Supporting information

Chiral template induced homochiral MOFs built from achiral components: SHG enhancement and enantioselective sensing of chiral alkamines by ion-exchange

Yun-Hu Han, ^{a, c} Yue-Cheng Liu, ^a Xiu-Shuang Xing, ^{a,b} Chong-Bin Tian, ^a Ping Lin^a and Shao-Wu Du*^a

^a State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R.
^b College of Chemistry and Chemical Engineering, Fuzhou University, Fuzhou 350108, P. R. China.

^c Graduate University of Chinese Academy of Sciences, Beijing 100039, P. R. China.

General information. All reagents were commercially purchased and used without any further purification. The TGA measurements were performed on a STA449C instrument heated from 40 to 1000 °C under a nitrogen atmosphere at a heating rate of 10°C/min. Powder X-ray diffraction was recorded on a PANalytical X`pert PRO Xray Diffraction using Cu-K α radiation in the 20 range of 5–50°. The Fourier transform infrared spectra using KBr pellets were collected on a VERTEX70 FT-IR spectrophotometer in the range of 4000–400 cm⁻¹. Elemental analyses (C, H, and N) were measured with an Elemental Vairo EL III Analyzer. Li⁺ was measured by inductively coupled plasma atomic emission spectroscopy (ICP-AES) on an Ultima 2 analyzer (Jobin Yvon). Powder SHG measurement on the sample was performed on a modified Kurtz-NLO system using 1.064 µm laser radiations.

Synthesis of {[L-HAPA]4[Cd₈(OBA)₁₀]} (1L) and {[D-HAPA]4[Cd₈(OBA)₁₀]} (1D). A mixture of Cd(NO₃)₂·4H₂O (0.50 mmol, 154.20 mg), 4,4'-oxybisbenzoic acid (H₂OBA, 1.0 mmol, 258.23 mg) and L- or D-2-amino-1-propanol (0.2 mmol, 15.02 mg) was sealed in a 20 mL of Teflon-lined stainless steel vessel with 10 mL ethanol. The mixture was heated to 150°C in 4 hours and kept this temperature for 3 days. Then the reaction system was cooled slowly to room temperature during another 2 days. The colorless transparent prismatic crystals of 1L and 1D were collected, washed with ethanol and dried in air (yield 89% for 1L and 87% for 1D based on Cd(NO₃)₂·4H₂O). Elemental analysis calcd. (%) for C₁₅₂H₁₃₂N₄O₅₄Cd₈ (3777.72): C 48.32, H 3.52, N 1.48, O 22.87; found for 1L: C 48.87, H 3.66, N 1.42, O 22.80, found for 1D: C 48.67, H 3.63, N 1.48, O 22.90. IR (KBr, cm⁻¹) for 1L: 3431s, 3282w, 3062w, 2968w, 1598vs, 1525vs, 1510vs, 1398vs, 1301w, 1247vs, 1166s, 1095w, 1047w, 1010w, 883s, 858w, 777vs, 696s, 655sw, 540w, 424w. The IR spectrum of 1D is similar to that of 1L.

Single-crystal X-ray Diffraction Study. Single-crystal X-ray diffraction data were collected on a Rigaku Diffractometer with a Mercury CCD area detector (Mo K α : $\lambda = 0.71073$ Å) at room temperature. Crystal Clear software was used for data reduction and empirical absorption correction.¹ These structures were solved by direct methods using SHELXTL and refined by full-matrix least-squares on F^2 using SHELX-97 program.² Metal atoms in each compound were located from the *E*-maps, and other non-hydrogen atoms were located in successive difference Fourier syntheses. All non-hydrogen atoms were refined anisotropically. The organic hydrogen atoms were

positioned geometrically. Because the unit cell of **1L** and **1D** is very huge, when the SQUEEZE routine of PLATON was applied to remove contributions to scattering from highly disordered solvent molecules, the software procedure cannot run. The alert A: "VERY LARGE Solvent Accessible VOID(S) in Structure!" cannot be refined. Crystallographic data and other pertinent information for **1** are summarized in Table S1. CCDC numbers for **1L** and **1D** is 1056921 and 1056922, respectively.

IR Spectroscopy. The IR spectrum of **1L** and **1D** shows the characteristic bands of the carboxylic groups in the usual region at 1398 cm⁻¹ for symmetric vibrations and at 1533 cm⁻¹ for asymmetric vibrations (Fig. S9). The absence of strong absorption associated with the carboxyl group at around 1707 cm⁻¹ indicates that the carboxylic acid ligands are completely deprotonated.

Second Harmonic Generation (SHG) Measurements. Powder SHG measurement on the sample was performed on a modified Kurtz-NLO system using 1.064 μ m laser radiation.³ The SHG signal was collected and focused into a fiber optic bundle. The output of the fiber optic bundle was coupled to the entrance slit of a spectrometer and detected using a CCD detector. The sample was placed in the mould for SHG measurement, and the thickness of the sample is about 0.2 mm. A powdered KDP sample was used as a reference to assume the second-order NLO effect. All the samples and KDP were ground and sieved into distinct particle size ranges (100–150 μ m).

Recyclability of 1L in the cation exchange process. When sample of L-HPA⁺(*i*)**1L** was immersed in an ethanol solution of Li⁺ ions, the encapsulated L-HPA⁺ ions can be exchanged with Li⁺ ions. The UV-absorption spectra of the solution show that as the immersion time increases, the signals in the region from 250–270 nm corresponding to L-HPA⁺ increase, indicating the release of the encapsulated enantiomers and the possibility of recyclability of **1L** in the cation exchange process (Fig. S10).

Reference

1. *CrystalClear*, version 1.36; Molecular Structure Corp. and Rigaku Corp.: The Woodlands, TX, and Tokyo, Japan, **2000**.

2. G. M. Sheldrick, *SHELXS 97*, *Program for Crystal Structure Solution*; University of Göttingen: Göttingen, Germany.

3. (a) S. K. Kurtz, T. T. Perry, *J. Appl. Phys.* **1968**, *39*, 3798; (b) J.-P. Zou, G. Zhang, C.-H. Huang, G.-C. Guo, *CN Patent* 200710008880.7.

Scheme S1 (a) L-2-amino-1-propanol; (b) L-phenylalaninol; (c) L-phenylglycinol.

Fig. S1 The coordination environments for the Cd(II) ions in **1L** and **1D**. Hydrogen atoms and the labels of carbon atoms are omitted for clarity. (Symmetry codes for **1L**: (A) -x, y-1/2, -z+1; (B) x, y-1, z; (C) x+1, y, z; (D) -x+1, y-1/2, -z+1; (E) x-1, y, z; (F) -x, y+1/2, -z+1; (G) -x+1, y-1/2, -z; (H) -x, y+1/2, -z; (I) -x+1, y+1/2, -z+1; Symmetry codes for 1D: (A) x-1, y, z; (B) -x+2, y+1/2, -z; (C) x-1, y+1, z; (D) -x+3, y-1/2, -z; (E) -x+2, y-1/2, -z+1; (F) -x+2, y-1/2, -z; (G) -x+2, y+1/2, -z+1; (H) -x+3, y+1/2, -z+1; (I) -x+3, y-1/2, -z+1.

Fig. S2 The coordinated modes of OBA²⁻ ligand.

Fig. S3 The solid-state CD spectra for the bulk samples 1L, 1D, HPG⁺@1L, L-HPA⁺@1L and L-HA⁺@1L.

Fig. S4 The PXRD spectra of 1L, Lⁱ⁺@1L, L-HPA⁺@1L, L-HPG⁺@1L and L-HA⁺@1L.

Fig. S5 TGA curves of 1L and 1D.

Fig. S6 The 1D zigzag channels along b axis of in 1.

Fig. S7 Particle size dependence of the SHG intensity for 1L.

Fig. S8 SHG response of **1L**, KDP, Li⁺@**1L** and the inclusion compounds with a roughly equal amount of organic cations (*ca.* 5.9%).

Fig. S9 IR Spectra of 1L, 1D, p-Nitroaniline, L-phenylalaninol, L-phenylglycinol and the inclusion compounds.

Fig. S10 Cation exchange of encapsulated L-HPA⁺ ions by Li⁺ ions in ethanol solution, monitored by time-dependent UV-Vis spectroscopy.

compound	1L	1D
formula	$C_{152}H_{132}N_4O_{54}Cd_8$	$C_{152}H_{132}N_4O_{54}Cd_8$
fw	3777.72	3777.72
cryst syst	Monoclinic	Monoclinic
space group	$P2_{1}$	$P2_1$
<i>a</i> , Å	17.6560(11)	17.754(5)
<i>b</i> , Å	16.2741(18)	16.263(4)
<i>c</i> , Å	26.219(3)	26.250(7)
α, °	90.00	90.00
β, °	90.609(7	90.775(4)
γ, ⁰	90.00	90.00
<i>V</i> , Å ³	7533.1(13)	7575(4)
Ζ	2	2
μ , mm ⁻¹	1.197	1.191
D_{calcd},g cm ⁻³	1.660	1.651
Flack	0.21(3)	0.14(3)
GOF	1.006	1.028
R_1	0.0859	0.0712
wR_2	0.2464	0.2339

Table S1. Crystallographic data and structure refinement details for 1L and 1D.

 ${}^{a}R_{I} = \Sigma ||F_{o}| - |F_{c}|| / \Sigma |F_{o}|, \ wR_{2} = [\Sigma w (F_{o}^{2} - F_{c}^{2})^{2} / \Sigma w (F_{o}^{2})^{2}]^{1/2}$