SUPPORTING INFORMATION

Electrochemically triggered release of human insulin from an insulin-impregnated reduced graphene oxide modified electrode

Florina Teodora,^a Laure Rolland,^b Viswanatha Ramarao,^a Amar Abderrahmani,^b Daniel Mandler^c Rabah Boukherroub,^a and Sabine Szunerits^a

Figure S1: (A) UV/Vis spectrum of free human insulin (100 μ g/mL) in water: (B) calibration curve; (C) human insulin loading capacity of rGO as a function of pH (by mixing rGO (1 mg/mL) with human insulin (100 μ g/mL).

The human insulin loading capacity was calculated from such measurements according to:

 $loading \ capacity = \left(\frac{c_0 - c_{sup}}{c_{rGO}}\right) \times 100 \ \%$

with c_0 being the human insulin concentration added to rGO (100 µg mL⁻¹), c_{sup} the concentration of insulin in the supernatant after reaction with rGO (determined by UV/Vis) and c_{rGO} the concentration of rGO (1 mg mL⁻¹).

Figure S2: Change in loading capacitance by keeping the concentration of rGO constant (1 mg mL⁻¹) and changing the concentration of human insulin added (10-1000 μ g/mL); average of four experiments, with error bars representing the standard deviation

Figure S3: Influence of the number of drop-casting steps on the percentage of released human insulin into PBS buffer upon biasing the electrode at -0.8V for 30 min ; average of four experiments, with error bars representing the standard deviation