<u>Supporting Information</u> Hexaphenylbenzene Based AIEE Active Two Photon Probe for Detection of Hydrogen Sulfide with Tunable Self-assembly in Aqueous Media and Application in Live cell Imaging

Subhamay Pramanik,^a Vandana Bhalla^{*},^a Hwan Myung Kim,^b Hardev Singh^b, Hyo Won Lee^b and Manoj Kumar^{*a}

 ^aDepartment of Chemistry, UGC Sponsored Centre for Advanced Studies-1, Guru Nanak Dev University, Amritsar 143005, and Punjab, India Fax: +91 (0)183 2258820; Tel: +91 (0)183 2258802-9 ext.3202, 3205.
 E-mail: vanmanan@yahoo.co.in, <u>mksharmaa@yahoo.co.in</u>
 ^bDepartment of Chemistry and Department of Energy Systems Research, Ajou University, Suwon 443-749, Korea. E-mail: kimhm@ajou.ac.kr

- S4-S6 General Experimental Procedure.
- S7-S8 Synthesis of HPB derivative 2 and characterization data of the product 1.
- **S9** Comparison of probe **2** with previous reports of H₂S sensor in the literature.
- S10 UV-vis spectrum of 2 (5 μ M) in response to 400 μ M of H₂S in H₂O/DMSO (7:3, v/v) mixtures; SEM images showing before and after the addition H₂S.
- S11 Fluorescence spectra of 2 (5 μ M), in response to various concentration of Na₂S (0-400 μ M) in H₂O/DMSO (7:3, v/v) and plot of fluorescence intensity with the concentration of Na₂S added.
- S12 Probable mechanism showing the reduction of probe 2 in presence of H_2S .
- S13 Time-resolved fluorescence decay of compound 3 on addition of Na₂S in HEPES buffer (0-400 μ M) measured at 460 nm.
- S14 SEM and TEM images showing the change in size and morphology of probe 2 with the addition of aqueous solution of Na₂S. Probable schematic presentation of H₂S sensing with tuneable self-assembly.

S15	Dynamic light scattering (DLS) results showing the variation in particle
	size diameter before and after the addition of Na ₂ S.
S16	Detection limit of compound 2 for H_2S and quantification experiment for
	the detection of H_2S .
S17	Overlay of ¹ H NMR spectrum of compound 2 in $CDCl_3$ (a) and the product after the reaction of 2 with H_2S (b).
S18	FT-IR Spectrum of compound 2 before and after the reaction with H_2S .
S19	Rate constant for the reduction of compound 2 with H_2S to form reduced product 1 .
S20	Fluorescence and UV-vis spectra of compound 2 in different Water/DMSO mixture (0 to 70% volume fraction of water in DMSO).
S21	Fluorescence and UV-vis spectra of compound 1 (5 μ M) in different Water/DMSO mixture (0 to 70% volume fraction of water in DMSO).
S22	Variation of quantum yield of derivative 1 at different water fractions and
	fluorescence spectra of compound 1 (5 μ M) showing the variation of fluorescence intensity in Glycerol/DMSO mixture.
S23	Fluorescence spectra of compound 1 showing the variation of
	fluorescence intensity with different concentration and temperature dependent fluorescence spectra of compound 1 in Water/DMSO (7:3, v/v)
	mixture.
S24	Concentration dependent ¹ H NMR spectra of compound 1 in CDCl ₃ .
S25	Time resolved fluorescence decays of 1 in different $H_2O/DMSO$ (7:3, v/v)
	mixture.
S26	The change in fluorescence spectra of 2 (5 μ M) in H ₂ O/DMSO (7:3, v/v) on exposing to the vapors of H ₂ S after 0, 5, 10, 15, 20, 40 and 60 min.
S27	Paper strips of 2 for naked eye detection of H ₂ S in aqueous medium in
	different concentrations of H ₂ S.
	S2

S28	Selectivity and competitive selectivity of com receptor 2 towards of Na_2S in HEPES buffer (400 μ M in the presence of other analytes, 500 μ M).
S29	pH dependent fluorescence spectra of 2 (5 μ M), after incubation with 400 μ M Na ₂ S in HEPES buffer for 15 min in H ₂ O/DMSO (7:3, v/v) buffered with HEPES mixtures, $\lambda_{ex} = 300$ nm.
S30	The change in fluorescence spectrum of 2 (H ₂ O/DMSO; 7:3, v/v) in response to Na ₂ S solution in HEPES buffer on the addition of human blood serum and the fluorescence spectrums of 2 in tap water and ground water with H ₂ S.
S31	Measurement of Two-Photon Cross Section Area of compound 2 before and after Na_2S addition.
S32	One photon and Two-photon fluorescence spectra of compound 2 before and after the addition of Na ₂ S; Two-photon action spectra of compound 2 before and after the addition of H_2S at different excitation wavelength.
S33	Average TPEF intensities of probe 2 in presence of different biothiols and H_2S in live HeLa cells.
S34	¹ H NMR spectrum of compound 2 .
S35	13 C NMR spectrum of compound 2 .
S36	ESI-MS mass spectrum of compound 2 .
S37	¹ H NMR spectrum of compound 2 after reduction with H_2S .
S38	¹³ C NMR spectrum of compound 2 after reduction with H_2S .
S 39	ESI-MS mass spectrum of 2 after the addition of H ₂ S.

General Experimental Procedures:

Materials and reagents: All reagents were purchased from Aldrich and were used without further purification. THF was dried over sodium and benzophenone as an indicator. UV-vis studies were performed in THF, absolute ethanol, distilled water and HEPES buffer (0.05 M) (pH = 7.05).

Instrumentation: UV-vis spectra were recorded on a SHIMADZU UV-2450 spectrophotometer, with a quartz cuvette (path length, 1 cm). The cell holder was thermostatted at 25°C. The fluorescence spectra were recorded with a SHIMADZU-5301 PC spectrofluorimeter. The FT-IR spectra were recorded with VARIAN 660 IR Spectrometer. The Time resolved fluorescence spectra were recorded with a HORIBA Time Resolved Fluorescence Spectrometer. Elemental analysis was done using a Flash EA 1112 CHNS/O analyzer from Thermo Electron Corporation. The cell holder was thermostatted at 25 °C. The scanning electron microscope (SEM) images were obtained with a field-emission scanning electron microscope (SEM CARL ZEISS SUPRA 55). TEM images were recorded from Transmission Electron Microscope HR-TEM-JEOL 2100. The dynamic light scattering (DLS) data were recorded with MALVERN Instruments (Nano-ZS). ¹H and ¹³C NMR spectra were recorded on a BRUKER-AVANCE-II FT-NMR-AL400 MHz and 500 MHz spectrophotometer using CDCl₃ as solvent and tetramethylsilane, SiMe₄ as internal standards. Data are reported as follows: chemical shifts in ppm (1), multiplicity (s = singlet, br = broadsignal, d = doublet, t = triplet, m = multiplet), coupling constants J (Hz), integration and interpretation. Silica gel 60 (60-120 mesh) was used for column chromatography.

Quantum yield calculations: Fluorescence quantum yield was determined by using optically matching solution of diphenylanthracene ($\Phi_{fr} = 0.90$ in cyclohexane) as standard at an excitation wavelength of 373 nm and quantum yield is calculated using the equation:

$$\Phi_{\rm fs} = \Phi_{\rm fr} \times \frac{1 - 10^{-\rm ArLr}}{1 - 10^{-\rm AsLs}} \times \frac{N_s^2}{N_r^2} \times \frac{D_s}{D_r}$$

 Φ_{fs} and Φ_{fr} are the radiative quantum yields of sample and the reference respectively, A_s and A_r are the absorbance of the sample and the reference respectively, D_s and D_r the respective areas of emission for sample and reference. L_s and L_r are the lengths of the absorption cells of sample and reference respectively. N_s and N_r are the refractive indices of the sample and reference solutions (pure solvents were assumed respectively).

Fluorescence responses of the probes on H₂S:

For each experiment, we have taken 3 mL of a solution that contains a solution of derivative **2** (10^{-3} M) in 15 µL of DMSO diluted with 885 µL DMSO and 2.1 mL of HEPES buffer (0.05 M, pH = 7.05). Typically, the aliquots of freshly prepared standard solutions (10^{-1} to 10^{-3} M) of *tert-butyl ammonium salt* (${}^{t}Bu_{4}N^{+}X^{-}$) where X = CN⁻, F⁻, Cl⁻, Br⁻, I⁻, NO₃⁻, AcO⁻, ClO₄⁻ and H₂PO₄⁻ CO₃⁻ as K₂CO₃; N₃⁻ as NaN₃), are used in EtOH; H₂S as aqueous solution of Na₂S; and cysteine and glutathione standard solutions (10^{-1} M to 10^{-3} M) were added to record the UV-vis and fluorescence spectra. Hydrogen peroxide (H₂O₂) and hypochlorite (OCl⁻) were delivered from 30% and 5% aqueous solutions, respectively. In titration experiments, each time a 3 ml solution of compound was filled in a quartz cuvette (path length, 1 cm) and spectra were recorded.

Time-dependent experiments: To the solution of HPB-Az, **2** in H₂O/DMSO (7:3, v/v) buffered with HEPES (0.05 M, pH 7.05); Na₂S solution (80 equiv. i.e., 400 μ M) were added and incubated for 16 min and the fluorescence spectra were measured in 1 min interval.

Selectivity: The solutions of HPB-Az, 2 in H₂O/DMSO (7:3, v/v) were added Na₂S (10^{-2} M, 400 μ M) and other competitive species (10^{-2} M, 500 μ M) in water and incubated for 16 min and the fluorescence spectra were measured after 16 minutes.

Blood serum: Real blood sample of medically fit person was used for the experiment and all physiological conditions were maintained. The blood serum was isolated by centrifugation of the fresh blood sample of a healthy volunteer after fasting at 4000 rpm for 20 min at 4°C. The stock solution of blood serum was prepared by dissolving 100 μ L of serum in 1 mL solution of HEPES buffer (0.05 M) at pH = 7.05.

Experimental details of vapour phase sensing of H₂S: For the vapour phase detection of H₂S, the glass vial containing 3 ml of 5 μ M solution of derivative **3** in H₂O:DMSO (7:3, v/v) was inserted in other big vial containing 1ml 1M solution of Na₂S in HEPES buffer at the base. The system was sealed so as to obtain saturated vapour pressure at room temperature. The fluorescent spectrum of the sample was then recorded after different time interval (Fig. S19).

Cell Culture: HeLa human cervical carcinoma cells (ATCC, Manassas, VA, USA) were cultured in MEM (WelGene Inc, Seoul, Korea) supplemented with 10 % FBS (WelGene), penicillin (100 units/ml), and streptomycin (100 μ g/mL). Two days before imaging, the cells were passed and plated on glass-bottomed dishes (NEST). All the cells were maintained in a humidified atmosphere of 5/95 (v/v) of CO₂/air at 37 °C. For labeling, the growth medium was removed and replaced with serum-free MEM (1% DMSO). The cells were treated and incubated with 2.0 μ L of 10 mM **2** in DMSO stock solution (20.0 μ M **2**) at 37 °C under 5 % CO₂ for 30 min.

Two-Photon Fluorescence Microscopy: Two-photon fluorescence microscopy images of probe-labeled cells and tissues were obtained with spectral confocal and multiphoton microscopes (Leica TCS SP8 MP) with $\times 10$ dry, $\times 40$ oil and $\times 100$ oil objectives, numerical aperture (NA) = 0.30, 1.30 and 1.30, respectively. The two-photon fluorescence microscopy images were obtained with a DMI6000B Microscope (Leica) by exciting the probes with a mode-locked titanium-sapphire laser source (Mai Tai HP; Spectra Physics, 80 MHz pulse frequency, 100 fs pulse width) set at wavelength 710 nm and output power 1690 mW, which corresponded to approximately 7 mW average power in the focal plane. To obtain images at 400-600 nm range, internal PMTs were used to collect the signals in an 8 bit unsigned 512 \times 512 and 1024 \times 1024 pixels at 400 Hz scan speed, respectively.

Photostability: Photostability of compound **2** in HeLa cells was determined by monitoring the changes in TPEF intensity with time at three designated positions of compound **2**-labeled cells chosen without bias (Fig. 4a-b).

Cell viability: To confirm that compound **2** couldn't affect the viability of HeLa cells in our incubation condition, we used CCK-8 kit (Cell Counting Kit-8, Dojindo, Japan) according to the manufacture's protocol. The results are shown in Fig. 4c.

Scheme S1 Synthesis of hexaphenylbenzene based derivative 2.

Synthesis of HPB Derivative 2

A mixture of hydrochloric acid (6 mL) and compound 1 (100 mg, 0.14 mmol) were dissolved in ethanol (10 mL). After the solution was cooled to 0°C, sodium nitrite (40 mg, 0.56 mmol) was added and the mixture was stirred for 30 min. Further, sodium azide (37 mg, 0.56 mmol) was added slowly, and the mixture was stirred for another 2 h at room temperature. The suspension was extracted with $CHCl_3$ (3 × 20 mL), and the combined organic layers were concentrated under reduced pressure. The residue was purified by the silica gel chromatography (hexane/CHCl₃ = 5:1, v/v) to afford compound 2 as a faint yellow solid recrystallized from methanol as pale yellow solid in 75% yield (80.5 mg); mp: >280°C. The structure of compound 2 was confirmed from its spectroscopic and analytical data (Fig. S29-S32, ESI⁺); ¹H NMR (300 MHz, CDCl₃, ppm). δ = 7.40 (d, J = 9 Hz, 4H), 7.09 (d, J = 9 Hz, 4H), 6.96 (d, 4H), 6.91 (d, J = 9 Hz, 4H), 6.86-6.85 (m, 20H, Ar-H); ¹³C NMR (CDCl₃, 75 MHz, ppm) $\delta = 158.01, 149.80, 144.89, 144.21, 140.54, 139.62, 137.01, 135.95, 133.53,$ 131.48, 131.27, 130.26, 129.21, 123.81. ESI-MS mass spectrum of compound 2 showed a parent ion peak, $m/z = 769.3399 [M+H]^+$ and $807.2827 [M+K]^+$. Elemental analysis: Calculated for C₅₄H₃₆N₆: C 84.35; H 4.72; N 10.93 Found: C 84.32%; H 4.74%; N 10.94. The FT-IR showed stretching band at 2094 cm⁻¹ corresponding to N₃ groups.

Reaction of Compound 2 with H₂S and characterization data of the product:

Compound 2 (50 mg) in THF/Water (1:1) mixture and a solution of aqueous Na_2S was added into it and the mixture was stirred for 60 min at room temperature. The completion of the reaction was confirmed by TLC. The reaction mixture was extracted with EtOAc (5×20 mL), and the combined organic layers were concentrated

under reduced pressure. The residue was purified by the silica gel chromatography (hexane/EtOAc = 4:1, v/v) to afford compound as a light brown solid recrystallized from methanol as yellow solid in 80% yield (37 mg); mp: >280°C. The structure of this compound was confirmed from its spectroscopic and analytical data (Fig. S33-S35, ESI†); ¹H NMR (500 MHz, CDCl₃, ppm). δ = 7.67 (q, *J* = 5 Hz, 4H), 7.54 (q, *J* = 5 Hz, 4H), 7.47 (q, *J* = 5 Hz, 4H), 7.41 (t, *J* = 7.5 Hz, 2H), 7.05 (d, *J* = 5 Hz, 2H), 6.88-6.84 (m, 12H), 6.69 (d, *J* =10 Hz, 4H_a), 6.62 (d, *J* =10 Hz, 4H_b), 3.48 (s, 4H, NH₂); ¹³C NMR (CDCl₃, 125 MHz, ppm) δ = 144.65, 139.29, 133.91, 132.15, 132.07, 131.33, 128.66, 128.48, 126.83, 124.00, 123.47, 115.92, 114.07. ESI-MS mass spectrum of compound showed a parent ion peak, *m/z* = 717.3401 [M+H]⁺. Elemental analysis: Calculated for C₅₄H₄₀N₂: C 90.47; H 5.62; N 3.91, Found: C 90.45%; H 5.65%; N 3.90. The FT-IR showed stretching band at 3385 cm⁻¹ corresponding to NH₂ groups. These above experimental data confirmed the formation of compound **1**.

Table S1. Comparison table showing of probe 2 with previous reports of H_2S sensor in the literature.

Sr. No	Publication	Use of supra- molecular aggregates for the detection of H ₂ S	Vapour phase detection	Response Time	Detectio n limit	Fluorescen ce Response	H ₂ S induced formation of AIEE active nanoaggrega tes	Practical application of H ₂ S sensor by paper strip assay	Sensing ability in blood serum and ground water	TPM imaging in Live cell	Interfer ence with other species
1	Present Manuscript	Yes	Yes	15 min (Soln.) & 60 min (Vapour)	338 nM (0.33 μM)	Not- Quenched probe	Yes (AIEE active microfibers)	Yes	Yes	Yes	No
2	<i>Chem. Commun.</i> , 2015, 51 , 7505	No	No	60 min	0.28 µM	Turn-on	No	No	No	No	Minimal
3	<i>Chem. Sci.</i> , 2015, 6 , 2360	No	No	40 min	0.3 μΜ	Ratiometric	No	No	Yes	Yes	Minimal
4	<i>Chem. Sci.</i> , 2015, 6 , 1979	No	No	10 min	5.4 µM	Chemi- luminescent	No	No	No	No	Minimal
5	<i>Chem. Commun.,</i> 2015, 51 , 2407	No	No	30 min	0.81 µM	Ratiometric	No	No	No	Yes	Minimal
6	<i>Chem. Commun.</i> , 2015, 51 , 1510	No	No	2.5-20 min	91 nM	Ratiometric	No	No	No	No	Yes
7	<i>Chem. Commun.,</i> 2014, 50 , 4214	No	No	3-10 min	0.78 nM	Turn-on	No	No	No	No	No
8	<i>Chem. Commun.</i> , 2014, 50 , 8892	No	No	5 min	-	Turn-on	No	No	Yes	No	No
9	J. Am. Chem. Soc., 2014, 136 , 9838	No	No	60 min	0.3 μΜ	Ratiometric	No	No	No	Yes	No
10	<i>Sci. Rep.</i> , 2014, 4 , 7053	No	No	9 min	118 μM	Turn-on	No	No	No	No	No
11	Small, 2014, 10 , 4874	No	No	30 min	0.13 μΜ	Ratiometric	No	No	Yes	No	Yes
12	Chem Biol Drug Des, 2014, DOI: 10.1111/cbdd.12483	No	No	60 min	1 μΜ	Turn-on	No	No	Yes	No	No
13	Analyst, 2014, 139 , 1945	No	No	30 min	0.7 μΜ	Turn-on	No	No	No	Yes	Small
14	<i>Chem. Commun.</i> , 2013, 49 , 3890	No	No	60 min	3.05 µM	Turn-on	No	No	No	Yes	No
15	J. Am. Chem. Soc., 2013, 135 , 9915	No	No	60 min	0.2 μΜ	Ratiometric	No	No	No	Yes	Minimu m
16	Analyst, 2013, 138 , 946	No	No	60 min	0.25 μΜ	Turn-on	No	No	Yes	Yes	No
17	Anal. Chem., 2013, 85 , 7875	No	No	40 min	5-10 μΜ	Turn-on	No	No	No	Yes	Minimu m
18	<i>Chem. Commun.</i> , 2012, 48 , 8395	No	No	50 min	5-10 μM	Turn-on	No	No	No	Yes	No
19	Angew. Chem. Int. Ed., 2011, 50 , 9672	No	No	10 min	1 μM	Turn-on	No	No	Yes	No	No
20	J. Am. Chem. Soc., 2011, 133 , 10078	No	No	60 min	5-10 μΜ	Turn-on	No	No	No	No	No

Fig. S1 (A) UV-vis spectrum of **2** (5 μ M) in response to 400 μ M of H₂S in H₂O/DMSO (7:3, v/v) mixtures buffered with HEPES (pH = 7.05); (B) Showing the presence of level-off tail in the visible region (400-550 nm); SEM images showing (D) before spherical aggregates and (E) after the addition of 400 μ M H₂S in H₂O/DMSO (7:3, v/v) buffered with HEPES (pH = 7.05), suggest the formation of flower like supramolecular microfibers.

Fig. S2A Fluorescence spectra of **2** (5 μ M in H₂O/DMSO (7:3, v/v), in response to various concentration of Na₂S (0-400 μ M) in HEPES buffer (pH = 7.05) mixtures in 16 min, $\lambda_{ex} = 300$ nm.

Fig. S2B (a) Change in fluorescence intensity ratio (I_{465}/I_{380}) of **2** (5 µM) in H₂O/DMSO (7:3, v/v) with the increasing concentration of Na₂S (0-400 µM) in HEPES buffer (pH = 7.05) mixtures in 15 min, $\lambda_{ex} = 300$ nm; inset of showing the sharp linear increase in intensity above 100 µM; (b) Calibrated curve showing the regression of a.

Scheme S2. Probable mechanistic pathway of reduction of probe 2 in presence of H_2S .

The probable mechanism of the reduction of probe 2 can be examined by varying the amount of Na₂S added and change in optical behaviour. When 50 µM of Na₂S solution was added, all the azido groups should theoretically be reduced to amino groups, which should make the aggregates of 1 highly emissive. But, in present investigation, only quenching of the band at 380 nm along with the appearance of band at 450 nm was observed but not increases even after 16 min, until more than 50 μ M of Na₂S was added. Thus, probe 2 could probably be first transformed to a non-emissive intermediate 2-SNa in presence of only 50 µM of Na₂S, which could be further converted to intermediate 3 through the elimination of N₂ and finally the reduced product 1 was obtained upon addition of $>100 \mu$ M of Na₂S. Further, in the fluorescence spectrum, the bathochromic shift along with enhancement in the emission intensity at 465 nm is attributed the formation of reduced product 1 which undergo aggregation in aqueous media due to AIEE phenomena. The above results suggest the formation of supramolecular aggregates of 1 in presence of H₂S which restrict the intramolecular rotations of the molecules, induce planarization and makes the molecules more rigid and highly emissive.

Fig. S3 Exponential fluorescence decays of **2** on addition of Na₂S in HEPES buffer (0-400 μ M) measured at 460 nm. Spectra were acquired in H₂O/DMSO (7:3, v/v) mixture buffered with HEPES, pH = 7.05, λ_{ex} = 377 nm.

Na ₂ S in HEPES	Quantum Yield	A_1/A_2	τ ₁ (ns)	τ ₂ (ns)	τ _{avg} (Average	k_f (10 ⁹ S ⁻¹)	k_{nr} (10 ⁹ S ⁻¹)
(µM)	$(\Phi_{\rm f})$				lifetime, ns)		
0	0.086	90/10	0.72	2.54	1.06	0.081	0.86
400	0.65	20/80	1.03	5.34	4.98	0.13	0.07

Table S2 Fluorescence lifetime of derivative **2** in absence and presence of Na₂S in HEPES buffer (0-400 μ M) measured at 465 nm. A₁, A₂: fractional amount of molecules in each environment. τ_{I} , τ_{2} and τ_{avg} : bi-exponential and average life time of aggregates of **2** in 70 vol% of water in DMSO; k_{f} : radiative rate constant ($k_{f} = \Phi_{f}/\tau_{avg}$); k_{nr} : non-radiative rate constant ($k_{nr} = (1 - \Phi_{f})/\tau_{avg}$); $\lambda_{ex} = 377$ nm.

Fig. S4 SEM (a-d) and TEM (e-f) images showing (a & e) spherical aggregates of derivative **2** in $H_2O/DMSO$ (7:3, v/v); After addition of H_2S at various concentration: (b & f) after 50 μ M Na₂S addition self-assembled spherical microspheres, (c & g) after 200 μ M Na₂S addition rods or chain by self-assembled microspheres and (d & h) self-assembly of micro-rod after the addition of 400 μ M Na₂S in the solution of **2** in $H_2O/DMSO$ (7:3, v/v), suggest the formation of more packed supramolecular aggregates; inset of e, f and h showed the expanded tem images.

Scheme S3. Probable schematic diagram show H_2S sensing mechanism with tuneable self-assembly and AIEE behaviour.

(A) Aggregates of 2

(B) Aggregates of 2 after 200 μ M Na₂S addition

(C) Aggregates of 2 after 400 µM Na₂S addition

Fig. S5 Dynamic light scattering (DLS) results showing the variation in particle size diameter before (A) and after the addition of 200 μ M (B) and 400 μ M Na₂S (C) in the aggregates of **2** in H₂O/DMSO (7:3, v/v) mixture.

Fig. S6 (a) Showing the fluorescence intensity of compound 2 in H₂O/DMSO (7:3, v/v) buffered with HEPES and (b) Calibrated curve showing the fluorescence intensity of compound 2 at 465 nm as a function of Na₂S concentration (M) in HEPES buffer, pH = 7.05, λ_{ex} = 300 nm.

The detection limit was calculated based on the fluorescence titration. To determine the S/N ratio, the emission intensity of receptor 2 without H_2S was measured by 10 times and the standard deviation of blank measurements was determined. The detection limit is then calculated with the following equation:

 $DL = 3 \times SD/S$

Where SD is the standard deviation of the blank solution measured by 10 times; S is the slope of the calibration curve.

From the graph we get slope

S = 261364.3, and SD value is 0.006

Thus using the formula we get the Detection Limit (DL) = $3 \times 0.008/70988.7 = 33.8 \times 10^{-8}$ M = 338 nM = 0.33 μ M.

i.e. probe 2 can detect H₂S in this minimum concentration through fluorescence method.

S.No	Exact concentration of H ₂ S added (in μM)	Fl Intensity at 465 nm (Y) (in a.u.)	Determination of H ₂ S concentration (in μM) by using probe 2 (from linear calibration curve and apply equation (X): Conc.= (Y-27.78)/70988.7
1	0.4 (0.0004 mM)	56	$3.97 \times 10^{-4} \text{ mM} = 0.397 \ \mu\text{M}$
2	0.5	63	$4.96 \times 10^{-4} \text{ mM} = 0.496 \ \mu \text{M}$
3	0.6	70	$5.94 \times 10^{-4} \text{ mM} = 0.594 \ \mu\text{M}$
4	0.7	77	$6.93 \times 10^{-4} \text{ mM} = 0.693 \ \mu\text{M}$

Table S3 Results of quantitative determination of H₂S by using aggregates of derivative 2.

Fig. S7 Overlay of ¹H NMR spectrum of compound 2 in $CDCl_3$ (a) and the product after the reaction of 2 with H_2S (b).

Fig. S8 FT-IR Spectrum of compound 2 (A) before and (B) after the reaction with H_2S .

Regression Statistics						
Multiple R	0.9998					
R Square	0.998					
Intercept	0.234					
Slope	0.0104					

Fig. S9 Graphical representation of the reduction rate of compound 2 to compound 1 in presence of Na_2S . (a) Time (min.) vs. absorbance plot at 340 nm (b) regression plot of a.

The first order rate constant for the formation of compound 1 was calculated from the changes of intensity of absorbance of derivative 2 in response of Na_2S in HEPES buffer at different time interval.

From the time vs. absorbance plot at fixed wavelength 300 nm by using first order rate equation we get the rate constant = $k = slope \times 2.303 = 0.0104 \times 2.303 = 2.39 \times 10^{-2} \text{ min}^{-1}$.

Fig. S10 UV-vis spectrum showing the change in absorbance of compound 2 (5 μ M) in Water/ DMSO mixture (0 to 70% volume fraction of water in DMSO).

Fig. S11 Fluorescence spectra of compound 2 (5 μ M) showing the variation of fluorescence intensity in Water/DMSO mixture (0 to 70% volume fraction of water in DMSO); λ_{ex} = 300 nm.

Fig. S12 Fluorescence spectra of compound 1 (5 μ M) showing the variation of fluorescence intensity in Water/DMSO mixture (0 to 70% volume fraction of water in DMSO); λ_{ex} = 300 nm.

Fig. S13 UV-vis spectrum showing the change in absorbance of compound 1 (5 μ M) in Water/ DMSO mixture (0 to 70% volume fraction of water in DMSO); inset showing the 5 nm red shift of absorbance band from 295 to 300 nm

Fig. S14 Variation in quantum yield value of 1 (5 μ M) with the variation of water fractions (0 to 70% volume fraction of water in DMSO); λ_{ex} = 300 nm.

Fig. S15 Fluorescence spectra of compound 1 (5 μ M) showing the variation of fluorescence intensity in Glycerol/DMSO mixture (0 to 70% volume fraction of glycerol in DMSO); λ_{ex} = 320 nm.

Fig. S16 Fluorescence spectra of compound 1 showing the variation of fluorescence intensity with different concentration of 1 (1 μ M - 20 μ M) in DMSO; λ_{ex} = 300 nm.

Fig. S17 Fluorescence spectra of derivative 1 (5 μ M) showing the variation of fluorescence intensity with increase in temperature (25-75 °C) in H₂O/DMSO mixture (7:3, v/v). λ_{ex} = 300 nm.

Fig. S18 Concentration dependent ¹H NMR spectra of compound 1 in 600μ l CDCl₃; a) 2 mg; b) 5 mg; c) 8 mg.

Fig. S19 Exponential fluorescence decays of 1 on addition of water fraction measured at 465 nm. Spectra were acquired in Water/DMSO mixtures (0 to 70% volume fraction of water in Ethanol), λ_{ex} = 377 nm.

Water fraction	Quantum Yield	A ₁ /A ₂	τ ₁ (ns)	τ ₂ (ns)	τ _{avg} (Average	k_f (10 ⁹ S ⁻¹)	k_{nr} (10 ⁹ S ⁻¹)
%	$(\Phi_{\rm f})$				lifetime, ns)		
0	0.08	75/25	0.68	1.2	0.86	0.09	1.07
70	0.66	10/90	1.2	6.24	5.06	0.13	0.067

Table S4 Fluorescence lifetime of derivative 1 in absence and presence of 70% water fraction in DMSO at 465 nm. A₁, A₂: fractional amount of molecules in each environment. τ_{I} , τ_{2} and τ_{avg} : bi-exponential and average life time of aggregates in 70 vol% of water in DMSO; k_{f} : radiative rate constant ($k_{f} = \Phi_{f}/\tau_{avg}$); k_{nr} : non-radiative rate constant ($k_{nr} = (1 - \Phi_{f})/\tau_{avg}$); $\lambda_{ex} = 377$ nm.

H₂S CS₂ Thiophene Pyridine Toluene Benzene Phenol *p*-Xylene Ammonia

Fig. S20 The change in fluorescence spectra of 2 (5 μ M) in H₂O/DMSO (7:3, v/v) on exposing to the vapors of solid Na₂S after 0, 5, 10, 15, 20, 40 and 60 min at $\lambda_{ex} = 300$ nm; (B) Showing 6 fold (30%) fluorescence enhancement of **3** in response to vapour of H₂S (0-60 minutes); (C) Showing the selectivity bar diagram in response to vapour of various unpleasant odour of sulphur containing compounds within 60 minutes.

Fig. S21 (A) Fluorescence change under the UV lamp at 365 nm of paper strips coated with chemosensor **2** in response to Na₂S in HEPES buffer (10^{-2} M) after 16 min; (a) blank, (b) after sprayed onto the strip by writing "H₂S" (10^{-2} M) and dried in oven; (B) Change in fluorescence of **2** coated paper strip on addition of different concentration of Na₂S in HEPES buffer (c) 10^{-2} M, (d) 10^{-3} M, (e) 10^{-4} M, (f) 10^{-5} M, (g) 10^{-6} M, (h) 10^{-7} M.

Analytes

Fig. S22 Fluorescence response of **2** (5.0 μ M) to various analytes (400 μ M) in H₂O/DMSO (7:3, v/v) buffered with HEPES (pH = 7.05) pH = 7.05; $\lambda_{ex} = 300$ nm. Bars represent the increase in percentage of emission intensity at 465 nm. (Series a) Blue bars represent selectivity of **2** upon addition of different analytes (400 μ M); (Series b) Red bars represent competitive selectivity of receptor **2** towards of Na₂S in HEPES buffer (400 μ M in the presence of other analytes 400 μ M).

Fig. S23 pH dependent fluorescence spectra of 2 (5 μ M), after incubation with 60 μ M Na₂S in HEPES buffer for 15 min in H₂O/DMSO (7:3, v/v) buffered with HEPES mixtures, $\lambda_{ex} = 300$ nm.

Serum Amount (µL)

Fig. S24 (A) Histograms showing the fluorescence response of **2** (5 μ M) with Na₂S (400 μ M) in the presence of blood serum in H₂O/DMSO (7:3, v/v) at pH = 7.05, λ_{ex} = 300nm. The fluorescence change was observed with varying amounts (μ L).

Figure S25 (A) Fluorescence spectra of compound **2** in response to H₂S (400 μ M) in tap water, λ_{ex} = 300 nm; (B) Fluorescence spectra of compound **3** (5 μ M) in response to H₂S (400 μ M) in ground water, λ_{ex} = 300 nm.

Measurement of Two-Photon Cross Section Area of compound 2 before and after H₂S addition:

Compound ^a	λ ⁽¹⁾ b max	λ_{max}^{fi} c	Φ^{d}	$\lambda_{max}^{(2)}$ e	$\delta\Phi^{ m f}$
2	300	nd ^g	0.078	nd ^g	nd ^g
1	300	457	0.66	750	1.31

Table S5 a) All the measurements were performed in HEPES buffer (50 mM, pH 7.05)/DMSO (3:7, v/v). b) λ_{max} of the one-photon absorption spectra in nm. c) λ_{max} of the one-photon emission spectra in nm. d) Fluorescence quantum yield. e) λ_{max} of the two-photon excitation spectra in nm. f) Two-photon action cross-section in 10^{-50} cm⁴s/photon (GM units). g) Not determined. The one- and two-photon excited fluorescence signals were too small to determine the values.

Measurement of Two-Photon Cross Section. The two-photon cross section (δ) was determined by using femto second (fs) fluorescence measurement technique as described.¹ **2** (10 µM) was dilluted in HEPES (50 mM, pH 7.05)/DMSO (3:7, v/v) mixture and the two-photon induced fluorescence intensity was measured at 710–880 nm by using rhodamine 6G as the reference, whose two-photon property has been well characterized in the literature.² The intensities of the two-photon induced fluorescence spectra of the reference and sample emitted at the same excitation wavelength were determined. The TPA cross section was calculated by using $\delta = \delta_r(S_s \Phi_r \phi_r c_r)/(S_r \Phi_s \phi_s c_s)$: where the subscripts *s* and *r* stand for the sample and reference molecules. The intensity of the signal collected by a CCD detector was denoted as *S*. Φ is the fluorescence quantum yield. ϕ is the overall fluorescence collection efficiency of the experimental apparatus. The number density of the molecules in solution was denoted as *c*. δ_r is the TPA cross section of the reference molecule.

References

¹. S. K. Lee, W. J. Yang, J. J. Choi, C. H. Kim, S. J. Jeon and B. R. Cho, *Org. Lett.*, 2005, 7, 323-326.

² N. S. Makarov, M. Drobizhev and A. Rebane, *Optics Express.*, 2008, 6, 4029-4047.

Fig. S26 Fluorescence spectra of **2** (10 μ M) before (black lines) and 30 min after (red lines) addition of 1 mM Na₂S in HEPES (50 mM, pH 7.05)/DMSO (3:7, v/v). (a) one-photon fluorescence spectra with excitation at 300 nm. (b) two-photon fluorescence spectra with excitation at 710 nm.

Fig. S27 Two-photon action spectra of 10 μ M 2 (black dots) and 10 μ M 1 (red dots) in HEPES (50 mM, pH 7.05)/DMSO (3:7, v/v). The estimated uncertainties for the two-photon action cross section values ($\delta\Phi$) are ± 15%.

Fig. S28 Average TPEF intensities in (a-d, Fig. 4). The TPM images were obtained by collecting the TPEF at 400–600 nm upon excitation at 710 nm with femtosecond pulses. Cells shown are representative images from replicate experiments (n = 3). Scale bar: 20 µm.

Fig. S29 ¹H NMR Spectra (CDCl₃, 300 MHz, ppm) of compound 2:

Fig. S30 Expanded ¹H NMR Spectra (CDCl₃, 300 MHz, ppm) of compound 2:

S34

Fig. S31 ¹³C NMR Spectra (CDCl₃, 300 MHz, ppm) of compound 2:

Fig. S32 Mass Spectrum (ESI-MS) of compound 2:

Fig. S33 ¹H NMR spectrum of product after the reaction of 2 with H₂S:

Fig. S34 ¹³C NMR spectrum of product after the reaction of 2 with H₂S:

Fig. S35 Mass Spectrum (ESI-MS) of product after the reaction of 2 with H₂S: