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S-1. Preparation procedure of KCa2Nb3O10 crystals 

 

To obtain crystals of several tens of m in size, the optimum starting mixture is a combination of 

K2SO4-CaCO3-Nb2O5 with 5 : 4 : 3 in mol ratio, which corresponds to 20 mol% solute concentration 

(=solute/{solute+flux}). After ground in an agate mortar, the mixture was placed in a Pt crucible 

and heated in an electric furnace. At first, the mixture was heated to 900 ℃ at 300 ℃/h, and 

to 1300 ℃ at 100 ℃/h, and then kept at this temperature for 24 h. It was cooled down to 800 

℃ at a rate of 25 ℃/h and then the furnace was switched off. After removal of the flux in water 

and filtration of the product, KCa2Nb3O10 crystals with the size in the range m to several hundred 

m were collected. No secondary phase was detected in the powder XRD profile as shown in Fig 

S-2(b). 

  



S-2 Powder XRD patterns of KCa2Nb3O10 before and after acid-exchange 

 

 

Fig. S-2 (a) Schematic structure of KCa2Nb3O10 and that after the acid treatment 

(HCa2Nb3O10∙1.5H2O). (b) XRD patterns of KCa2Nb3O10 and HCa2Nb3O10∙1.5H2O. All the observed 

peaks could be indexed on the basis of orthorhombic and tetragonal system, respectively.[1,2] The 

powder XRD was measured for HCa2Nb3O10∙1.5H2O at 80% RH. For KCa2Nb3O10, the peaks were 

indexed with the order (hlk) instead of (hkl) for the convenience.[2] 

  



S-3. SEM and composition analysis results before and after acid-exchange 

 

  

 

 

Table. S-3 Compositions (wt%) of KCa2Nb3O10 and HCa2Nb3O10∙1.5H2O crystals determined by 

chemical analysis.  

  

The exchange of K+ in KCa2Nb3O10 into H+ was almost complete (98.3 %), and no dissolution of 

Ca and Nb was observed. 

  

Fig. S-1 SEM images of (a) KCa2Nb3O10 and (b) HCa2Nb3O10∙1.5H2O crystals. Outer crystal shape 

was maintained, while tiny cleaves appeared on the side facets of the crystals after the acid 

treatment. 

 



S-4. SEM images of the flux-grown KCa2Nb3O10 crystals and polycrystals obtained by the 

solid-state calcination 

 

 

Fig. S-4 SEM images of (a) flux-grown KCa2Nb3O10 crystals and (b) KCa2Nb3O10 polycrystals 

synthesized by the conventional solid-state calcination method. Rectangular crystals with size 

several tens of m were obtained in (a), while aggregates of tiny crystallites were observed in 

(b). 

  



S-5. Model of TBA ion and its projected configuration on the perovskite layer 

 

 

Fig. S-5 Schematic structure and projected sizes of TBA ion. The projected area can be varied 

from 0.61 to 0.71 nm2 depending on its orientation.[3] The unit cell area is 0.149 nm2, hence 0.21-

0.24TBA ion covers a one side of the oxide layer. The layer has two faces, resultantly, 0.42-

0.48TBA ion can be incorporated on a unit cell which is near to experimental value ~40 %. The 

molecular model was drawn using Chem 3D® (Cambridge Soft). 

  



S-6. Comparison of swelling behaviors of the layered perovskite and layered titnate 

 

 

Fig. S-6 Expanded basal spacing as a function of (a) exchange degree expressed as percentage 

relative to the amount of H+ in the crystal and (b) starting TBAOH concentration represented as 

the ratio of H+ in the crystal. The filled symbol represents HCa2Nb3O10∙1.5H2O while the open 

symbol represents H0.8Ti1.2Fe0.8O4∙H2O.[4] The maximum degree of swelling observed at the full 

exchange of TBA ions and then it decreased with increasing the TBA+ concentration in the both 

systems. 

 

  



S-7. Histograms of the swollen crystal length at various TBA+ concentrations 

 

 

Fig. S-7 The length distribution of the swollen crystals with the TBAOH solutions at different 

concentrations (TBA+/H+ = 0.1-5). The histograms were made from the optical microscope images 

of each sample. 

  



S-8 SEM images of the delaminated nanosheets 

 

 

Fig. S-8 SEM images of Ca2Nb3O10
- nanosheets derived from (a) single crystal and (b) powder 

polycrystalline samples of KCa2Nb3O10. 
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