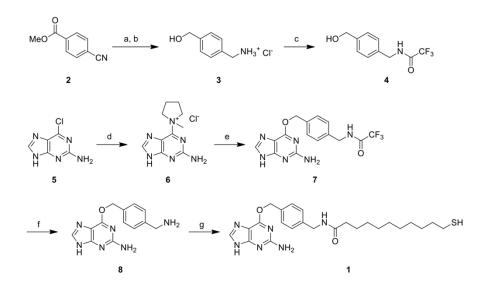
Electronic Supporting Information

Compact and stable SNAP ligand-conjugated quantum dots as a fluorescent probe for single-molecule imaging of dynein motor protein

Tatsuya Ohyanagi, Tomohiro Shima, Yasushi Okada, Yoshikazu Tsukasaki, Akihito, Komatsuzaki, Setsuko Tsuboi and Takashi Jin*


Experimental details

1. Materials

Cadmium 2,4-pentanedionate (98%) and 11-mercaptoundecanoic acid (MUA) were purchased from Alfa Aesar. Selenium powder 100 mesh (99.99%) and tellurium 40 mesh (99.997%) were purchased from Aldrich. Tri-*n*-octylphosphine oxide (TOPO, > 95%), tri-*n*octylphosphine (TOP), hexadecylamine (HDA), bis(trimethylsilyl) sulfide (TMS₂S), tributylphosphine (TBP), and diethylzinc (1.0 M in hexane) were purchased from Tokyo Chemical Industry. Dimethylcadmium (10 wt% in hexane) was purchased from Stream chemicals. *n*-Octadecylphosphonic acid (ODPA) was purchased from PCI Synthesis. Expect where otherwise noted, all solvents and reagents for the synthesis of BG-SH ligands were purchased from Wako Pure Chemical Industries Ltd. (Japan), Tokyo Chemical Industry (Japan), and Aldrich Chemical Co. (USA) and were used without further purification.

2. Synthesis

1) Synthesis of BG-SH ligand (1)

Scheme 1. a) LiAlH₄, THF, 50 °C; b) HCl, 67% (2steps); c) CF₃COOC₂H₅, TEA, MeOH, r.t., 17h, 50%; d) 1-methylpyrrolidin, DMF, r.t., 24h, 50%; e) **4**, NaH, DMF, r.t., 24h, 50%; f) K₂CO₃,MeOH, r.t., 11h, 80%; g) 11-mercaptoundecanoic acid *N*-succinimidyl ester, DMAP, CH₂Cl₂, r.t., 5h, 40%.

4-(Aminomethyl)-benzyl alcohol (3)

To a solution of Methyl 4-cyanobenzonate (2) (5 g, 31 mmol) in anhydrous THF (50 mL) were added LiAlH₄ in anhydrous THF (200 mL) slowly at 0 °C. The reaction mixture was stirred for additional 1 h at room temperature. After 15 h of stirring at 50 °C, the reaction was cooled to room temperature and quenched with H₂O (5.9 mL), 15% NaOH (5.9 mL) and H₂O (17.7 mL). The resulting precipitate was filtered by celite, washed with THF, and filtrate was concentrated in vacuo. The residue was added in 1 M HCl (50 mL) and extracted with EtOAc (50 mL). The aqueous layer was concentrated *in vacuo*. The clude residue was added to acetone (50 mL) and the suspension was filtered to give **3** (3.60 g, 67%) as a white solid. ¹H-NMR (400 MHz, D₂O, 298 K) δ = 4.26 (s, 2H, -CH₂-NH₂-), 4.64 (s, 2H, -CH₂-OH), 7.45 (s, 4H, Ar). MS (ESI) (m/z) calcd for C₈H₁₂NO, [M+H]⁺: 137.08; found: 138.09.

2,2,2-Trifluoro-N-(4-hydroxymethyl-benzyl)-acetamide (4)

To a solution of **3** (3.47 g, 20 mmol) and triethylamine (1.76 mL, 20 mmol) in MeOH (20 mL) were added trifluoroacetic acid ethyl ester (3.1 mL, 26 mmol) at room temperature.

After 17 h of stirring, the reaction mixture was concentrated *in vacuo*. The residue was extracted with EtOAc and washed with brine, and was dried over Na₂SO₄, and concentrated in vacuo. The crude residue was dissolved in CHCl₃ and MeOH, adsorbed on SiO₂ (10 g), and purified by column chromatography with CHCl₃ : MeOH (20 : 1) to give **4** (3.48 g, 74%) as a white solid. ¹**H-NMR** (400 MHz, CDCl₃, 298 K, TMS) δ = 1.74 (br, 1H, -OH), 4.52 (d, J= 5.5 Hz, 2H, -CH₂-NH₂-), 4.69 (s, 2H, -CH₂-OH), 7.25-7.38 (s, 4H, Ar). **MS (ESI)** (m/z) calcd for C₁₀H₁₀F₃NO₂Na, [M+Na]⁺: 256.06; found: 256.06.

1-(2-Amino-7H-purin-6-yl)-1-methyl-pyrrolidium chloride (6)

1-Methylpyrrolidin (18.0 g, 210 mmol) was added to a suspension of 2-amino-6-chloropurine (5) (16.9 g, 100 mmol) in anhydrous DMF (300 mL) and the reaction mixture was stirred for 24 h at room temperature. Acetone (50 mL) was added and the precipitate was filtered affording of pure 6 (16.1 g, 63%) as a white solid.

¹**H-NMR** (400 MHz, DMSO-d6, 298 K, TMS) δ = 2.10 (m, 2H, -CH₂-), 2.35 (m, 2H, -CH₂-), 3.65 (S, 3H, -CH₃), 3.98 (m, 2H, -CH₂-N⁺-), 4.61 (m, 2H, -CH₂-N⁺-), 7.07 (s, 2H, -NH₂), 8.33 (S, 1H, H8), 13.4 (S, 1H, H9). **MS (ESI)** (m/z) calcd for C₁₀H₁₅N₆⁺, [M]⁺: 219.14; found: 219.14.

N-[4-(2-Amino-9H-purin-6-yloxymethyl)-benzyl]-2,2,2-trifluoro-acetamide (7)

To a solution of 4 (2.34 g, 10 mmol) in anhydrous DMF (100 mL) were added 60% NaH (1.2 g, 30 mmol) under N₂ atmosphere at room temperature. After 30 min, **6** (2.54 g, 10 mmol) and DMAP (122 mg, 1 mmol) were added and the reaction mixture was stirred for 19 h at room

temperature. The solution was concentrated *in vacuo*. The crude residue was dissolved in MeOH, adsorbed on SiO₂ (20 g), and purified by column chromatography with CHCl₃ : MeOH (9 : 1) to give 7 (1.24 g, 34%) as a white solid. ¹**H-NMR** (400 MHz, DMSO-d6, 298 K, TMS) $\delta \Box = 4.40$ (d, J=5.8 Hz, 2H, -CH₂-CO-), 5.46 (S, 2H, -CH₂-O-), 6.30 (S, 2H, -NH₂), 7.21-7.50 (m, 4H, Ar), 7.81 (S, 1H, H8), 10.01 (S, 1H, -NH-CO-), 12.42 (1H, S, H9). **MS (ESI)** (m/z) calcd for C₁₅H₁₃F₃N₆O₂Na, [M+Na]⁺: 389.10; found: 389.10.

O⁶-(4-Amino-methylbenzyl)guanine (8)

To a solution of 7 (915 mg, 2.5 mmol) in MeOH (90 mL) and H₂O (10 mL) were added K₂CO₃ (1.7 g, 12.5 mmol) under reflux for 3 h at 60 °C. The reaction mixture was concentrated in vacuo. The crude residue and dissolved in MeOH and H₂O, adsorbed on SiO₂ (10 g), and purified by column chromatography with CHCl₃ : MeOH : Triethylamine (5 : 1 : 0.05) to give **8** (588 mg, 87%) as a white solid. \Box ¹**H-NMR** (400 MHz, DMSO-d6, 298 K, TMS) $\delta \Box$ = 3.97 (S, 2H, -CH₂-N₂-), 5.47 (S, 2H, -CH₂-O-), 6.22 (S, 2H, -NH₂, guanine), 7.36-7.47 (m, 4H, Ar), 7.81 (S, 1H, H8). **MS (ESI)** (m/z) calcd for C₁₃H₁₄N₆ONa, [M+Na]⁺: 293.28; found: 293.28.

BG-MUA (1)

8 (135 mg, 0.5 mmol), 11-mercaptoundecanoic acid N-succinimidyl ester (162 mg, 0.5 mmol), and DIEA (0.4ml, 2.5 mmol) were added in anhydrous DMF (5 mL). The mixture was stirred 5 hr at 50°C and then evaporated. The residue was purified by silica chromatography (CHCl₃: MeOH = 5 : 1) and concentrated and dried in vacuo to get white powder of **1** (125 mg, 53%). ¹**H-NMR** (400 MHz, DMSO-d₆, 298 K) $\delta \Box = 1.24-1.32$ (m, 12H, -CH₂-), 1.50-1.53 (m, 4H, HS-CH₂-CH₂-, CO-CH₂-CH₂-), 2.12-2.44 (m, 2H, CO-CH₂-), 2.44-2.50 (m, 2H, HS-CH₂-), 5.46 (S, 2H, -CH₂-O-), 6.25 (S, 2H, -NH₂, guanine), 7.25-7.45 (m, 4H, Ar), 7.83 (S, 1H, H8), 10.05 (S, 1H, -NH-CO-). ¹³**C-NMR** (100 MHz, DMSO-d₆, 298 K, TMS) $\delta = 23.9$, 25.1, 28.5, 28.8, 33.0, 35.0, 66.6, 95.3, 127.1, 128.4, 134.9, 138.4, 139.6, 155.8, 159.4, 172.6. **MS (ESI)** (m/z) calcd for C₂₄H₃₅N₆O₂S⁺, [M+H⁺]: 471.2537; found: 471.2537.

Reactions were monitored by thin-layer chromatography (TLC) carried out on Merck silica gel glass plates, 60F254. Silica gel chromatography was performed on Kanto Chemical silica gel N60 (40-50 µm). NMR measurements were recorded at 27°C on JEOL ECP-400 (¹H: 400 MHz, ¹³C: 100 MHz), using residual undeuterated solvent as an internal reference. ESI-mass spectra were obtained with a Thermo Scientific Exactive.

2) PC-QDs

PC-QDs were prepared form TOPO-coated CdSe/ZnS QDs^{1} (600 nm emission) by the ligand-exchange reaction as a previously reported method ²)

3) BG-QDs

BG-QDs was prepared from the PC-QDs by the ligand-exchange reaction using BG-SH ligands. A typical procedure is as follows: 20 μ L of a DMSO solution of BG-SH (1 \Box M) was added to 1 mL of an aqueous solution of PC-QDs (1 μ M, PBS) under vigorously stirring. After 2 hours, BG-QDs were purified by using a desalting column (PD-10, GE Healthcare) with PBS.

3. QD characterization

Fluorescence spectra of QDs were measured with a spectrofluorometer FP-8000 (JASCO Corporation) at the excitation wavelength of 488 nm. Dynamic light scattering measurements were carried out with Nano-ZS (Malvern) at pH = 7.4 (10 mM PBS). Fluorescence autocorrelation curves of QDs in aqueous solution were measured by using a compact FCS (C9413-01MOD, Hamamatsu Photonics) with a 473 nm semiconductor laser as an excitation light source. Fluorescence lifetime of QDs was measured using a lifetime fluorescence spectrofluorometer (Horiba) equipped with a LED laser (484 nm).

4. Preparation of SNAP-GFP

EGFP cDNA was amplified by TTCTCGAGATGGTGAGCAAGGGCGAG and ACGCGGCCGCTAGTGGTGATGGTGATGGTGATGCTTGTACAGCTCGTCCATGCC including his-tag sequence and inserted to XhoI-NotI site of pSNAP-tag(T7)-2 (NEB).

pSNAP-EGFP was transformed into *E. coli* KRX competent cells (Promega) grown in LB media with ampicilin at 37°C on shaking table. To induce production of the targeted protein, isopropyl beta-*D*-1-thiogalactopyranoside (0.1 mM) and *L*-Rhamnose (1 %) were added to the LB media, and then incubated with shaking gently for 12 hr at 18°C. The cells were lysed and suspended with binding buffer (50 mM Tris-HCl, pH=8.0). The purification was performed using Ni-NTA column (GE healthcare) and the expression was checked by CBB staining method.

5. Agarose gel electrophoresis

BG-QDs, PC-QDs, BG-QDs + SNAP-GFP (1:5 molar ratio), and PC-QDs + SNAP-GFP (1:5 molar ratio) were run on a 1% agarose gel (25 mM TAE buffer) that was applied on 100 V for 30 min. Fluorescence spots (> 600 nm) of the QDs were observed under irradiation of light at 460 nm using a luminescent image analyzer (GE Healthcare, Image Quant 4010).

6. Preparation of SNAP-tagged dynein

As SNAP-tagged dynein, we expressed and purified GST dimer of *Dictyostelium* cytoplasmic dynein motor domain (GST380) as previously described.³⁾ The equivalent construct of human cytoplasmic dynein 1 (GST-D382)⁴⁾ was provided courtesy of Dr. Ken'ya

Furuta, National Institute of Information and Communications Technology, Japan. To conjugate the SNAP-tagged dynein on BG-QDs, the dynein and the quantum dots were mixed with the mixing ratio of 10:1 (dynein: QD) in assay buffer (20 mM PIPES-KOH, 10 mM potassium acetate, 4 mM MgSO₄, 1 mM EGTA, pH 7.0) and incubated for 30 min at room temperature. Tubulin was purified from porcin brain through four cycles of polymerization and depolymerization using a high-molarity PIPES buffer to remove microtubule-associated proteins effectively.⁵⁾ Then, purified tubulin was labeled with Alexa Fluor 488 (A20000, Life technologies) or biotin (21336, Life technologies) as described previously.⁶⁾ Fluorescently labeled microtubules were prepared by copolymerization of 103 µM non-labeled tubulin, 2 µM Alexa488-labeled tubulin and 3 µM biotin-labeled tubulin for 30 min at 37 °C and stabilized with paclitaxel (169-18616, Wako).

7. Single-molecule fluorescence imaging

Surface of cover glasses (C022221S, Matsunami Glass) was cleaned by sonication in 1N KOH and by plasma treatment (Diener), and then silanized with N-2-(aminoethyl)-3aminopropyl-triethoxysilane (KBE-603, Shin-Etsu Chemical). To make PEG-coated and PEG-biotin-coated glasses, the amino-silanized glasses were incubated with PEG solution (200 mg/mL NHS-PEG [ME-050-TS, NOF] in 50 mM MOPS, pH 7.5) or PEG-biotin solution (1 mg/mL NHS-PEG-biotin [BI-050-TS, NOF] and 200 mg/mL NHS-PEG in 50 mM MOPS, pH 7.5) for 3 hours at room temperature, respectively.⁷⁾ Glass chamber for observation was prepared by separating a PEG-coated glass and a PEG-biotin-coated glass with a 30-µm layer of double sticking tape (5603, Nitto-Denko).⁸⁾ The microtubules were immobilized on the PEG-biotin-coated glass surface via Neutravidin (31000, Thermo). Then, glass surface was blocked with 1% (w/v) Pluronic F-127 (P2443, Sigma-Aldrich) and 1 mg/mL casein (218680, Merck Millipore) in assay buffer. Finally, the chamber was filled with imaging solution containing 300 pM QD-dynein, 20 mM PIPES-KOH, 10 mM potassium acetate, 4 mM MgSO₄, 1 mM EGTA, 1 mM ATP, 1% (w/v) Pluronic F-127, 1 mg/mL casein, 2 mM dithiothreitol, 0.2 mg/mL glucose oxidase, 40 µg/mL catalase, 1 mM glucose, 10 µM paclitaxel, pH 7.0. The sample was illuminated by a blue laser (Sapphire488-500, Coherent) or a green laser (Sapphire 552-200, Coherent). The images of microtubules and QDs were observed under total internal reflection fluorescence microscopy (IX81, Olympus) with a 100x objective lens (UPlanSApo, NA 1.40, Olympus) and recorded at the frame rate of 10 frames per second using iXon3 EM CCD camera (Andor).

References

- A. Komatsuzaki, T. Ohyanagi, Y. Tsukasaki, Y. Miyanaga, M. Ueda and T. Jin, *Small*, 2015, 11, 1396-1401.
- T. Ohyanagi, N. Nagahori, K. Shimawaki, H. Hinou, T. Yamashita, A. Sasaki, T. Jin, T. Iwanaga, M. Kinjo and S. I. Nishimura, *J. Am. Chem. Soc.*, 2011, 133, 12507-12517.
- N. Numata, T. Shima, R. Ohkura, T. Kon and K. Sutoh, *FEBS Letters*, 2011, 585(8), 1185-1190
- T. Torisawa, M. Ichikawa, A. Furuta, K. Saito, K. Oiwa, H. Kojima, Y. Y. Toyoshima and K. Furuta, *Nature Cell Biology*, 2014, 16(11), 1118–1124.
- 5) A. Desai and T. J. Mitchison, *Methods Enzymol*, 1998, 298, 125–132.
- 6) M. Castoldi and A. V. Popov, Protein Expression and Purification, 2003, 32(1), 83-88.
- 7) T. Kon, T. Shima and K. Sutoh, *Methods in Cell Biology*, 2009, 92, 65–82.
- H. Yokota, Y.-W. Han, J.-F. Allemand, X. G. Xi, D. Bensimon, V. Croquette and Y. Harada, *Chemistry Letters*, 2009, 38(4), 308–309.

Additional figures

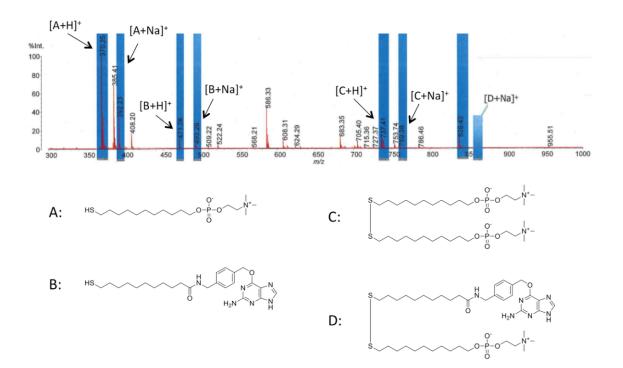


Fig. S1 MALDI-TOF mass spectrum of BG-QD.

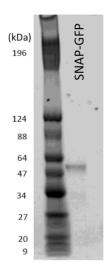
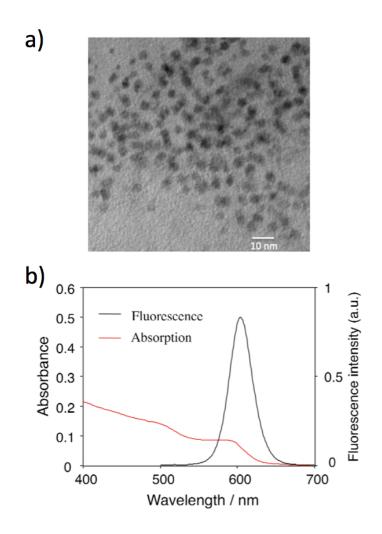



Fig. S2 SDS-PAGE of SNAP-GFP (47.7 kDa).

Fig. S3 Transmission electron microscopy (TEM) image (a) and absorption/fluorescence spectra (b) of BG-QD. The TEM image was obtained using a H800 (HITACHI) at 200 kV accelerating voltage.

Fig. S4 Fluorescence autocorrelation curves for PC-QD and PC-QD+SNAP-GFP (1:5) in PBS.

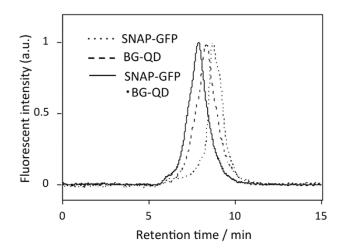
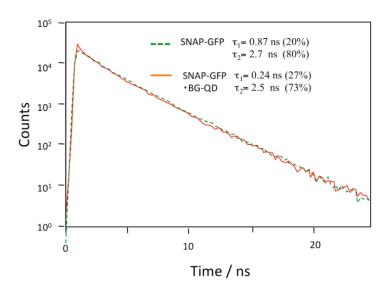



Fig. S5 Size-exclusion gel chromatography for SNAP-GFP, BG-QD and SNAP-GFP \cdot BG-QD. Column: TSK gel G4000 SW_{XL} (TOSOH); Eluent, 0.01 M Na₂CO₃ aqueous solution; Elution rate: 1mL/min.

Fig. S6 Fluorescence lifetime of GFP emission in SNAP-GFP and SNAP-GFP • BG-QD in PBS .

Movie Information

Movie-1 (mp4)

Total internal reflection fluorescence microscopy shows BG-QD conjugated *Dictyostelium* cytoplasmic dynein (magenta spots) moving along microtubules (cyan lines) in the presence of 1 mM ATP. The both width and height of the field are 10.9 µm.

Movie-2 (mp4)

Same as *Dictyostelium* dynein (Movie-1), BG-QD conjugated human cytoplasmic dynein 1 (magenta spots) moving along microtubules (cyan lines) in the presence of 1 mM ATP. The width and height of the field is $7.5 \mu m$ and $5.8 \mu m$, respectively.