Supporting information

Table of Contents

1. Experimental section
2. Crystallography data of Compound $\mathbf{1 2}$
3. Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra
4. Copies of HRMS spectra

Page 1 - Page 6
Page 6-Page 6
Page 7 - Page 29
Page 30 - Page 39

1. Experimental section

1.1 General Methods

All reagents and solvents were commercial grade and purified prior to use when necessary. NMR spectra were acquired on a Varian 400 MHz instrumental. Chemical shifts are measured relative to residual solvent peaks as an internal standard set to $\delta 7.26$ and $\delta 77.0\left(\mathrm{CDCl}_{3}\right), \delta$ 2.50 and $\delta 39.52$ (DMSO- $_{6}$). HRMS was performed on a Varian QFT-ESI instrumental. Melting points were determined on a Taike X-4 melting point apparatus. All temperatures were uncorrected.

1.2 Preparation of $\mathbf{1}$-arylpropan-1,2-diones $\mathbf{8 b}-\mathbf{d}^{[1,2]}$

To a mixture of the corresponding ketone (30 mmol) and anhydrous aluminum chloride $(0.15 \mathrm{~g})$ in ether $(45 \mathrm{~mL})$ was added bromine $(11.5 \mathrm{~g}, 72 \mathrm{mmol})$ at a rate to maintain a gentle reflux. When the reaction was complete (monitored by TLC), the solvent was removed under reduced pressure to obtain an oil. The oil was slowly added to a solution of sodium ethoxide in ethanol (formed by 72 mmol of sodium and 45 mL of ethanol) and the resulting mixture was stirred at room temperature for 1 h . Then, concentrated hydrochloric acid $(15 \mathrm{~mL})$ was added and the mixture was stirred at room temperature for 3 h . The precipitate was filtered off and the filtrate was diluted with 30 mL of water, and extracted with methylene chloride $(3 \times 15 \mathrm{~mL})$. The combined organic layers were dried over magnesium sulfate and concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel (200-300 mesh, eluted with petroleum ether:ethyl acetate $=20: 1$) to afford the target compound 8 .

1-(4-Ethoxyphenyl)propane-1,2-dione (8b): Yellow liquid, 55% yield. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.98(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.11(\mathrm{q}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.48(\mathrm{~s}, 3$ H), $1.44(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 201.2,190.0,164.2,132.8,124.4$, 114.6, 63.9, 26.4, 14.5.

1-(4-Bromophenyl)propane-1,2-dione (8c): Yellow liquid, 62% yield. ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $\delta 7.85(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}(100.6 \mathrm{MHz}$, CDCl_{3}): $\delta 199.6,189.5,132.0,131.7,130.5,130.0,26.1$.

1-Phenylbutane-1,2-dione (8d): Pale yellow liquid, 43% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.98(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.64(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.92(\mathrm{q}, J=7.2 \mathrm{~Hz}$, $2 \mathrm{H}), 1.20(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 203.7,192.4,134.4,131.9,130.0$, 128.7, 32.0, 6.7.
1.3 3-(p-Tolylthio)-1-(4-bromophenyl)-2-hydroxyprop-2-en-1-one (8e):

To a solution of 4-methylbenzenethiol (5 mmol) in ethanol (20 mL) was added aqueous sodium carbonate (6 mmol of sodium carbonate in 15 mL of water). Then, to the resulting mixture was added dropwise a solution of 3-bromo-1-phenylpropane-1,2-dione (5 mmol) in ethanol (5 mL) at 0 ${ }^{\circ} \mathrm{C}$. After completion of the reaction (monitored by TLC), the reaction mixture was diluted with water (25 mL), and extracted with methylene chloride $(3 \times 20 \mathrm{~mL})$. The combined organic layers were dried over magnesium sulfate and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (200-300 mesh, eluted with petroleum ether:ethyl acetate $=20: 1$) to afford compound $\mathbf{8 e}$ as a pale yellow oil in 62% yield. NMR analysis indicates that this compound exists predominantly in its enol form. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 7.66(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 7.15(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{~s}, 1 \mathrm{H}), 6.57(\mathrm{~s}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100.6 MHz , CDCl_{3}): $\delta 187.8,144.8,138.3,135.7,132.1,130.8,130.2,130.2,128.8,128.4,123.2,21.1$.

1.4 Preparation of 2-ethoxy- N -(4-methoxyphenyl)- N -(1-(4-methoxyphenyl)-2,5-diphenyl-1H-pyrrol-3-yl)acetamide (12):

To a stirring mixture of ,1-bis(4-methoxyphenyl)-2,5-diphenyl-1H-pyrrol-3-amine 11a (447 mg, 1 mmol), potassium carbonate $(415 \mathrm{mg}, 3 \mathrm{mmol})$ in toluene $/ 1,4$-dioxane $(40 \mathrm{~mL}, \mathrm{~V} / \mathrm{V}=1: 1)$ was added 2-ethoxyacetyl chloride ($147 \mathrm{mg}, 1.2 \mathrm{mmol}$) in one portion. The resulting mixture was stirred under a nitrogen atmosphere at $70^{\circ} \mathrm{C}$ for 5 h . After cooling to room temperature, the reaction mixture was quenched with water $(20 \mathrm{~mL})$ and extracted with methylene choride (3×30 mL). The combined organic layers were dried over magnesium sulfate, filtered and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (200-300 mesh, eluted with petroleum ether/ethyl acetate $=6: 1$) to afford the corresponding amide 12 as a white solid. $383 \mathrm{mg}, 72 \%$ yield, m.p. $95-97{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.09-7.26$ $(\mathrm{m}, 10 \mathrm{H}), 7.68-6.90(\mathrm{~m}, 8 \mathrm{H}), 6.47(\mathrm{~s}, 1 \mathrm{H}), 4.13(\mathrm{~s}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.50(\mathrm{q}, J=$ $6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.93(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.3,158.5,157.0$, $136.0,134.1,132.1,131.4,130.9,130.5,130.1,129.8,129.6,128.4,128.0,127.4,126.7,126.2$, $123.5,114.4,113.8,113.7,108.6,107.6,69.4,66.8,55.3,55.2,15.0$. HRMS (ESI) m / z calc'd for $\mathrm{C}_{37} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 533.2435$, found 533.2437.

1.5 General procedure for the synthesis of polysubstituted pyrroles 11

To a solution of 1,2-dione $\mathbf{8}(0.2 \mathrm{mmol})$, arylamine $9(0.44 \mathrm{mmol})$, and aldehyde $10(0.2 \mathrm{mmol})$ in acetonitrile (1 mL) was added 4-methylbenzenesulfonic acid monohydrate ($20 \mathrm{~mol} \%$) at room temperature. The resulting mixture was stirred for the total consumption of 1,2-dione 8
(Monitored by TLC). Work-up procedure A: After completion of the reaction, the product was precipitated by the addition of 1 mL of petroleum ether followed by cooling to $0{ }^{\circ} \mathrm{C}$. The precipitate was filtered off, and washed with cold petroleum ether to afford the pure product (Table 2, entries $1,5-9,11$ and 12). Work-up procedure B: After removal of the solvent in vacuo, the residue was purified by column chromatography on silica gel (200-300 mesh, eluted with petroleum ether:ethyl acetate $=20: 1$) to afford polysubstituted pyrrole $\mathbf{1 1}$ (Table 2, entries 3, 4, 9, and 12-17).

N,1-Bis(4-methoxyphenyl)-2,5-diphenyl-1H-pyrrol-3-amine (11a): Yellow solid, m.p. 158-160 ${ }^{\circ} \mathrm{C}, 84 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.05-7.15(\mathrm{~m}, 6 \mathrm{H}), 6.96-7.05(\mathrm{~m}, 4 \mathrm{H}), 6.84(\mathrm{~d}, J$ $=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.83(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.72(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.63(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.43$ (s, 1 H), $5.02(\mathrm{~s}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100.6 MHz, CDCl_{3}): $\delta 158.2,152.7$, 140.9, 133.1, 132.9, 131.7, 131.4, 130.0, 129.8, 128.5, 128.1, 127.9, 126.3, 126.1, 126.1, 115.9, 114.7, 113.7, 105.3, 55.7, 55.3. HRMS (ESI) m / z calc'd for $\mathrm{C}_{30} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 447.2067$, found 447.2068.

N,1-Bis(3-methoxyphenyl)-2,5-diphenyl-1H-pyrrol-3-amine (11b): Yellow solid, m.p. 123-125 ${ }^{\circ} \mathrm{C}, 67 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.05-7.22(\mathrm{~m}, 12 \mathrm{H}), 6.75(\mathrm{dd}, J=8.4,2.0 \mathrm{~Hz}, 1$ H), $6.59(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{~s}, 1 \mathrm{H}), 6.50-6.54(\mathrm{~m}, 3 \mathrm{H}), 6.34(\mathrm{dd}, J=8.4,2.0 \mathrm{~Hz}, 1 \mathrm{H})$, $5.27(\mathrm{~s}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.53(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 160.8,159.5,148.6$, $139.6,133.1,132.8,131.2,130.0,129.9,129.2,128.8,128.5,128.4,128.1,127.9,127.1,126.6$, $126.4,125.8,124.8,121.2,114.2,114.1,113.3,107.2,106.6,103.2,100.1,55.2,55.1$ HRMS (ESI) m / z calc'd for $\mathrm{C}_{30} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 447.2067$, found 447.2073 .
 $116-118{ }^{\circ} \mathrm{C}, 73 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.09-7.25(\mathrm{~m}, 12 \mathrm{H}), 7.01$ (dd, $J=7.6$, $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{dt}, J=8.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.78-6.84(\mathrm{~m}, 3 \mathrm{H}), 6.72(\mathrm{dt}, J=8.0,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, $6.61(\mathrm{~s}, 1 \mathrm{H}), 5.83(\mathrm{~s}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.40(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 155.5$, $146.9,137.2,133.6,133.4,131.7,130.8,129.4,129.0,128.1,127.9,127.8$ (2 C), 127.7, 126.2, $126.1,124.5,121.1,120.5,117.0,112.1,112.1,110.0,106.0,55.6,55.3$. HRMS (ESI) m / z calc'd for $\mathrm{C}_{30} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 447.2067$, found 447.2075 .

2,5-Diphenyl-N,1-di(p-tolyl)-1H-pyrrol-3-amine (11d): Yellow solid, m.p. $154-156{ }^{\circ} \mathrm{C}, 79 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.13-7.21(\mathrm{~m}, 6 \mathrm{H}), 7.04-7.11(\mathrm{~m}, 4 \mathrm{H}), 7.03(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 7.00(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.89(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.56(\mathrm{~s}, 1 \mathrm{H})$, $5.19(\mathrm{~s}, 1 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 144.7, 136.7, 136.1, 133.0 (2 C), 131.4, 130.1, 129.7, 129.2, 128.5, 128.0, 127.9, 127.4, 126.5, 126.4, 126.2, 126.0, 125.6, 114.4, 105.9, 21.1, 20.5. HRMS (ESI) m / z calc'd for $\mathrm{C}_{30} \mathrm{H}_{27} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 415.2169$, found 415.2167.
$N, 1$-Bis(4-butylphenyl)-2,5-diphenyl-1H-pyrrol-3-amine (11e): Yellow solid, m.p. $96-98{ }^{\circ} \mathrm{C}$, 70% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.13-7.19(\mathrm{~m}, 6 \mathrm{H}), 7.04-7.10(\mathrm{~m}, 4 \mathrm{H}), 7.03(\mathrm{~d}, \mathrm{~J}=$ $8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.00(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.90(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.89(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.58(\mathrm{~s}$, 1 H), 5.04 (br. s, 1 H), 2.57 (t, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), 2.54 (t, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), $1.52-1.62$ (m, 4 H), $1.26-1.42(\mathrm{~m}, 4 \mathrm{H}), 0.93(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100.6 MHz, CDCl_{3}): $\delta 144.8,141.7,136.3,133.0,132.7,131.4,130.1,129.0,128.6$ (2 C), 128.5, 128.0, 127.9, $126.4,126.3,126.1,125.9,125.7,114.4,105.8,35.1,34.8,34.0,33.3,22.4,22.1,14.0,13.9$. HRMS (ESI) m / z calc'd for $\mathrm{C}_{36} \mathrm{H}_{39} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 499.3108$, found 499.3118 .
$N, 1,2,5-T e t r a p h e n y l-1 H$-pyrrol-3-amine (11f): Yellow solid, m.p. $147-148{ }^{\circ} \mathrm{C}, 84 \%$ yield. ${ }^{1} \mathrm{H}$

NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.17-7.24(\mathrm{~m}, 11 \mathrm{H}), 7.00-7.10(\mathrm{~m}, 6 \mathrm{H}), 6.96(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $6.79(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 147.1,138.7$, 133.1, $132.9,131.2,130.1,129.2,128.9,128.6$ (2 C), 128.0, 127.9, 127.0, 126.5, 126.3, 125.2, 118.2, 114.2, 106.4. HRMS (ESI) m / z calc'd for $\mathrm{C}_{28} \mathrm{H}_{23} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 387.1856$, found 387.1857.

N,1-Bis(4-fluorophenyl)-2,5-diphenyl-1H-pyrrol-3-amine (11g): Yellow solid, m.p. 190-192 ${ }^{\circ} \mathrm{C}$, 79% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, ~ D M S O-d_{6}$): $\delta 7.09-7.24(\mathrm{~m}, 14 \mathrm{H}), 6.90(\mathrm{t}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, 6.74-6.77 (m, 2 H), $6.44(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100.6 MHz, DMSO- d_{6}): $\delta 160.8(\mathrm{~d}, \mathrm{~J}=244.8 \mathrm{~Hz}$), $154.6(\mathrm{~d}, J=231.8 \mathrm{~Hz}), 144.8,135.0(\mathrm{~d}, J=2.8 \mathrm{~Hz}), 133.3,132.4,131.1(\mathrm{~d}, J=8.8 \mathrm{~Hz}), 131.0$, $129.9,129.1,128.2,128.1,127.8,126.5,125.5,125.2,115.7(\mathrm{~d}, J=22.7 \mathrm{~Hz}), 115.2(\mathrm{~d}, J=22.0$ $\mathrm{Hz}), 113.8(\mathrm{~d}, J=7.2 \mathrm{~Hz})$, 107.5. HRMS (ESI) m / z calc'd for $\mathrm{C}_{28} \mathrm{H}_{21} \mathrm{~F}_{2} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 423.1667$, found 423.1673 .

N,1-Bis(4-methoxyphenyl)-2-phenyl-5-(p-tolyl)-1H-pyrrol-3-amine (11h): Yellow solid, m.p. $178-180{ }^{\circ} \mathrm{C}, 82 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.13-7.21(\mathrm{~m}, 14 \mathrm{H}), 7.03(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $2 \mathrm{H}), 6.99(\mathrm{~s}, 4 \mathrm{H}), 6.93(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.92(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.80(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H})$, $6.72(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.47(\mathrm{~s}, 1 \mathrm{H}), 5.12(\mathrm{~s}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 6 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100.6 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 158.2,152.7,141.0,135.9,133.3,131.8,131.5,130.1$ (2 C), 129.8, 128.7, 128.4, $128.1,126.3,125.8,116.0,114.7,113.7,104.9,55.8,55.3,21.1$. HRMS (ESI) m / z calc'd for $\mathrm{C}_{31} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 461.2224$, found 461.2229 .

N,1-Bis(4-methoxyphenyl)-2-phenyl-5-(o-tolyl)-1H-pyrrol-3-amine (11i): Yellow solid, m.p. $107-109{ }^{\circ} \mathrm{C}, 76 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.04-7.21(\mathrm{~m}, 9 \mathrm{H}), 6.91(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}$, $2 \mathrm{H}), 6.81(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.79(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.59(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.32(\mathrm{~s}, 1 \mathrm{H})$, $5.14(\mathrm{~s}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 157.7$, $152.7,141.1,137.9,133.1,132.6,131.8,131.7,129.7$ (2 C), 129.1, 128.1, 127.5, 126.1, 125.8, $125.0,124.3,115.8,114.8,113.4,106.0,55.8,55.2,20.5$. HRMS (ESI) m / z calc'd for $\mathrm{C}_{31} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+}: 461.2224$, found 461.2232 .

5-(3-Chlorophenyl)-N,1-bis(4-methoxyphenyl)-2-phenyl-1H-pyrrol-3-amine (11j): Yellow solid, m.p. $134-136{ }^{\circ} \mathrm{C}, 86 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.07-7.20(\mathrm{~m}, 8 \mathrm{H}), 6.82-6.93(\mathrm{~m}$, $7 \mathrm{H}), 6.74(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.52(\mathrm{~s}, 1 \mathrm{H}), 5.24(\mathrm{~s}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100.6 MHz , $\left.\mathrm{CDCl}_{3}\right): ~ \delta 158.5,152.9,140.7,134.7,133.8,131.6,131.4,131.2,130.1,129.7,129.1,128.3,128.1$, 126.7, 126.6 (2 C), 126.4, 126.1, 116.1, 114.8, 113.9, 105.7, 55.8, 55.3. HRMS (ESI) m / z calc'd for $\mathrm{C}_{30} \mathrm{H}_{26} \mathrm{ClN}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 481.1677$, found 481.1680.

N,1-Bis(4-methoxyphenyl)-5-(4-nitrophenyl)-2-phenyl-1H-pyrrol-3-amine (11k): Yellow solid, m.p. $122-124{ }^{\circ} \mathrm{C}, 87 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.02(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.17-7.26$ (m, 5H), $7.08(\mathrm{~s}, 2 \mathrm{H}), 6.91-6.96(\mathrm{~m}, 4 \mathrm{H}), 6.78-6.83(\mathrm{~m}, 4 \mathrm{H}), 6.68(\mathrm{~s}, 1 \mathrm{H}), 5.12(\mathrm{~s}, 1 \mathrm{H}), 3.79(\mathrm{~s}$, $6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100.6 MHz, CDCl_{3}): δ 158.8, 153.2, 145.3, 140.2, 139.2, 131.1, 130.6 (2 C), $130.1,129.7,128.5,128.3,127.9,127.5,127.1,123.5,116.5,114.8,114.2,107.0,55.8,55.4$. HRMS (ESI) m / z calc'd for $\mathrm{C}_{30} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 492.1918$, found 492.1925.

5-(Furan-2-yl)-N,1-bis(4-methoxyphenyl)-2-phenyl-1H-pyrrol-3-amine (111): Yellow solid, m.p. $100-102{ }^{\circ} \mathrm{C}, 46 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.29(\mathrm{~d}, \mathrm{~J}=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.11-7.21(\mathrm{~m}$, $7 \mathrm{H}), 6.92(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{t}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H}), 6.70(\mathrm{~s}, 1 \mathrm{H}), 6.21(\mathrm{dd}, J=3.2,1.6 \mathrm{~Hz}, 1$ H), $5.32(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{~s}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100.6 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 159.0,152.8,147.5,140.8,140.6,131.7,130.9,130.2,129.8,128.1,126.9,126.5$, $126.4,125.1,122.3,116.0,114.8,113.9,110.8,105.1,103.9,55.8,55.3$. HRMS (ESI) m / z calc'd for $\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 437.1860$, found 437.1866 .
$N, 1-B i s(4-m e t h o x y p h e n y l)-2-p h e n y l-5-s t y r y l-1 H-p y r r o l-3-a m i n e ~(11 m): ~ R e d i s h-b r o w n ~ s o l i d, ~$ m.p. $137-139{ }^{\circ} \mathrm{C}, 54 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, ~ D M S O-d_{6}$): $\delta 7.27(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 4 \mathrm{H}$), $7.06-7.19(\mathrm{~m}, 8 \mathrm{H}), 6.97(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.92(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~s}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=$ $8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.71(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.70(\mathrm{~s}, 1 \mathrm{H}), 6.62(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.65$ (s, 3 H). ${ }^{13} \mathrm{C}$ NMR (100.6 MHz, DMSO- d_{6}): δ 158.4, 151.3, 141.8, 137.4, 131.8, 131.1, 130.5, $130.0,129.2,128.7,128.1,127.8,127.0,126.9,126.0,125.6,125.4,117.4,114.7,114.5,114.2$, 103.6, 55.3. HRMS (ESI) m / z calc'd for $\mathrm{C}_{32} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 473.2224$, found 473.2222.

2-(4-Ethoxyphenyl)-N,1-bis(4-methoxyphenyl)-5-phenyl-1H-pyrrol-3-amine (11n): Yellow solid, m.p. ${ }^{153-155}{ }^{\circ} \mathrm{C}, 81 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.09-7.21(\mathrm{~m}, 5 \mathrm{H})$, 6.91-6.98 (m, 6 H$), 6.81(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.73(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H}), 6.51(\mathrm{~s}, 1 \mathrm{H}), 3.97(\mathrm{q}, J=$ $6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 6 \mathrm{H}), 1.39(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 158.1$, $157.5,152.6,141.2,133.0,132.6,131.8,131.4,129.8,128.4,127.9,126.4,126.0,125.8,123.5$, 115.7, 114.7, 114.0, 113.7, 105.3, 63.2, 55.7, 55.3, 14.8. HRMS (ESI) m / z calc'd for $\mathrm{C}_{32} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{3}$ $[\mathrm{M}+\mathrm{H}]^{+}: 491.2329$, found 491.2338.

2-(4-Bromophenyl)-N,1-bis(4-methoxyphenyl)-5-phenyl-1H-pyrrol-3-amine (110): Yellow solid, m.p. $150-152{ }^{\circ} \mathrm{C}, 83 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta 7.36(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $7.01-7.22(\mathrm{~m}, 9 \mathrm{H}), 6.84(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.76(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.71(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H})$, $6.39(\mathrm{~s}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100.6 MHz, DMSO-d d_{6}): $\delta 158.2,151.3$, $141.7,133.6,132.5,131.6,131.2,130.7,130.1,128.1,128.0,126.9,126.5,126.3,119.4,114.5$, 114.0, 106.6, 55.3, 55.2. HRMS (ESI) m / z calc'd for $\mathrm{C}_{30} \mathrm{H}_{26} \mathrm{BrN}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 525.1172, found 525.1178.

N,1-Bis(4-methoxyphenyl)-4-methyl-2,5-diphenyl-1H-pyrrol-3-amine (11p): Yellow solid, m.p. $67-69{ }^{\circ} \mathrm{C}, 67 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.10-7.24(\mathrm{~m}, 8 \mathrm{H}), 7.01(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 2$ H), $6.85(\mathrm{~d}, ~ J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.80(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.71(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.65(\mathrm{~d}, J=8.8$ $\mathrm{Hz}, 2 \mathrm{H}$), $5.01(\mathrm{~s}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100.6 MHz, CDCl_{3}): $\delta 157.8,152.1,142.6,132.7,132.0,131.5,130.6,129.8,129.8,128.7,127.8,127.7,126.2,124.4$, $115.9,114.7,114.6,113.5,55.7,55.2,9.7$. HRMS (ESI) m / z calc'd for $\mathrm{C}_{31} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 461.2224, found 461.2230.

4-(p-Tolylthio)-N,1-bis(4-methoxyphenyl)-2,5-diphenyl-1H-pyrrol-3-amine (11q): Yellow solid, m.p. $189-191{ }^{\circ} \mathrm{C}, 43 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.17-7.19(\mathrm{~m}, 3 \mathrm{H}), 7.10-7.13(\mathrm{~m}$, $7 \mathrm{H}), 7.01(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.91(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.68(\mathrm{~d}, J=8.8$ $\mathrm{Hz}, 2 \mathrm{H}), 6.60(\mathrm{~d}, ~ J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.54(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.04(\mathrm{~s}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{~s}, 3$ H), $2.26(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100.6 MHz, CDCl_{3}): $\delta 158.3$, 152.5, 141.4, 137.7, 135.8, 134.5, $131.5,131.4,131.2,129.8,129.7,129.4,128.7,128.5,128.1,127.8,127.5,127.2,126.5$ (2 C), $121.5,115.7,114.4,114.1,113.7,107.1,55.6,55.3,20.9$. HRMS (ESI) m / z calc'd for $\mathrm{C}_{37} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 569.2257$, found 569.2264 .

5-Cyclohexyl- N,1-bis(4-methoxyphenyl)-2-phenyl-1H-pyrrol-3-amine (11r): Yellow solid, m.p. $80-82{ }^{\circ} \mathrm{C}, 42 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.13(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), $7.07(\mathrm{~d}, \mathrm{~J}=8.8$ $\mathrm{Hz}, 2 \mathrm{H}), 7.01-7.06(\mathrm{~m}, 3 \mathrm{H}), 6.87(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.82(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.81(\mathrm{~d}, J=8.8$ $\mathrm{Hz}, 2 \mathrm{H}), 6.09(\mathrm{~s}, 1 \mathrm{H}), 5.08$ (br. s, 1 H$), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 2.36-2.43(\mathrm{~m}, 1 \mathrm{H})$, 1.78-1.81 (m, 2 H), 1.68-1.71 (m, 2 H), 1.29-1.38(m, 3 H), 1.11-1.20 (m, 3 H$).{ }^{13} \mathrm{C}$ NMR (100.6 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 158.3,152.5,141.2,140.2,131.8,131.7,129.8,129.4,128.0,125.6,125.3,123.7$, 115.7, 114.7, 113.8, 100.3, 55.8, 55.3, 35.6, 33.9, 26.5, 26.0. HRMS (ESI) m / z calc'd for $\mathrm{C}_{30} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 453.2537$, found 453.2540 .

Reference

1. S. Ammermann, C. Hrib, P. G. Jones, W.-W. du Mont, W. Kowalsky, H.-H. Johannes, Org. Lett. 2012, 14, 5090.
2. W. R. Tully, US 4,643,999, 1984.
3. Crystallography data of Compound 12
Identification code

Empirical formula
Formula weight
Temperature
Wavelength
Crystal system, space group
Unit cell dimensions

Volume

Z, Calculated density
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Limiting indices
Reflections collected / unique
Completeness to theta $=27.56$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on $\mathrm{F}^{\wedge} 2$
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]
R indices (all data)
Largest diff. peak and hole
shelxl
C35 H34 C12 N2 O4
617.54
$113(2) \mathrm{K}$
0.71073 A
Triclinic, P-1
$\mathrm{a}=26.271(4) \mathrm{A} \quad$ alpha $=90$ deg.
$\mathrm{b}=5.9202(8) \mathrm{A} \quad$ beta $=108.458(2)$ deg.
$\mathrm{c}=21.057(3) \mathrm{A} \quad$ gamma $=90$ deg.
$3106.5(8) \mathrm{A}^{\wedge} 3$
$4, \quad 1.320 \mathrm{Mg} / \mathrm{m}^{\wedge} 3$
$0.251 \mathrm{~mm} \wedge-1$
1296
0.20 x 0.18 x 0.12 mm
3.26 to 27.56 deg.
$-34<=\mathrm{h}<=34,-7<=\mathrm{k}<=7,-27<=\mathrm{l}<=27$
$18964 / 6938[\mathrm{R}($ int $)=0.0164]$
99.3%
Semi-empirical from equivalents
0.9705 and 0.9515
$\mathrm{Full}-\mathrm{matrix}$ least-squares on $\mathrm{F}^{\wedge} 2$
$6938 / 110 / 463$
0.997
$\mathrm{R} 1=0.0306$, wR2 $=0.0813$
$\mathrm{R} 1=0.0314$, wR2 $=0.0820$
0.391 and -0.345 e. $\mathrm{A}^{\wedge}-3$
3. Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra

(:-

4. Copies of HRMS Spectra

Varian ProMALDI
File: ZY1124CP01(2)_MALDI.trans

Sampte Name	${ }^{\text {A }}$ 5	Position	P1-A6	Instrument Name	Instument 1	User Name	
Inj Vol	-1	InjPosition		SampleType	Sample	IRM Callbration Status	Some Ions Missed
Data Filename	2Y150302-02.d	ACQ Method	chen-ms.m	Comment		Acquired Time	3/13/2015 10:04:04 AM

Sample Name	A 8	Position	P1-A8	Instrument Name	Instrument 1	User Name Inj Vol	-1
Data Filename	Z $114-3 . \mathrm{C}$	InjPosition		SampleType	Sample	IRM Calibration Status	Some Ions Missed
Acquired Time							

Sampie Name all
inj Vol
Data Filename \quad ZY14-8.d

ACQ Method
 chen-ms.m

Position Injipasition

P1-BI
$\begin{array}{ll}\text { Instrument Name } & \begin{array}{l}\text { instrument } 1 \\ \text { SampleType }\end{array} \\ \text { Sample }\end{array}$ SampleType SampleTyp

User Name IRM Callibration Status Acquired Time

Some Ions Missed 3/13/2015 10:23:03 AM

Sample Name	A12	Position	P1-83	Instrument Name	Instrument 1	User Name	
Inj Vol	-1	InjPosition		Sampletype	Sample	IRM Calibration Status	Sorne Ions Missed
Data Filename	2Y15012-4.d	ACQ Method	chen-ms.m	Comment		Acquired Time	3/13/2015 10:32:34 AM

Sample Name	A17	Position	P1-88	Instrument Name	Instrument 1	User Name	
Inj Vol	-1	InjPosition		SampleType	Sample	IRM Callibration Status	Some Ions Missed
Data Filename	2Y150112-06.d	ACQ Method	chen-ms.m	Comment		Acquired Tirne	3/13/2015 10:56:20 AM

Sample Name	A15	Position	P1-86	Instrument Name	Instrument 1	User Name	
Inj Vol	-1	1 InjPasiltion		SampleType	Sample	IRM Calibration Status	some Iors Missed
Data Filename	Z 21412 -2203.d	ACQ Method	dien-ms.m	Comment		Acquired Time	3/13/2015 10:46:50 AM

Varian ProMALDI
File: zy0810-1_MALDI.trans
Mode: Positive
Scans: 1
$\begin{array}{ll}\text { Date: } & \text { 10-AUG-2015 } \\ \text { Time: } & 15: 50: 10\end{array}$
Time: $15: 50: 10$

