Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2015

Electronic Supplementary Information for

Highly Efficient Electrocatalytic Hydrogen Evolution from Neutral Aqueous Solution by Water-Soluble Anionic Cobalt(II) Porphyrin

Belete B. Beyene, Sandeep B. Mane and Chen-Hsiung Hung*

Materials

Both the ligand and cobalt complex were synthesized as previously reported.^{1, 2} All the chemicals and solvents were purchased commercially and used without further purification. Reverse phase column chromatography was carried out using C18 silica gel (Carbon 17%, 60A) powder and TLC analysis by using analytical Merck PR-18F aluminum sheets. NMR spectra were recorded on a Bruker Avance 400 FT spectrometer. UV-Visible absorption spectra were recorded on Agilent 8453 spectrophotometer.

Synthesis and characterization

5, 10, 15, 20-Tetrakis (4-sulfonatophenyl)porphyrin (TPPS): H₂TPP (1 g) and 25 mL of H₂SO₄ (98%) were stirred for 8 h at 100 °C. The solution was then left overnight at room temperature, filtered, and washed with a small quantity of water, after which 150 mL of hot water was added. Neutralization of pH 9 was achieved by slow addition of 0.1 M sodium hydroxide solution at 0 °C. The formed sodium sulfate salt was filtered and washed 5 times with methanol to extract the compound. The solution was evaporated to dryness and purified by reverse phase column chromatography using water:methanol (80:20) solvent system to afford highly water soluble purple crystal, with 91% yield. ¹H NMR (400 MHz, DMSO-*d*₆) δ : 8.85 (s, 8H, H-pyrrolic), 8.18 (d, 8H, *m*-phenyl), 8.06 (d, 8H, *o*-phenyl), -2.93 (s, 2H, NH) ppm; UV-vis (λ_{max} in H₂O): 414, 516, 553, 580, 634 nm.

Cobalt-5, 10, 15, 20-Tetrakis (4-sulfonatophenyl)porphyrin (CoTPPS): 250 mg of TPPS was dissolved in 100 ml of distilled water. To the solution, an aqueous solution of 6 eq. of Co(OAc)₂. $4H_2O$ was added slowly and the reaction mixture was heated at 60 °C for 3 hrs. Metalation was confirmed by UV-visible spectroscopy. The solvent was then removed and the mixture was purified by reverse phase column chromatography on C18 gel using 100% water and then water/methanol (90:10, v/v). The chromatographed solution was evaporated to dryness using rotary evaporator and then kept in a vacuum oven at 70 °C for 2 days to get the desired cobalt porphyrin in 62% yield. UV-vis (λ_{max} in H₂O): 427, 548 nm.

Electrochemical Studies

All electrochemical measurements were carried out using a CHI 621B electrochemical analyzer, with a three-electrode cell in which Ag/AgCl (3 M NaCl) as reference electrode, glassy carbon (with surface area of 0.07cm²) as working electrode, and platinum wire as the counter electrode. All the potentials were measured *vs.* Ag/AgCl, at room temperature with the scan rate of 0.1 V/s and converted to SHE scale by adding 0.210 V. Cyclic voltammograms in dry DMSO were obtained using 0.1 M [Bu₄NPF₆] as the supporting electrolyte. The CVs were also measured in potassium phosphate buffer pH 7 and distilled neutral water using 0.1M LiClO₄ as supporting electrolyte. Controlled potential electrolysis (CPE) experiments were conducted at different potentials *vs.* Ag/AgCl (3 M NaCl) in 10-mL of 0.1 M and 2.0 M phosphate buffer with pH 7 and 0.1 M LiClO₄ aqueous solution stirred constantly.

Determination of Faradaic efficiency, TOF and TON

In order to determine Faradaic efficiency and TOF, CPE experiments were conducted in 10 mL of 2.0 M KPi, pH 7 and 0.1 M LiClO₄ neutral aqueous solutions at an applied potential of -1.39 V *vs.* SHE for 1 hr. The charge build up versus time was plotted in Figure 2A and Figure S9. Quantification of H₂ produced during 1 hr CPE was performed by Agilent 7890A Gas Chromatography (GC), with thermal conductivity detector and N₂ carrier gas. Faradaic efficiency was, therefore, calculated by the following equation:

Faradaic efficiency (%) =
$$[96485 * 2 * mol H_2 (GC) * 100] / [Q(CPE)]^3$$

The moles of hydrogen detected by GC were calibrated using injected volume of pure H₂. The volume of hydrogen injected is linearly dependent on GC peak area. Turn over frequency (TOF, moles of H₂ produced per moles of catalyst per time unit) was then calculated at the end of 1 h CPE experiment. For determination of TON values, extended CPE experiments were done by measuring charge passed at applied potential of -1.29 V *vs*. SHE in 2.0 M KPi, pH 7 solution (with 0.1 mM catalyst) and in 0.1 M LiClO₄ neutral aqueous solution (with 20 μ M catalyst) assuming 100 % Faradaic efficiency.

Catalyst	Applied	TON ^a	Faradaic	TOF ^a	Reference
	overpotential (mV)		efficiency (%)	(s ⁻¹)	
Ni ₂ (biscyclam) ⁴⁺	847	Up to100	3	0.04	4
Mo-OxoPY5Me ₂	987	6.1x10 ⁵ (71 h)	>99	2.4(71 h)	5
CoPY5Me ₂	887	5.5x10 ⁴ (60 h)	>99	0.3(12 h)	6
CoDPA-Bpy	987	300 (1 h)	99	0.08(1 h)	7
(bztpen)Co	837	1.6x10 ⁵ (60 h)	>99	0.14(60 h)	8
$Co(P_4N_2)$	576	9.24x104(20 h)	100	1.28(20 h)	9
CoMP11-Ac(N ₂)	852	2.5x10 ⁴ (4 h)	98	6.7(10 m)	10
CoTPPS (in 2 M KPi)	876	1.9 x10 ⁴ (73 h)	100	1.83 (1 h)	
CoTPPS(in 0.1 M LiCLO4)	976	4.9 x10 ³ (44 h)	100	0.38 (1h)	This work

Table S1. Comparison of some of H_2 evolution electrocatalysts working in phosphate buffer pH 7, as measured by CPE experiments.

^aIn parenthesis is the length of electrolysis experiment used to determine the corresponding value.

Figure S1. Absorption spectra of; A) TPPS (black) and CoTPPS (red) in water; B) CoTPPS in DMSO (red) compared with in water (black)

Figure S2. A) Cyclic voltammogram of 1 mM TPPS (black) and 1 mM CoTPPS (red) in DMSO at scan rate of 0.1 V/s; B) 1mM CoTPPS at scan rates of 0.05, 0.75, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 V/s, with glassy carbon working electrode.

Figure S3. Cyclic Voltammogram of 1 mM CoTPPS; With no acid (black), with 10 eq. acid (red), and 10 eq AcOH alone (blue); at scan rate of 0.1 V/s with glassy carbon working electrode.

Figure S4. CV of 1 mM of CoTPPS in DMSO solution containing 0.1 M Bu_4NPF_6 in the presence of acetic acid: (bottom-top) no acid, 0.5, 1, 2, 3, 4, 5, 7.5 and 10 eq of AcOH. Scan rate 0.1 Vs-1; Glassy carbon working electrode.

Figure S5 A CV of 0.1 mM CoTPPS in 0.1 M LiClO₄ aqueous solution using glassy carbon working electrode (blue), 0.1 mM free-bas (red), 0.1 mM Co(OAc)₂•4H₂O (magenta), control glassy carbon electrode (black), and Pt (green) when scanned to -1.29 V vs SHE.; (**B**) CV of 0.1 mM CoTPPS in 0.1 M LiClO₄ aqueous solution using glassy carbon as working electrode (red), control glassy carbon as working electrode (black) and control Pt working electrode (blue) when scanned to more negative potential (-1.79 V vs SHE). Conditions: Scan rate 0.1 V/s, at RT.

Figure S6. Cyclic Voltammogram of 0.5 mM CoTPPS; A) in 0.1 M LiClO₄ aqueous solution (red); blank solution (black) when scanned to -1.69 V *vs.* SHE; B) in 2.0 M KPi, pH 7 solution (black), buffered solution alone (red) when scanned to -1.29 V vs SHE. Condition: scan rate is 0.1 Vs⁻¹; Glassy carbon working electrode at room temperature.

Figure S7. Cyclic voltammogram of CoTPPS in 2.0 M KPi, pH 7 at catalyst concentrations of 1 mM (black), 0.5 mM (red), 0.1 mM (blue), 0.05 mM (magenta) and buffered solution alone (green). Scan rate 0.1 Vs⁻¹; Glassy carbon working electrode.

Figure S8. CV of CoTPPS in 0.1 M LiClO₄ bulk solution (red), when adsorbed on to glassy carbon electrode (blue) and blank solution alone (black) at scan rate 0.1 Vs^{-1} .

Figure S9. A) Charge build up versus times and (B) the accumulated charge at the end of 2 min for controlled potential electrolysis of 0.05 mM solution of CoTPPS in 0.1 M KPi, pH 7 buffer at various overpotentials.

Standard H $_2$ (100%) injected for calibration (µ L)	Peak area		
2	125.23		
5	329.94		
7	462.0		
10	641.83		
13	852.88		

Table S2: GC Experiment- for calibration of standard hydrogen

Figure S10: A) GC chromatogram of standard H_2 with different volume; B) Calibration curve used to calculate the amount of hydrogen generated from CPE experiment by using GC.

Figure S11. A) GC Chromatogram of standard H_2 (black), head scape after CPE (green) and after purging with little standard H_2 (Red); B) GC Chromatogram of 0.05 mM CoTPPS in 2 M KPi, pH 7 before CPE (Black) and after CPE at different time intervals.

Figure S12. Charge versus time for 1 h controlled potential electrolysis at -1.39 V vs. SHE in 0.1 M LiClO₄ neutral aqueous solution. CoTPPS (black) is compared with buffer control (blue), and metal free TPPS (red).

Figure S13. Generated hydrogen volume calculated from passed charge (black) and measured from gas chromatography (red) during 1 h electrolysis of CoTPPS in 0.1 M LiClO₄ at -1.39 V vs. SHE.

Figure S14. Extended CPE of 0.05 mM CoTPPS in 0.1 M LiClO₄ bulk neutral solution (green), when catalyst adsorbed on glassy carbon electrode (red) in neat 0.1 M LiClO₄ solution, and blank solution alone (blue), with an applied potential -1.39 V vs. SHE.

Figure S15 (A) Cyclic voltammogram of 0.1 mM CoTPPS in 0.1M KPi, pH 7 measured in closed system (black) and under open air (red) using glassy carbon electrode. Conditions: scan rate 0.1 V/s, at room temperature. **(B)** Controlled-potential electrolysis of 0.1 mM CTPPS in 2 M KPi, pH 7 measured in closed system (blue) and open air (red) at an applied potential of -1.29 V vs SHE, using glassy carbon as working electrode.

Figure S16 pH *vs* electrolysis time for CPE experiment performed in 0.1M KPi pH 7 solution using 0.1mM CoTPPS at an aplied potential of -1.29 V vs SHE on glassy carbon electrode.

References

- 1. G. Abellán, E. Coronado, C. J. Gómez-García, C. Martí-Gastaldo and A. Ribera, *Polyhedron*, 2013, **52**, 216-221.
- 2. X.-T. Zhou, G.-Q. Ren and H.-B. Ji, J. Porphyrins Phthalocyanines, 2013, 17, 1104-1112.
- 3. J. G. Kleingardner, B. Kandemir and K. L. Bren, J. Am. Chem. Soc., 2014, 136, 4-7
- 4. Collin, J. P.; Jouaiti, A.; Sauvage, J. P. Inorg. Chem. 1988, 27, 1986.
- 5. H. I. Karunadasa, C. J. Chang and J. R. Long, Nature, 2010, 464, 1329-1333
- 6. Y. Sun, J. P. Bigi, N. A. Piro, M. L. Tang, J. R. Long and C. J. Chang, *J. Am. Chem. Soc.*, 2011, **133**, 9212-9215.
- 7. Singh, W. M.; Baine, T.; Kudo, S.; Tian, S. L.; Ma, X. A. N.; Zhou, H. Y.; DeYonker, N.J.; Pham, T.
- C.; Bollinger, J. C.; Baker, D. L.; Yan, B.; Webster, C. E.; Zhao, X. Angew. Chem. Int. Ed.Engl. 2012, 51, 5941.
- 8. Zhang, P.; Wang, M.; Gloaguen, F.; Chen, L.; Quentel, F.; Sun, L. Chem. Comm. 2013,49, 9455
- 9. L. Chen, M. Wang, K. Han, P. Zhang, F. Gloaguenb and L. Sun, *Energy Environ. Sci.*, 2014, **7**, 329–334
- 10. J. G. Kleingardner, B. Kandemir and K. L. Bren, J. Am. Chem. Soc., 2014, 136, 4-7