Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2015

A [2]Rota[2]catenane, Constructed from a Pillar[5]arene-Crown Ether Fused Double-Cavity Macrocycle: Synthesis and Structural Characterization

Wei-Bo Hu, Wen-Jing Hu, Xiao-Li Zhao, Yahu A. Liu,

Jiu-Sheng Li,* Biao Jiang* and Ke Wen*

Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai 201210, China

University of Chinese Academy of Sciences, Beijing 100039, P. R. China

Shanghai Key Laboratory of Green Chemistry and Chemical Processes, and Department of Chemistry, East China Normal University, Shanghai 200062, China

Medicinal Chemistry, ChemBridge Research Laboratories Inc., San Diego, CA 92127, USA

School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China

Correspondence Address

Prof. Dr. Ke Wen Shanghai Advanced Research Institute, Chinese Academy of Science No. 100 Haike Road, Zhangjiang Hi-Tech Park, Pudong, Shanghai, 201210 P. R. China E-mail: wenk@sari.ac.cn

Table of Contents

General Methods	S2
Synthesis and crystallographic data	S2-S6
Fig. S1 ¹ H NMR spectrum of 5	S 7
Fig. S2 ¹³ C NMR spectrum of 5	\$7
Fig. S3 ¹ H NMR spectrum of 2	S8
Fig. S4 ¹³ C NMR spectrum of 2	S8
Fig. S5 Mass spectrum of 2	89
Fig. S6 ¹ H- ¹ H ROSY NMR Spectroscopy of 2	S9
Fig. S7 ¹ H NMR spectrum of 3	S10
Fig. S8 ¹³ C NMR spectrum of 3	S10
Fig. S9 ¹ H- ¹ H COSY NMR Spectrum of 3	S11
Fig. S10 ¹ H- ¹ H NOESY NMR Spectrum of 3	S11
Fig. S11 Mass spectrum of 3	S12
Fig. S12 ¹ H NMR spectrum of 4	S13
Fig. S13 ¹³ C NMR spectrum of 4	S13
Fig. S14 ¹ H- ¹ H COSY NMR Spectrum of 4	S14
Fig. S15 ¹ H- ¹ H ROSY NMR Spectroscopy of 4	S14
Fig. S16 Mass spectrum of 4	S15
References	S16

General Methods: Unless otherwise noted, all commercial reagents and solvents were used without purification. Separation by flash column chromatography was performed on Merck silica gel (230-400 mesh). ¹H and ¹³C NMR spectra were recorded at a 400 MHz spectrometer with TMS as the reference. Mass spectra (ESI analysis) were recorded on an Esquire 6000 spectrometer (LC/MS). Single crystal X-ray diffraction data were collected on a SMART APEX 2 X-ray diffractometer equipped with a normal focus Mo-target X-ray tube ($\lambda = 0.71073$ Å) and data reduction included absorption corrections by the multi-scan method. The structures were solved by direct methods and refined by full-matrix least-squares using SHELXS-97. All non-hydrogen atoms were refined anisotropically, while hydrogen atoms were added at their geometrically ideal positions and refined isotropically.

Synthesis of 2:

Compound 1 was prepared as previously reported.^{S1}

1,3-Bis(6-aminohexyl)-1H-imidazol-3-ium trifluoroacetate 5 To a solution of *tert*butyl(6-bromohexyl)carbamate (1.11 g, 4.00 mmol) and imidazole (108.9 mg, 1.60 mmol) and in CH₃CN (20 mL) was added K₂CO₃ (552.8 mg, 4.00 mmol), and the reaction mixture was stirred at 70 °C for 24 h, concentrated under reduced pressure. The resulting residue was purified by chromatography with a mixed solvent of CH₂Cl₂/MeOH (200:1, v/v) to give 1,3bis(5-((tert-butoxycarbonyl)amino)pentyl)-1H-imidazol-3-ium as a yellow liquid which was then dissolved in CHCl₃ (20.0 mL), followed by the addition of CF₃COOH (2.0 mL). The mixture was stirred at 40 °C for 18 h, and concentrated under reduced pressure to result in a residue purified chromatography with which was а mixed solvent of $CH_2Cl_2/MeOH/triethylamine$ (TEA) (100:20:1, v/v/v) to afford 5 as a colorless liquid (308.2) mg, 50%). ¹H NMR (400 MHz, CD₃OD, ppm) δ 9.11 (s, 1H), 7.69 (d, *J*= 1.6 Hz, 2H), 4.25 (t, J= 7.4 Hz, 4H), 3.01-2.89 (m, 4H), 2.02-1.86 (m, 4H), 1.80 -1.62 (m, 4H), 1.57-0.53 (m, 8H) ppm; ¹³C NMR (101 MHz, CD₃OD, ppm) δ 163.49, 163.14, 162.80, 162.46, 137.21, 123.80, 122.60, 119.69, 116.77, 113.86, 50.67, 40.51, 30.84, 28.26, 26.76, 26.70 ppm; MS (ESI): m/z calcd [M-CF₃COO⁻] C₁₅H₃₁N₄⁺: 267.3; Found: 267.3.

[2]Rotaxane (2): After a solution of host 1 (30.00 mg, 0.025 mmol), 5 (9.50 mg, 0.025 mmol) and TEA (101.2 mg, 0.10 mmol) in CHCl₃ (30 mL) was stirred at 5 °C for 30 min, 1-(20.0 mg, 0.10 mmol) was added The resulting reaction mixture was naphthoyl chloride stirred for 1 h, and concentrated under reduced pressure to afford a residue which was purified by chromatography with a mixed solvent of $CH_2Cl_2/MeOH$ (50:1, v/v). The resultant product was dissolved in a mixed solvent of acetone and H₂O (2/:1, v/v, 3.0 mL), followed by addition of NH₄PF₆ (30.0 mg, 0.18 mmol). The mixture was stirred for 5 h, then poured into H_2O (10 mL), and extracted with CH_2Cl_2 (3 × 5 mL). The combined organic extracts were washed with brine (4 mL), dried over Na₂SO₄, and concentrated to afford 2 as a yellow solid (14.0 mg, 30%). ¹H NMR (600 MHz, CD₃CN) δ 8.32 (d, J = 8.3 Hz, 2H), 8.03 (d, J = 8.2 Hz, 2H) 2H), 8.01 - 7.96 (m, 2H), 7.76 (d, J = 8.4 Hz, 2H), 7.67 (m, 2H), 7.66 - 7.55 (m, 6H), 7.31 (t, J = 8.0 Hz, 2H), 7.10 (s, 1H), 7.08 (m, 2H), 6.95 (s, 2H), 6.94 (s, 2H), 6.88 (s, 2H), 6.85 (s, 2 2H), 6.81 (d, J = 7.6 Hz, 2H), 6.58 (s, 2H), 6.54 (s, 2H), 4.15 (m, 4H), 3.88 (m, 4H), 3.84 – 3.79 (m, 2H), 3.79 – 3.76 (m, 4H), 3.76 – 3.71 (m, 22H), 3.71 – 3.68 (m, 4H), 3.68 – 3.63 (m, 6H), 3.63 – 3.56 (m, 18H), 3.54 (m, 2H), 3.42 (m, 4H), 2.33 (m, 4H), 1.57 – 1.45 (m, 4H), 1.05 - 0.81 (m, 4H), 0.57 - 0.41 (m, 4H), 0.27 - 0.10 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 169.72, 154.28, 150.73, 150.65, 150.11, 134.80, 133.74, 132.82, 130.38, 130.32, 130.01, 129.38, 129.30, 129.25, 129.18, 128.35, 126.88, 126.61, 126.29, 125.49, 125.12, 125.03, 124.88, 122.20, 116.25, 114.73, 114.62, 114.55, 114.48, 105.43, 70.97, 70.81, 70.70, 70.37,

70.10, 69.66, 69.34, 67.80, 56.86, 56.81, 56.70, 56.62, 48.44, 39.76, 29.70, 29.57, 29.27, 28.96, 28.52, 25.73, 25.62. MS (ESI): *m/z* calcd [M-PF₆⁻+H⁺] C₁₀₆H₁₂₆N₄O₂₀²⁺: 887.4; Found: 887.8.

Synthesis of 3

Compound 1 and 7 were prepared as previously reported.^{S2}

[2]Catenane (3): A solution of host 1 (30.0 mg 0.025 mmol), 7 (9.5 mg, 0.025 mmol) and 1,4-di(bromomethyl)benzene (7mg, 0.025 mmol) in DMF (10 mL) was stirred at room temperature for 3 days, and concentrated under reduced pressure to result in a residue which was washed with CHCl₃ (10 mL) and then H₂O (10 mL). The resulting solid product was dissolved a mixed solvent of acetone and H₂O (2/:1, v/v, 3.0 mL), followed by addition of NH₄PF₆ (30.0 mg, 0.18 mmol). The mixture was stirred at room temperature for 5 h, and concentrated under reduced pressure to result in a red solid crude product which was recrystallized to afford pure product **3** (40.0 mg, 70%). ¹H NMR (400 MHz, CD₃CN) δ 9.03 (s, 1H), 8.88 (d, *J* = 5.1 Hz, 2H), 8.64 (d, *J* = 6.3 Hz, 2H), 8.56 (d, *J* = 6.3 Hz, 2H), 8.11 (m, 4H), 7.98 (m, 4H), 7.39-6.98 (m, 8H), 6.84 (m, 6H), 6.61 (s, 2H), 6.22 (d, 2H), 6.05 (s, 2H), 6.02-5.86 (m, 4H), 5.86-5.61 (m, 6H), 4.18 (m, 12H), 3.90 (m, 12H), 3.77-3.58 (m, 34H), 3.48-3.28 (m, 4H), 3.16 (m, 4H), 2.43 (d, *J* = 8.2 Hz, 2H). ¹³C NMR (101 MHz, CD₃CN) δ 152.13, 151.08, 151.06, 150.99, 150.92, 149.14, 145.60, 145.25, 145.10, 144.59, 137.70, 137.66, 132.64, 132.29, 132.20, 132.01, 129.66, 129.56, 129.34, 128.80, 128.57, 126.51,

125.65, 125.49, 125.36, 124.85, 114.60, 114.05, 114.00, 113.94, 113.62, 109.27, 104.97, 72.30, 71.73, 71.55, 70.87, 70.84, 70.78, 69.17, 68.37, 66.05, 66.01, 56.30, 56.25, 56.21, 56.08, 29.77, 29.60, 29.52. MS (ESI): *m/z* calcd [M-4PF₆⁻] C₁₀₅H₁₁₄N4O₁₈⁴⁺: 429.7; Found: 429.4.

Crystallographic Data of 3: $[C_{105}H_{113}N_4O_{18}F_{27}P_{4.5}]$; Mr = 2371.36; T = 173 (2) K; triclinic; space group $P\bar{1}$; a = 14.1777(6); b = 20.5414(9); c = 24.6430(10) Å; a = 71.1160(10); $\beta = 78.710(2)$; $\gamma = 76.663(2)$; V = 6549.9(5) Å³; Z = 2; $\rho_{calcd} = 1.202$ g/cm³; crystal size = 0.42 x 0.18 x 0.15 mm; $\mu = 0.158$ mm⁻¹; reflections collected 76514; unique reflections 22945; data/restraints/parameters 22945/0/1429; *GOF* on F^2 0.982; R_{int} for independent data 0.0698; final $R_1 = 0.1070$, $wR_2 = 0.2908$; R indices (all data) $R_1 = 0.1707$, $wR_2 = 0.3280$; largest diff. peak and hole: 0.826 and -0.772 eÅ⁻³.

Synthesis of 4

[3]Rotacatenane (4): A solution of 2 (57.0 mg 0.03 mmol), G3 (11.0 mg, 0.03 mmol) and 1,4-di(bromomethyl)benzene 6 (8.0 mg, 0.03 mmol) in DMF (30 mL) was stirred at room temperature for 20 days, and concentrated under reduced pressure to result in a residue which was washed with CHCl₃ (10 mL) and then H₂O (10 mL), The resulting solid product was dissolved a mixed solvent of acetone and H₂O (2/:1, v/v, 3.0 mL), followed by addition of

NH₄PF₆ (30.0 mg, 0.18 mmol). The mixture was stirred at room temperature for 20 h, and concentrated under reduced pressure to result in a crude which was recrystallized to afford pure product 4 (23.0 mg, 25%). ¹H NMR (400 MHz, CD₃CN) δ 9.07 (d, J = 5.9 Hz, 2H), 8.82 (d, J = 6.5 Hz, 2H), 8.54 (m, 4H), 8.36-8.23 (m, 2H), 8.13-7.98 (m, 8H), 7.85 (m, 4H), 7.69-7.57 (m, 8H), 7.23 (d, J = 4.8 Hz, 2H), 7.19 (s, 1H), 7.15 (d, J = 4.9 Hz, 2H), 7.06 (m, 4H), 6.98 (t, J = 5.5 Hz, 2H), 6.91-6.79 (m, 6H), 6.63 (s, 2H), 6.52 (d, J = 1.4 Hz, 2H), 6.13 (d, J = 7.9 Hz, 2H), 6.09 (s, 2H), 5.91-5.80 (m, 4H), 5.80 – 5.60 (m, 6H), 4.22 (m, 6H), 4.12 – 4.03 (m, 4H), 4.00 (m, 2H), 3.89 (m, 4H), 3.80 (m, 4H), 3.79-3.74 (m, 4H), 3.74-3.73 (m, 2H), 3.72-3.63 (m, 32H), 3.60-3.56 (m, 2H), 3.38 (d, J = 12.3 Hz, 2H), 3.28 (m, 4H), 3.17 (d, J =12.2 Hz, 2H), 2.80 (m, 2H), 2.35 (d, J = 8.2 Hz, 2H), 2.33-2.28 (m, 4H), 1.37-1.28 (m, 4H), 0.73 (m, 4H), 0.32 (m, 4H), 0.12 (m, 4H). ¹³C NMR (101 MHz, CD₃CN) δ 170.09, 152.09, 151.77, 151.61, 151.50, 151.41, 149.48, 145.65, 145.60, 145.47, 145.20, 144.58, 137.61, 137.50, 136.06, 134.71, 133.97, 132.60, 132.25, 132.10, 131.94, 131.18, 131.07, 130.26, 130.21, 129.46, 129.22, 128.98, 127.88, 127.48, 126.58, 126.33, 126.11, 126.01, 125.63, 125.57, 125.24, 124.83, 122.41, 116.04, 115.78, 115.55, 114.62, 114.58, 109.19, 104.94, 72.18, 71.61, 71.07, 70.86, 70.67, 70.55, 70.50, 69.22, 68.56, 66.01, 57.67, 57.43, 57.40, 57.07, 49.50, 40.52, 30.67, 29.61, 29.52, 29.40, 29.04, 26.76, 26.67. MS (ESI): m/z calcd [M-5PF₆⁻] C₁₄₂H₁₅₇N₈O₂₀⁵⁺: 458.8; Found: 458.8.

Crystallographic Data of 4: $[C_{166}H_{205}N_8O_{26}F_{30}P_5]$; Mr = 3453.22; T = 173(2) K; T = 173(2) K; triclinic; space group $P\bar{1}$; a = 20.5486(17); b = 21.3959(19); c = 24.984(2) Å; a = 65.6220(10); $\beta = 74.3130(10)$; $\gamma = 66.014(2)$; V = 9071.2(13) Å³; Z = 2; $\rho_{calcd} = 1.264$ g/cm³; crystal size = 0.300 x 0.250 x 0.100 mm; $\mu = 0.146$ mm⁻¹; reflections collected 63342; unique reflections 38333; data/restraints/parameters 38333/91/2071; *GOF* on F^2 1.027; R_{int} for independent data 0.0356; final $R_1 = 0.1115$, $wR_2 = 0.3021$; R indices (all data) $R_1 = 0.1918$, $wR_2 = 0.3579$; largest diff. peak and hole: 0.776 and -0.530 eÅ⁻³.

Fig. S1 1 H NMR spectrum of 5 in CD₃CN

Fig. S2 13 C NMR spectrum of 5 in CD₃OD

Fig. S3 ¹H NMR spectrum of [2]rotaxane 2 in CD₃CN

Fig. S4 ¹³C NMR spectrum of [2]rotaxane 2 in CDCl₃

Fig. S5 Mass spectrum of [2]rotaxane 2

Fig. S 6 ¹H-¹H ROSY NMR Spectroscopy of [2]rotaxane 2 in CD_3CN

Fig. S7 ¹H NMR spectrum of [2]catenane 3 in CD₃CN

Fig. S8 ¹³C NMR spectrum of [2]catenane 3 in CD₃CN

Fig. S9 ¹H-¹H COSY NMR Spectrum of [2]catenane **3** in CD₃CN

Fig. S10 ¹H-¹H NOESY NMR Spectrum of [2]catenane 3 in CD₃CN

Fig. S11 Mass spectrum of [2]catenane 3

Fig. S12 ¹H NMR spectrum of [3]rotacatenane 4 in CD₃CN

Fig. S13 13 C NMR spectrum of [3]rotacatenane 4 in CD₃CN

Fig. S14 ¹H-¹H COSY NMR Spectrum of [3]rotacatenane 4 in CD₃CN

Fig. S15 ¹H-¹H ROSY NMR Spectroscopy of [3]rotacatenane 4 in CD₃CN

Window Display Report

Fig. S16 Mass spectrum of [3]rotacatenane 4

References:

- S1 a) Hu, W.-B.; Yang, H.-M.; Hu, W.-J.; Ma, M.-L.; Zhao, X.-Li.; Mi, X.-Q.; Liu, Y. A.; Li, J.-S.; Jiang, B.; Wen, K. *Chem. Commun.* 2014, *50*, 10460. b) Ogoshi, T.; Yamafuji, D.; Kotera, D.; Aoki, T.; Fujinami, S.; Yamagishi, T. *J. Org. Chem.* 2012, *77*, 11146.
- S2 a) Liu, H.; Li, X.-Y.; Zhao, X.-L.; Liu, Y. A.; Li, J.-S.; Jiang, B.; Wen, K. Org. Lett. 2014, 16, 5894. b) Tang, B.; Yang, H.-M.; Hu, W.-J.; Ma, M.-L.; Liu, Y. A.; Li, J.-S.; Jiang, B.; Wen, K. Eur. J. Org. Chem. 2014, 6925.