried over anhydrous sodium sulfate. After filtration and removal of the solvent, the residue was chromatographed on silica gel (Dichloromethane : Methanol : $\mathrm{NH}_{3}-\mathrm{H}_{2} \mathrm{O}=500: 10: 1$) to afford the product $(4,18 \mathrm{mg}, 52 \%)$ as a white solid.
m.p.: 232-235 ${ }^{\circ} \mathrm{C},[\alpha]^{20}{ }_{\mathrm{D}}-615$ (c 0.15, EtOH). FTIR (KBr, thin film) $\mathrm{cm}^{-1}: 3435,2968,1627,1451,1047,744,608$. ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta(\mathrm{ppm}): 7.01(2 \times 1 \mathrm{H}, d, J=7.5 \mathrm{~Hz}), 6.82(2 \times 1 \mathrm{H}, t, J=7.5 \mathrm{~Hz}), 6.55(2 \times 1 \mathrm{H}, t, J=7.5$ $\mathrm{Hz}), 6.28(2 \times 1 \mathrm{H}, d, J=7.5 \mathrm{~Hz}), 4.69(2 \times 1 \mathrm{H}, b r s), 4.44(2 \times 1 \mathrm{H}, s), 3.17(2 \times 1 \mathrm{H}, d d d, J=5.4,13.2,13.2 \mathrm{~Hz}), 2.70$ $(2 \times 1 \mathrm{H}, d d, J=4.6,11.4 \mathrm{~Hz}), 2.46(2 \times 3 \mathrm{H}, s), 2.29(2 \times 1 \mathrm{H}, d d d, J=3.6,11.4,11.4 \mathrm{~Hz}), 1.33(2 \times 1 \mathrm{H}, d d, J=3.6,13.2$ Hz). ${ }^{13} \mathbf{C}$-NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta(\mathrm{ppm}): 145.00,126.88,124.58,116.90,112.36,71.37,46.63,42.50,35.96$, 31.55. EI-MS m/z (\%) : 347 (${ }^{+}+\mathrm{H}, 31 \%$), 346 ($\mathrm{M}^{+}, 100 \%$), 314 (5), 302 (18), 288 (29), 270 (23), 259 (13), 245 (28), 231 (59), 219 (11), 199 (9), 185 (13), 172 (21), 149 (30), 143 (27), 130 (27), 115 (14), 87 (69), 83 (72), 74 (91). HRMS m / z Found: 346.2149, Calcd. for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{4}(\mathrm{M})^{+}: 346.2157$. $\left([\alpha]^{20}{ }_{\mathrm{D}}=-615, c 0.15, \mathrm{EtOH}\right.$, lit. $\left.{ }^{4 \mathrm{a}}[\alpha]^{20}{ }_{\mathrm{D}}=-612, c 0.18, \mathrm{EtOH}\right)$

To a solution of sulfinamide 21a $(2.42 \mathrm{~g}, 2.5 \mathrm{mmol})$ in methanol $(50 \mathrm{~mL})$ was added an aqueous solution of HCl $(4 \mathrm{~N}, 1.88 \mathrm{~mL}, 7.5 \mathrm{mmol}, 3 \mathrm{eq}$.). The resulting mixture was allowed to stir at room temperature for 1 h . The reaction mixture was then treated with saturated aqueous solution of sodium bicarbonate (until $\mathrm{pH}=8$) and concentrated under reduced pressure. The mixture was diluted with water $(80 \mathrm{~mL})$ and extracted with dichloromethane (3×50 mL), the combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent, the residue was chromatographed on silica gel (Petroleum ether $60-90^{\circ} \mathrm{C}$: ethyl acetate $=2: 1$) to afford the amine (28) ($1.81 \mathrm{~g}, 95 \%$) as a pale yellow syrup.
$[\alpha]^{20}{ }_{\mathrm{D}}-241\left(\mathrm{c} 0.18, \mathrm{CHCl}_{3}\right) . e e=99.8 \%, R_{\mathrm{f}}: 0.65$ (Petroleum ether: ethyl acetate $\left.=2: 1\right)$. FTIR $(\mathrm{KBr}$, thin film) $\mathrm{cm}^{-1}: 3454,3061,2921,1699,1609,1485,1361,742 .{ }^{1} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta(\mathrm{ppm}): 7.23-7.15(2 \times 5 \mathrm{H}, m)$, 7.11-7.04 $(2 \times 3 \mathrm{H}, m), 6.98(2 \times 1 \mathrm{H}, t, J=6.8 \mathrm{~Hz}), 6.97(2 \times 1 \mathrm{H}, d, J=7.2 \mathrm{~Hz}), 6.72-6.66(2 \times 2 \mathrm{H}, m), 6.61(2 \times 1 \mathrm{H}, t, J=$ $7.2 \mathrm{~Hz}), 6.35(2 \times 1 \mathrm{H}, t, J=8.0 \mathrm{~Hz}), 5.52(2 \times 1 \mathrm{H}, d d d, J=8.4,10.0,17.2 \mathrm{~Hz}), 5.00(2 \times 1 \mathrm{H}, d, J=10.0 \mathrm{~Hz}), 4.75$ $(2 \times 1 \mathrm{H}, d, J=17.2 \mathrm{~Hz}), 4.48(2 \times 1 \mathrm{H}, d, J=15.6 \mathrm{~Hz}), 4.42(2 \times 1 \mathrm{H}, d, J=15.6 \mathrm{~Hz}), 3.50(2 \times 1 \mathrm{H}, d, J=13.2 \mathrm{~Hz}), 3.33$ $(2 \times 1 \mathrm{H}, d d, J=4.0,13.6 \mathrm{~Hz}), 3.01(2 \times 1 \mathrm{H}, d, J=13.2 \mathrm{~Hz}), 2.54(2 \times 1 \mathrm{H}, d d d, J=4.0,8.6,10.8 \mathrm{~Hz}), 2.40(2 \times 1 \mathrm{H}, d d, J$ $=10.8,13.6 \mathrm{~Hz}), 0.91(2 \times 1 \mathrm{H}, \mathrm{brs}) .{ }^{13} \mathbf{C}-\mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta(\mathrm{ppm}): 179.28,143.86,140.53,140.01,136.12$, $128.44,128.07,128.02,127.87,127.70,127.31,126.32,124.88,121.36,115.53,108.44,57.58,54.78,50.31,44.45$, 34.85. +TOF-MS $m / z(\%): 763\left(\mathrm{M}^{+}+1,100 \%\right), 382$ (15), 275 (2), 236 (20). HRMS m / z Found: 763.4015, Calcd. for $\mathrm{C}_{52} \mathrm{H}_{51} \mathrm{~N}_{4} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H})^{+}: 763.4012$.
(28 racemic) Chiral HPLC analysis: $25^{\circ} \mathrm{C}$; column: DAICEL Chiralcel AD-H ($0.46 \mathrm{~cm} \Phi \times 25 \mathrm{~cm}$); mobile phase: hexane / iso-propanol $90 / 10$; flow rate: $0.600 \mathrm{~mL} / \mathrm{min}$; detection, UV $254 \mathrm{~nm} ; \mathrm{tR}_{1}=11.693 \mathrm{~min}$, Area $=49.2003$; $\mathrm{tR}_{2}=24.015 \mathrm{~min}$, Area $=50.7997$.
(28) Chiral HPLC analysis: $25^{\circ} \mathrm{C}$; column: DAICEL Chiralcel AD-H ($0.46 \mathrm{~cm} \Phi \times 25 \mathrm{~cm}$); mobile phase: hexane / iso-propanol $90 / 10$; flow rate: $0.600 \mathrm{~mL} / \mathrm{min}$; detection, UV $254 \mathrm{~nm} ; \mathrm{tR}_{1}=11.769 \mathrm{~min}$, Area $=0.1004$; $\mathrm{tR}_{2}=$ 24.349 min, Area $=99.8996$.

${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta(\mathrm{ppm}): 7.45(2 \times 2 \mathrm{H}, d, J=7.2 \mathrm{~Hz}), 7.36(2 \times 2 \mathrm{H}, t, J=7.2 \mathrm{~Hz}), 7.33-7.24(2 \times 4 \mathrm{H}, m)$, $7.14-7.08(2 \times 2 \mathrm{H}, m), 6.81(2 \times 1 \mathrm{H}, t, J=7.6 \mathrm{~Hz}), 6.59(2 \times 1 \mathrm{H}, d, J=7.2 \mathrm{~Hz}), 6.49(2 \times 1 \mathrm{H}, t, J=7.6 \mathrm{~Hz}), 6.25(2 \times 1 \mathrm{H}$, $d, J=8.0 \mathrm{~Hz}), 5.02(2 \times 1 \mathrm{H}, d, J=15.6 \mathrm{~Hz}), 4.72-4.55(2 \times 1 \mathrm{H}, m), 4.48-4.32(2 \times 1 \mathrm{H}, m), 4.27(2 \times 1 \mathrm{H}, d, J=15.6 \mathrm{~Hz})$, 3.27-3.14 $(2 \times 1 \mathrm{H}, m), 2.69-2.54(2 \times 1 \mathrm{H}, m), 2.46-2.31(2 \times 2 \mathrm{H}, m), 1.41(2 \times 9 \mathrm{H}, s) .{ }^{13} \mathbf{C}-\mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta$ (ppm): 176.32, 142.37, 136.18, 135.44, 129.09, 128.91, 128.65, 128.49, 127.87, 127.78, 127.65, 126.38, 123.56, 122.11, 108.57, 61.60, 54.13, 51.89, 43.90, 43.43, 27.04, 24.96. HRMS m / z Found: 951.4199, Calcd. for $\mathrm{C}_{42} \mathrm{H}_{41} \mathrm{~N}_{6} \mathrm{O}_{4}(\mathrm{M}+\mathrm{H})^{+}: 951.4189$.
(Racemic sample) Chiral HPLC analysis: $25^{\circ} \mathrm{C}$; column: DAICEL Chiralcel AD-H ($0.46 \mathrm{~cm} \Phi \times 25 \mathrm{~cm}$); mobile phase: hexane / iso-propanol $85 / 15$; flow rate: $0.800 \mathrm{~mL} / \mathrm{min}$; detection, UV $254 \mathrm{~nm} ; \mathrm{tR}_{1}=9.824 \mathrm{~min}$, Area $=$ 49.9388; $\mathrm{tR}_{2}=16.856 \mathrm{~min}$, Area $=50.0612$.

Chiral HPLC analysis: $25^{\circ} \mathrm{C}$; column: DAICEL Chiralcel AD-H ($0.46 \mathrm{~cm} \Phi \times 25 \mathrm{~cm}$); mobile phase: hexane / isopropanol $85 / 15$; flow rate: $0.800 \mathrm{~mL} / \mathrm{min}$; detection, UV $254 \mathrm{~nm} ; \mathrm{tR}_{1}=9.840 \mathrm{~min}$, Area $=83.8872 ; \mathrm{tR}_{2}=16.982$ \min, Area $=16.1128$. ee $=67.8 \%$.

Chiral HPLC analysis: $25^{\circ} \mathrm{C}$; column: DAICEL Chiralcel AD-H ($0.46 \mathrm{~cm} \Phi \times 25 \mathrm{~cm}$); mobile phase: hexane / isopropanol $85 / 15$; flow rate: $0.800 \mathrm{~mL} / \mathrm{min}$; detection, UV $254 \mathrm{~nm} ; \mathrm{tR}_{1}=9.813 \mathrm{~min}$, Area $=17.5101$; $\mathrm{RR}_{2}=16.763$ \min, Area $=82.4899$. ee $=65 \%$.

|

(is)

$$
\mathrm{SH}_{\mathrm{CH}}^{\mathrm{N}} \mathrm{CHO}
$$

－Mis		$\stackrel{\sim}{\sim}$	∞ or	$9-60$	
ก．．	ค	$\stackrel{\sim}{\circ}$	¢゙ザ	¢n융	\cdots
	M，${ }^{\text {GMM }}$	－	穴号号	ஸッジび	－iomiÑ
$\sqrt{2}$			V	$V V$	


```
Injection Date : 2015-6-3 22:11:24 下午
Sample Name: 00011
Acq. Operator : C:\HPCHEM\1\METHODS\ZJF.M
Method 
(modified after loading)
```

VWD1 A，Wavelength $=254 \mathrm{~nm}$（SXF00414．D）

\qquad
Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000

Signal 1：VWD1 A，Wavelength＝254 nm

$\begin{gathered} \text { Peak } \\ \quad \# \end{gathered}$	RetTime	Type	Width	Area	Height	Area
	［min］		［min］	mAU＊s	［mAU ］	\％
1	9.824	MM	0.8150	9755.48340	199.49382	49.9388
2	16.856	MM	2.1142	9779.41211	77.09438	50.0612
Totals				1.95349 e 4	276.58820	

Results obtained with enhanced integrator！

Injection Date ：2015－6－3 21：37：49 下午

Sample Name ： 00011
Acq．Operator
Method
C：\HPCHEM $\backslash 1 \backslash$ METHODS $\backslash Z J F . M$
Last changed ：2015－6－3 20：49：24 下午
（modified after loading）

minor

Location ：
\qquad
\qquad ：－都 L

```
                            -
```

```
                                    *
```

```
                                    *
```

```
                                    *
```

```
                                    *
```

(modified after loading)

$==2$
Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000

Signal 1：VWD1 A，Wavelength＝254 nm

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	RetTime	Type	Width	Area	Height	Area
	［min］		［min］	mAU＊s	［mAU ］	\％
1	9.840	MM	0.7843	8860.50586	188.29802	83.8872
2	16.982	MM	2.0655	1701.90039	13.73279	16.1128
Totals ：				1.05624 e 4	202.03081	

Results obtained with enhanced integrator！
$===2$

Injection Date	：2015－6－3 21：04：43 下午		
Sample Name	： 00011	Location ：	－
Acq．Operator	：		
Method	：C：\HPCHEM $\backslash 1 \backslash$ METHODS \backslash ZJF．M		
Last changed	2015－6－3 20：49：24 下午 （modified after loading）		

Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000

Signal 1：VWD1 A，Wavelength $=254 \mathrm{~nm}$

Peak \＃	RetTime	Type	Width	Area	Height	Area
	［min］		［min］	mAU＊s	［mAU ］	\％
1	9.813	MM	0.7120	2991.33228	70.01850	17.5101
2	16.763	MM	2.0989	1.40921 e 4	111.90126	82.4899
Totals ：				1．70835e4	181.91976	

Results obtained with enhanced integrator！
$==2$

Sample Name
Acq．Operator
Acq．Method
zero
C：$\backslash \mathrm{HPCHEM} \backslash 1 \backslash \mathrm{METHODS} \backslash \mathrm{CQ} . \mathrm{M}$
Last changed 2013－8－26 18：40：14 下午 （modified after loading）
Analysis Method ：C：\HPCHEM $\backslash 1 \backslash$ METHODS $\backslash C Q . M$
Last changed：2013－8－26 20：10：32 下午
（modified after loading）

Sorted By	$:$	Signal
Multiplier	$:$	1.0000

Dilution ： 1.0000
Signal 1：VWD1 A，Wavelength＝254 nm

Peak \#	$\begin{gathered} \text { RetTime } \\ {[\text { min] }} \end{gathered}$	Type	$\begin{gathered} \text { Width } \\ \text { [min] } \end{gathered}$	$\mathrm{mAU}^{\text {Area }}$	$\begin{aligned} & \text { Height } \\ & {[\text { mAU] }} \end{aligned}$	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	48.247	MM	3.0300	4.58001 e 4	251.92842	39.4094
2	53.887	MM	3.2118	7.04161 e 4	365.40591	60.5906
Total	s ：			1．16216e5	617.33434	

Results obtained with enhanced integrator！
$=======================$
＊＊＊End of Report＊＊＊

Injection Date ：2013－8－26 20：29：40 下午
Sample Name
zero
Location ：
Acq．Operator
Method
C：\HPCHEM $\backslash 1 \backslash$ METHODS $\backslash \mathrm{CQ} . \mathrm{M}$
Last changed
2013－8－26 20：10：32 下午

Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000

Signal 1：VWD1 A，Wavelength＝254 nm

$\begin{gathered} \text { Peak R } \\ \# \end{gathered}$	```RetTime [min]```	Type	$\begin{gathered} \text { Width } \\ \text { [min] } \end{gathered}$	$$	$\begin{aligned} & \text { Height } \\ & {[\mathrm{mAU} \quad]} \end{aligned}$	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	50.183	MM	2.2697	589.94226	4.33207	0.4883
2	52.932	MM	3.9482	$1.20229 \mathrm{e5}$	507.53134	99.5117
Totals	S ：			$1.20819 \mathrm{e5}$	511.86342	
Results obtained with enhanced integrator！						

＊＊＊End of Report＊＊＊

Injection Date ：2014－4－9 14：57：53 下午
Sample Name
Acq．Operator
Method 00011

Location ：
C：\backslash HPCHEM $\backslash 1 \backslash$ METHODS $\backslash Z Y Y . M$
Last changed
2014－4－9 11：32：11 下午 （modified after loading）
VWD1 A，Wavelength＝254 nm（SXF00321．D）

Area Percen		
Sorted By	：	Signal
Multiplier	：	1.0000
Dilution	：	1.0000

Signal 1：VWD1 A，Wavelength＝254 nm

Results obtained with enhanced integrator！
$\begin{aligned} &=== \\ & * * * \text { End of Report } * * *\end{aligned}$

```
==============================================================================
Injection Date : 2014-4-9 13:37:47 下午
Sample Name
Acq. Operator
Method
00011 Location :
C:\HPCHEM\1\METHODS\ZYY.M
Last changed : 2014-4-9 11:32:11 下午
(modified after loading)
```

（SXF00319．D）

Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000

Signal 1：VWD1 A，Wavelength＝254 nm

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{aligned} & \text { RetTime } \\ & \text { [min] } \end{aligned}$	Type	width ［min］	Area		Height	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
				mAU	＊S	［mAU ］	
1	11.769	MM	0.5018	14	69220	$4.87975 \mathrm{e}-1$	0.1004
2	24.349	MM	1.4844	1.46	59e4	164.21399	99.8996
Total	s ：			1.46	06e4	164.70196	

Results obtained with enhanced integrator！

＊＊＊End of Report＊＊＊

[^0]: Corresponding author:
 Professor Hongbin Zhang
 Key Laboratory of Medicinal Chemistry for Natural Resource
 Ministry of Education
 School of Chemical Science and Technology
 Yunnan University
 Kunming, Yunnan 650091
 P. R. China.

 Fax: 86-871-5035538

