Supporting Information

Direct *gem*-Difluoromethylenation of sp³-Hybridized Carbon Center through Copper-Mediated Radical/Radical Cross-Coupling for Construction of CH₂-CF₂ Linkage

Haizhen Jiang,^{*[a][b]} Minjun Xu,^[a] Wenjun Lu,^[a] Wenfeng Tian,^[a] Wen Wan,^[a] Yunrong Chen,^[a] Hongmei Deng,^[c] Shaoxiong Wu,^[d] Jian Hao^{*[a][b]}

[a] Department of Chemistry, Shanghai University, Shanghai, 200444, P. R. China.

[b] Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, P. R. China.

[c] Laboratory for Microstructures, Shanghai University, Shanghai, 200444, P. R. China

[d] Emory NMR Research Center, Emory University, 201 Dowman Drive, Atlanta, Georgia, 30322, United States E-mail:hzjiang@shu.edu.cn; jhao@shu.edu.cn

Table of contents

1. General Information.	S2
2. Typical procedure for cross-coupling reaction 1 with benzyl halides.	S2-S11
3. Cross-coupling reaction of ethyl bromodifluoroacetate with benzyl halides.	S12
4. Synthesis of benzyl-TEMPO adducts 5	S12
5. The reaction of 1,3-azolic difluoromethyl bromides with 2,3-dihydrofuran	S13
6. Cross-coupling reaction of 2-bromomethyl-benzooxazole with benzyl halides	S13-S14
7. Capture the free radicals 1A and 2A	S14-S15
8. Reference.	S15
9. ¹ H NMR, ¹³ C NMR and ¹⁹ F NMR spectrums for all compounds	S15-83
10. GC-MS Spectra and 19 F NMR of the step by step and one pot reaction mixture	S84-99

1. General Information.

General Comments : ¹H, ¹³C, and ¹⁹F NMR spectra were recorded on 500 MHz spectrometers. Chemical shifts for ¹H NMR spectra are reported in ppm downfield from TMS, chemical shifts for ¹³C NMR spectra are reported in ppm relative to internal chloroform (δ 77.2 ppm for ¹³C), and chemical shifts for ¹⁹F NMR spectra are reported in ppm downfield from internal fluorotrichloromethane (CFCl₃). Infrared spectra (IR) were recorded with KBr pellets. Silica gel (200–400 mesh) was used for flash column chromatography. Melting points are uncorrected. Highresolution mass spectrometry (HRMS) was conducted by TOF MS with electron impact (EI) ionization at 70 eV.

2. Typical procedure for cross-coupling reaction 1,3-azolic difluoromethyl bromides with benzyl/allyl halides.

A 10 mL round-bottom flask was charged with **1** (0.6 mmol), **2** (0.4 mmol), Cu powder (88 mg, 1.4 mmol), CuBr₂ (4 mg, 0.02 mmol), 1,10-phenanthroline (14 mg, 0.08 mmol) and DMSO (2 mL) under nitrogen atmosphere. The reaction mixture was stirred at 50 $^{\circ}$ C for 4 h. After the reaction was completed, the crude product was directly purified by silica gel chromatography (petroleum ether/ethyl acetate, 50:1 v/v), to give **3**.

2-(1,1-Difluoro-2-naphthalen-2-yl-ethyl)-benzooxazole (3aa)

103 mg, 84% yield, white solid. Mp 74-75 °C; ¹H NMR (CDCl₃, 500 MHz) δ : 7.82 (d, *J* = 16.0 Hz, 5H), 7.59 (d, 1H, *J* = 5.3 Hz, 1H), 7.47-7.43 (m, 5H), 3.97 (t, *J* = 16.3 Hz, 2H); ¹⁹F NMR (CDCl₃, 470 MHz) δ : -97.02 (t, *J* = 16.4 Hz, 2F); ¹³C NMR (CDCl₃, 125 MHz) δ : 157.9 (t, ²*J*_{C-F} = 34.2 Hz), 150.6, 140.0, 133.3, 132.8, 130.1, 128.3, 128.2, 127.9, 127.7, 126.8, 126.3, 126.2, 125.3, 121.3,

115.8 (t, ${}^{1}J_{C-F} = 242.6 \text{ Hz}$), 111.4, 42.4 (t, ${}^{2}J_{C-F} = 24.1 \text{ Hz}$); IR (KBr, cm⁻¹) *v*: 3027, 1615, 1600, 1451, 1356, 1038, 765, 748. Anal. Calcd for C₁₉H₁₃F₂NO (309.10): calcd. C, 73.78; H, 4.24; N, 4.53; found C, 73.75; H, 4.22; N, 4.54

2-(1,1-Difluoro-2-phenylethyl)benzo[d]oxazole (3ab)

54 mg, 52% yield, yellow oil. ¹H NMR (CDCl₃, 500 MHz) δ : 7.82 (d, J = 7.2 Hz, 1H), 7.61-7.59 (m, 1H), 7.47-7.44 (m, 1H), 7.43-7.40 (m, 1H), 7.33-7.29 (m, 5H), 3.77 (t, J = 16.7 Hz, 2H); ¹⁹F NMR (CDCl₃, 470 MHz) δ : -97.54 (t, J = 16.7 Hz, 2F); ¹³C NMR (CDCl₃, 125 MHz) δ : 157.2 (t, ² $J_{C-F} = 33.6$ Hz), 150.6, 140.0, 130.7, 128.6, 127.9, 126.8, 125.3, 121.3, 115.7 (t, ¹ $J_{C-F} = 243.0$ Hz), 111.4, 42.3 (t, ² $J_{C-F} = 24.2$ Hz); IR (KBr, cm⁻¹) v: 3034, 1616, 1574, 1453, 1362, 1036, 749, 722. Anal. Calcd for C₁₅H₁₁F₂NO (259.10): calcd. C, 69.49; H, 4.28; N, 5.40; found C, 69.51; H, 4.31; N, 5.36

2-(1,1-Difluoro-2-(o-tolyl)ethyl)benzo[d]oxazole (3ac)

55 mg, 50% yield, yellow oil. ¹H NMR (CDCl₃, 500 MHz) δ : 7.84 (d, *J* = 7.3 Hz, 1H), 7.62 (d, *J* = 7.6 Hz, 1H), 7.49-7.42 (m, 2H), 7.26 (d, *J* = 7.5 Hz, 1H), 7.21 (d, *J* = 4.0 Hz, 2H), 7.16-7.12 (m, 1H), 3.81 (t, *J* = 17.2 Hz, 2H), 2.40 (s, 3H); ¹⁹F NMR (CDCl₃, 470 MHz) δ : -97.60 (t, *J* = 17.1 Hz, 2F); ¹³C NMR (CDCl₃, 125 MHz) δ : 158.2 (t, ²*J*_{C-F} = 33.8 Hz), 150.6, 140.0, 138.1, 131.6, 130.7, 129.3, 128.0, 126.9, 126.0, 125.3, 121.3, 116.1 (t, ¹*J*_{C-F} = 243.7 Hz), 111.4, 39.0 (t, ²*J*_{C-F} = 24.1 Hz), 19.9; IR (KBr, cm⁻¹) *v*: 3023, 1616, 1574, 1450, 1372, 1029, 748. HRMS (EI TOF) calcd for (M⁺) C₁₆H₁₃F₂NO: 273.0965, found 273.0963

2-(1,1-Difluoro-2-(2-nitrophenyl)ethyl)benzo[d]oxazole (3ad)

112 mg, 92% yield, yellow solid. Mp 81-82 °C; ¹H NMR (CDCl₃, 500 MHz) δ : 7.93 (d, J = 8.1 Hz, 1H), 7.78 (d, J = 7.6 Hz, 1H), 7.58-7.52 (m, 3H), 7.47-7.38 (m, 3H), 4.29 (t, J = 16.6 Hz, 2H); ¹⁹F NMR (CDCl₃, 470 MHz) δ : -96.81 (t, J = 16.5 Hz, 2F); ¹³C NMR (CDCl₃, 125 MHz) δ : 157.1 (t, ² $J_{C-F} = 33.4$ Hz), 150.6, 150.5, 139.8, 134.0, 132.9, 129.2, 127.1, 125.4, 125.3, 125.2, 121.3, 115.0 (t, ¹ $J_{C-F} = 243.4$ Hz), 111.4, 37.8 (t, ² $J_{C-F} = 24.0$ Hz); IR (KBr, cm⁻¹) v: 3067, 1613, 1576, 1526, 1477, 1380, 1345, 1032, 750, 721. HRMS (EI TOF) calcd for (M⁺) C₁₅H₁₀F₂N₂O₃: 304.0659, found 304.0662

2-(1,1-Difluoro-2-(3-nitrophenyl)ethyl)benzo[d]oxazole (3ae)

55 mg, 45% yield, yellow solid. Mp 103-104 °C; ¹H NMR (CDCl₃, 500 MHz) δ : 8.25 (s, 1H), 8.14 (d, J = 8.2 Hz, 1H), 7.80 (d, J = 7.7 Hz, 1H), 7.69 (d, J = 7.6 Hz, 1H), 7.59 (d, J = 8.0 Hz, 1H), 7.49-7.39 (m, 3H), 3.88 (t, J = 16.4 Hz, 2H); ¹⁹F NMR (CDCl₃, 470 MHz) δ : -97.22 (t, J = 16.4 Hz, 2F); ¹³C NMR (CDCl₃, 125 MHz) δ : 157.0 (t, ² $J_{C-F} = 33.4$ Hz), 150.6, 148.2, 139.8, 136.9, 132.8, 129.5, 127.2, 125.8, 125.5, 123.0, 121.3, 115.0 (t, ¹ $J_{C-F} = 243.0$ Hz), 111.4, 41.6 (t, ² $J_{C-F} = 24.4$ Hz); IR (KBr, cm⁻¹) ν : 3038, 1618, 1579, 1526, 1451, 1356, 1049, 749, 724. Anal. Calcd for C₁₅H₁₀F₂N₂O₃ (304.07): calcd. C, 59.21; H, 3.31; N, 9.21 found C, 59.14; H, 3.27; N, 9.23

2-(1,1-Difluoro-2-(4-nitrophenyl)ethyl)benzo[d]oxazole (3af)

111 mg, 91% yield, yellow solid. Mp 190-191 °C; ¹H NMR (CDCl₃, 500 MHz) δ : 8.18 (d, J = 8.7 Hz, 2H), 7.82 (d, J = 7.6 Hz, 1H), 7.61 (d, J = 7.9 Hz, 1H), 7.54 (d, J = 8.5 Hz, 2H), 7.49-7.42 (m, 2H), 3.89 (t, J = 16.3 Hz, 2H); ¹⁹F NMR (CDCl₃, 470 MHz) δ : -96.86 (t, J = 16.4 Hz, 2F); ¹³C NMR (CDCl₃, 125 MHz) δ : 157.1 (t, ² $J_{C-F} = 33.1$ Hz), 150.6, 147.8, 139.8, 138.1 (t, ³ $J_{C-F} = 2.9$ Hz), 131.8, 127.2, 125.5, 123.6, 121.4, 115.0 (t, ¹ $J_{C-F} = 244.0$ Hz), 111.5, 41.8 (t, ² $J_{C-F} = 24.1$ Hz); IR (KBr, cm⁻¹) v: 3114, 1616, 1604, 1521, 1451, 1361, 1345, 1041, 749, 727. HRMS (EI TOF) calcd for (M⁺) C₁₅H₁₀F₂N₂O₃: 304.0659, found 304.0651

2-(1,1-Difluoro-2-(4-(trifluoromethyl)phenyl)ethyl)benzo[d]oxazole (3ag)

101 mg, 77% yield, white solid. Mp 79-80 °C; ¹H NMR (CDCl₃, 500 MHz) δ : 7.82 (d, J = 7.6 Hz, 1H), 7.61-7.57 (m, 3H), 7.48-7.41 (m, 4H), 3.84 (t, J = 16.5 Hz, 2H); ¹⁹F NMR (CDCl₃, 470 MHz) δ : -62.68 (s, 3F), -97.22 (t, J = 16.4 Hz, 2F); ¹³C NMR (CDCl₃, 125 MHz) δ : 157.4 (t, ² $J_{C-F} = 33.5$ Hz), 150.6, 139.9, 134.8, 131.2, 130.2 (q, ² $J_{C-F} = 32.4$ Hz), 127.0, 125.6, 125.4, 124.0 (q, ¹ $J_{C-F} = 271.8$ Hz), 121.3, 115.3 (t, ¹ $J_{C-F} = 244.1$ Hz), 111.4, 41.9 (t, ² $J_{C-F} = 24.2$ Hz); IR (KBr, cm⁻¹) *v*: 3052, 1620, 1571, 1452, 1325, 1031, 753, 718. Anal. Calcd for C₁₆H₁₀F₅NO (327.07): calcd. C, 58.72; H, 3.08; N, 4.28. found C, 58.66; H, 3.12; N, 4.23

2-(1,1-Difluoro-2-(4-(trifluoromethoxy)phenyl)ethyl)benzo[d]oxazole (3ah)

67 mg, 49% yield, white solid. Mp 77-78 °C; ¹H NMR (CDCl₃, 500 MHz) δ : 7.82 (d, *J* = 7.5 Hz, 1H), 7.59 (d, 1H, *J* = 8.3 Hz, 1H), 7.47-7.40 (m, 2H), 7.37 (d, *J* = 8.6 Hz, 2H), 7.16 (d, *J* = 8.2 Hz, 2H), 3.78 (t, *J* = 16.6 Hz, 2H); ¹⁹F NMR (CDCl₃, 470 MHz) δ : -57.9(s, 3F), -97.58 (t, *J* = 16.5 Hz, 2F); ¹³C NMR (CDCl₃, 125 MHz) δ : 157.5 (t, ²*J*_{C-F} = 33.8 Hz), 150.6, 149.0 (q, ³*J*_{C-F} = 1.7 Hz), 139.9, 132.2, 129.4 (t, ³*J*_{C-F} = 3.3 Hz), 127.0, 125.4, 121.3, 120.9, 120.4 (q, ¹*J*_{C-F} = 257.4 Hz), 115.4 (t, ¹*J*_{C-F}) = 242.7 Hz), 111.4, 41.4 (t, ${}^{2}J_{C-F}$ = 24.2 Hz); IR (KBr, cm⁻¹) *v*: 3044, 1618, 1578, 1476, 1510, 1362, 1045, 748, 720. Anal. Calcd for C₁₆H₁₀F₅NO₂ (343.06): calcd. C, 55.99; H, 2.94; N, 4.08. found C, 56.02; H, 2.91; N, 4.10

Methyl 4-(2-(benzo[d]oxazol-2-yl)-2,2-difluoroethyl)benzoate (3ai)

113 mg, 89% yield, white solid. Mp 93-94 °C; ¹H NMR (CDCl₃, 500 MHz) δ : 7.96 (d, *J* = 7.9 Hz, 2H), 7.78 (d, *J* = 7.5 Hz, 1H), 7.57 (d, *J* = 7.9 Hz, 1H), 7.44-7.38 (m, 4H), 3.87 (s, 3H, OCH₃), 3.81 (t, *J* = 16.5 Hz, 2H); ¹⁹F NMR (CDCl₃, 470 MHz) δ : -97.08 (t, *J* = 16.4 Hz, 2F); ¹³C NMR (CDCl₃, 125 MHz) δ : 166.7, 157.5 (t, ²*J*_{C-F} = 33.6 Hz), 150.6, 139.9, 135.9, 130.8, 129.8, 129.7, 126.9, 125.4, 121.3, 115.4 (t, ¹*J*_{C-F} = 242.4 Hz), 111.4, 52.1, 42.1 (t, ²*J*_{C-F} = 24.2 Hz); IR (KBr, cm⁻¹) *v*: 3045, 1714, 1616, 1576, 1444, 1376, 1033, 750, 739. Anal. Calcd for C₁₇H₁₃F₂NO₃ (317.09): calcd. C, 64.35; H, 4.13; N, 4.41. found C, 64.40; H, 4.11; N, 4.40

2-(2-(Benzo[d]oxazol-2-yl)-2,2-difluoroethyl)benzonitrile (3aj)

107 mg, 94% yield, white solid. Mp 103-104 °C; ¹H NMR (CDCl₃, 500 MHz) δ : 7.79 (d, *J* = 7.6 Hz, 1H), 7.65 (d, *J* = 7.6 Hz, 1H), 7.59 (d, *J* = 8.0 Hz, 1H), 7.55-7.51 (m, 2H), 7.46-7.39 (m, 3H), 3.87 (s, 3H), 4.03 (t, *J* = 16.5 Hz, 2H); ¹⁹F NMR (CDCl₃, 470 MHz) δ : -97.16 (t, *J* = 16.4 Hz, 2F); ¹³C NMR (CDCl₃, 125 MHz) δ : 157.0 (t, ²*J*_{C-F} = 33.1 Hz), 150.7, 139.8, 134.3, 133.1, 132.8, 132.0, 128.6, 127.1, 125.4, 121.3, 117.5, 114.9 (t, ¹*J*_{C-F} = 244.0 Hz), 114.8, 111.5, 40.2 (t, ²*J*_{C-F} = 24.3 Hz); IR (KBr, cm⁻¹) *v*: 3068, 2230, 1617, 1602, 1453, 1382, 1031, 762, 749. Anal. Calcd for C₁₆H₁₀F₂N₂O (284.08): calcd. C, 67.60; H, 3.55; N, 9.85. found C, 67.64; H, 3.50; N, 9.82

4-(2-(Benzo[d]oxazol-2-yl)-2,2-difluoroethyl)benzonitrile (3ak)

100 mg, 88% yield, yellow solid. Mp 148-149 °C; ¹H NMR (CDCl₃, 500 MHz) δ : 7.79 (d, J = 7.7 Hz, 1H), 7.58 (d, J = 8.0 Hz, 3H), 7.46-7.39 (m, 4H), 3.82 (t, J = 16.4 Hz, 2H); ¹⁹F NMR (CDCl₃, 470 MHz) δ : -96.96 (t, J = 16.3 Hz, 2F); ¹³C NMR (CDCl₃, 125 MHz) δ : 157.1 (t, ² $J_{C-F} = 33.1$ Hz), 150.6, 139.8, 136.2, 132.2, 131.6, 127.1, 125.5, 121.3, 118.5, 115.1 (t, ¹ $J_{C-F} = 243.6$ Hz), 112.0, 111.5, 42.0 (t, ² $J_{C-F} = 24.2$ Hz); IR (KBr, cm⁻¹) v: 3049, 2227, 1613, 1576, 1452, 1362, 1040, 747, 734. Anal. Calcd for C₁₆H₁₀F₂N₂O (284.08): calcd. C, 67.60; H, 3.55; N, 9.85. found C, 67.58; H, 3.57; N, 9.81

1-(4-(2-(Benzo[d]oxazol-2-yl)-2,2-difluoroethyl)phenyl)ethanone (3al)

92 mg, 76% yield, white solid. Mp 85-86 °C; ¹H NMR (CDCl₃, 500 MHz) & 7.87 (d, J = 8.2 Hz, 2H), 7.79 (d, J = 7.6 Hz, 1H), 7.57 (d, J = 7.9 Hz, 1H), 7.45-7.38 (m, 4H), 3.81 (t, J = 16.5 Hz, 2H), 2.55 (s, 3H); ¹⁹F NMR (CDCl₃, 470 MHz) & -97.09 (t, J = 16.4 Hz, 2F); ¹³C NMR (CDCl₃, 125 MHz) & 197.6, 157.44 (t, ² $J_{C-F} = 33.2$ Hz), 150.6, 139.9, 136.6, 136.1, 131.0, 128.5, 127.0, 125.4, 121.3, 115.4 (t, ¹ $J_{C-F} = 243.2$ Hz), 111.4, 111.5, 42.1 (t, ² $J_{C-F} = 24.4$ Hz); IR (KBr, cm⁻¹) v: 3053, 1682, 1608, 1452, 1365, 1024, 768, 754. Anal. Calcd for C₁₇H₁₃F₂NO₂ (301.09): calcd. C, 67.77; H, 4.35; N, 4.65. found C, 67.78; H, 4.39; N, 4.66

2-(1,1-Difluoro-2-(4-fluorophenyl)ethyl)benzo[d]oxazole (3am)

This compound has been reported in literature.¹ 51 mg, 46% yield, yellow oil. ¹H NMR (CDCl_{3,} 500 MHz) δ : 7.81 (d, *J* = 7.4 Hz, 1H), 7.60 (d, *J* = 7.6 Hz, 1H), 7.47-7.40 (m, 2H), 7.29 (dd, ¹*J* = 8.4 Hz,

²*J* = 5.4 Hz, 2H), 7.01-6.96 (m, 2H), 3.73 (t, *J* = 16.5 Hz, 2H); ¹⁹F NMR (CDCl₃, 470 MHz) δ: -97.78 (t, *J* = 16.6 Hz, 2F), -114.46-114.52 (m, 1F); ¹³C NMR (CDCl₃, 125 MHz) δ: 162.5 (d, ¹*J*_{C-F} = 246.8 Hz), 157.7 (t, ²*J*_{C-F} = 33.5 Hz), 150.6, 139.9, 132.3 (d, ³*J*_{C-F} = 8.2 Hz), 126.9, 126.5, 125.3, 121.3, 115.5 (t, ¹*J*_{C-F} = 243.3 Hz), 115.5 (d, ²*J*_{C-F} = 21.6 Hz), 111.4, 41.4 (t, ²*J*_{C-F} = 24.3 Hz). IR (KBr, cm⁻¹) *v*: 3018, 1617, 1604, 1452, 1250, 1046, 830, 743. HRMS (EI TOF) calcd for (M⁺) C₁₅H₁₀F₃NO: 277.0714, found 277.0708

2-(2-(4-Bromophenyl)-1,1-difluoroethyl)benzo[d]oxazole (3an)

85 mg, 63% yield, white solid. Mp 93-94 °C; ¹H NMR (CDCl₃, 500 MHz) δ : 7.81 (d, *J* = 7.9 Hz, 1H), 7.60 (d, *J* = 7.7 Hz, 1H), 7.47-7.40 (m, 4H), 7.20 (d, *J* = 8.2 Hz, 2H), 3.72 (t, *J* = 16.5 Hz, 2H); ¹⁹F NMR (CDCl₃, 470 MHz) δ : -97.43 (t, *J* = 16.6 Hz, 2F); ¹³C NMR (CDCl₃, 125 MHz) δ : 157.5 (t, ²*J*_C. F = 33.4 Hz), 150.6, 139.9, 132.4, 131.7, 129.7, 126.9, 125.4, 122.2, 121.3, 115.3 (t, ¹*J*_{C-F} = 243.0 Hz), 111.4, 41.6 (t, ²*J*_{C-F} = 24.3 Hz); IR (KBr, cm⁻¹) *v*: 3030, 1619, 1593, 1450, 1361, 1041, 760, 747. Anal. Calcd for C₁₅H₁₀BrF₂NO (336.99): calcd. C, 53.28; H, 2.98; N, 4.14. found C, 53.21; H, 2.96; N, 4.07

2-(2-(2,6-Dichlorophenyl)-1,1-difluoroethyl)benzo[d]oxazole (3ao)

115 mg, 88% yield, white solid. Mp 89-90 °C; ¹H NMR (CDCl₃, 500 MHz) δ : 7.83-7.81 (m, 1H), 7.60-7.59 (m, 1H), 7.46-7.39 (m, 2H), 7.32 (d, J = 8.0 Hz, 2H), 7.19-7.16 (m, 1H), 4.20 (t, J = 16.3 Hz, 2H); ¹⁹F NMR (CDCl₃, 470 MHz) δ : -96.90 (t, J = 16.7 Hz, 2F); ¹³C NMR (CDCl₃, 125 MHz) δ : 157.7 (t, ² $J_{C-F} = 33.3$ Hz), 150.7, 140.0, 137.4, 129.8, 128.5, 127.9, 126.9, 125.4, 121.3, 115.4 (t, ¹ $J_{C-F} = 246.3$ Hz), 111.4, 37.2 (t, ² $J_{C-F} = 24.6$ Hz); IR (KBr, cm⁻¹) ν : 3080, 1615, 1578, 1435, 1377, 1036,

763, 750. Anal. Calcd for C₁₅H₉Cl₂F₂NO (327.00): calcd. C, 54.90; H, 2.76; N, 4.27. found C, 54.85; H, 2.73; N, 4.21

2-(1,1-Difluoro-2-phenylpropyl)benzo[d]oxazole (3ap)

The title compound was prepared from (1-bromoethyl)benzene and **2a** according to general procedure except that 1 equiv of (1-bromoethyl)benzene, 4.5 equiv of copper powder, 2 equiv of **2**, 0.06 equiv of CuBr₂, and 0.3 equiv of 1,10-phenanthroline was used, 33 mg, 30% yield, yellow oil. ¹H NMR (CDCl₃, 500 MHz) δ : 7.76 (d, 1H, *J* = 7.0 Hz), 7.53 (d, 1H, *J* = 7.9 Hz), 7.41-7.34 (m, 2H), 7.30-7.21 (m, 5H), 3.91-3.80 (m, 1H), 1.54 (d, *J* = 7.2 Hz, 3H); ¹⁹F NMR (CDCl₃, 470 MHz) δ : - 104.0 (t, *J* = 15.8 Hz, 2F); ¹³C NMR (CDCl₃, 125 MHz) δ : 158.0 (t, ²*J*_{C-F} = 34.0 Hz), 150.4, 140.0, 137.0, 129.0, 128.5, 127.9, 126.6, 125.2, 121.2, 117.4 (t, ¹*J*_{C-F} = 247.0 Hz), 111.3, 45.9 (t, ²*J*_{C-F} = 23.2 Hz), 14.5 (t, ³*J*_{C-F} = 3.8 Hz); IR (KBr, cm⁻¹) *v*: 3034, 1616, 1574, 1453, 1360, 1016, 749, 716. Anal. Calcd for C₁₆H₁₃F₂NO (273.10): calcd. C, 70.32; H, 4.79; N, 5.13;. found C, 70.30; H, 4.81; N, 5.09

2-(2-(5-Chlorobenzo[b]thiophen-3-yl)-1,1-difluoroethyl)benzo[d]oxazole (3aq)

92 mg, 66% yield, yellow solid. Mp 89-90 °C; ¹H NMR (CDCl₃, 500 MHz) δ : 7.76 (d, J = 7.9 Hz, 2H), 7.62 (d, J = 8.6 Hz, 1H), 7.50 (d, J = 7.6 Hz, 1H), 7.42 (s, 1H), 7.38-7.32 (m, 2H), 7.21 (d, J = 8.5 Hz, 1H), 3.94 (t, J = 16.3 Hz, 2H); ¹⁹F NMR (CDCl₃, 470 MHz) δ : -96.24 (t, J = 16.1 Hz, 2F); ¹³C NMR (CDCl₃, 125 MHz) δ : 157.5 (t, ² $J_{C-F} = 33.1$ Hz), 150.6, 140.2, 139.9, 138.1, 130.9, 129.0, 127.0, 125.4, 124.9, 124.8 (t, ³ $J_{C-F} = 3.5$ Hz), 123.7, 121.6, 121.3, 115.5 (t, ¹ $J_{C-F} = 243.2$ Hz), 111.4, 34.9 (t, ² $J_{C-F} = 25.3$ Hz); IR (KBr, cm⁻¹) *v*: 3053, 1617, 1579, 1452, 1355, 1045, 749, 723. Anal.

Calcd for C₁₇H₁₀ClF₂NOS (349.01): calcd. C, 58.37; H, 2.88; N, 4.00;. found C, 58.41; H, 2.91; N, 4.02

(E)-2-(1,1-Difluoro-4-phenylbut-3-en-1-yl)benzo[d]oxazole (3ar)

The title compound was prepared from (1-bromoethyl)benzene and **2a** according to general procedure except that 1 equiv of (1-bromoethyl)benzene, 6.9 equiv of copper powder and 3 equiv of **2a** was used, 23 mg, 20% yield, colorless oil. ¹H NMR (CDCl₃, 500 MHz) δ : 7.82-7.80 (m, 1H), 7.60 (d, J = 7.5 Hz, 1H), 7.45-7.38 (m, 2H), 7.35-7.33 (m, 2H), 7.29- 7.26 (m, 2H), 7.23-7.20 (m, 1H), 6.63 (d, J = 15.9 Hz, 1H) 6.23 (dt, J = 15.9 Hz, J = 7.2 Hz, 1H), 3.41-3.33 (m, 2H); ¹⁹F NMR (CDCl₃, 470 MHz) δ : -97.42 (t, J = 16.5 Hz, 2F); ¹³C NMR (CDCl₃, 125 MHz) δ : 157.8 (t, ² $_{JC-F} = 33.3$ Hz), 150.6, 140.0, 136.7, 136.5, 128.6, 127.9, 126.9, 126.5, 125.3, 121.3, 118.1 (t, ³ $_{JC-F} = 4.8$ Hz), 115.8 (t, ¹ $_{JC-F} = 242.7$ Hz), 111.4, 39.8 (t, ² $_{JC-F} = 24.1$ Hz); IR (KBr, cm⁻¹) *v*:3028, 1616, 1576, 1451, 1364, 1057, 748. HRMS (EI TOF) calcd for (M⁺) C₁₇H₁₃F₂NO: 285.0965, found 285.0955

2-(1,1-Difluoro-2-(2-nitrophenyl)ethyl)benzo[d]thiazole (3bd)

109 mg, 85% yield, yellow solid. Mp 77-78 °C; ¹H NMR (CDCl₃, 500 MHz) δ : 8.13 (d, J = 8.2 Hz, 1H), 7.92 (d, J = 7.9 Hz, 2H), 7.58-7.44 (m, 5H), 4.34 (t, J = 16.6 Hz, 2H); ¹⁹F NMR (CDCl₃, 470 MHz) δ : -88.67 (t, J = 16.5 Hz, 2F); ¹³C NMR (CDCl₃, 125 MHz) δ : 163.5 (t, ² $J_{C-F} = 33.6$ Hz), 152.5, 150.8, 135.2, 134.2, 132.9, 129.1, 127.0, 127.9, 126.1, 125.1, 124.5, 122.2, 118.5 (t, ¹ $J_{C-F} = 243.5$ Hz), 38.3 (t, ² $J_{C-F} = 24.8$ Hz); IR (KBr, cm⁻¹) v: 3069, 1609, 1578, 1527, 1486 1362, 761, 727. HRMS (EI TOF) calcd for (M⁺) C₁₅H₁₀F₂N₂O₂S: 320.0431, found 320.0426

1-Butyl-2-(1,1-difluoro-2-(2-nitrophenyl)ethyl)-1H-benzo[d]imidazole (3cd)

95 mg, 66% yield, yellow solid. Mp 91-92 °C; ¹H NMR (CDCl₃, 500 MHz) δ : 7.87 (d, J = 8.1 Hz, 1H), 7.82 (d, J = 7.9 Hz, 1H), 7.54 (d, J = 7.5 Hz, 1H), 7.48 (t, J = 7.6 Hz, 1H), 7.38-7.27 (m, 4H), 4.49 (t, J = 17.6 Hz, 2H), 4.22 (t, J = 7.9 Hz, 2H), 1.76-1.70 (m, 2H), 1.36-1.29 (m, 2H), 0.88 (t, J =7.4 Hz, 3H); ¹⁹F NMR (CDCl₃, 470 MHz) δ : -96.81 (t, J = 16.5 Hz, 2F); ¹³C NMR (CDCl₃, 125 MHz) δ : 151.0, 145.5 (t, ² $J_{C-F} = 30.7$ Hz), 141.3, 135.8, 134.4, 132.5, 128.8, 126.4, 124.9, 124.5, 122.9, 121.0, 118.1 (t, ¹ $J_{C-F} = 239.7$ Hz), 110.5, 44.9, 37.8 (t, ² $J_{C-F} = 23.4$ Hz), 32.0, 20.1, 13.6; IR (KBr, cm⁻¹) v: 3036, 1610, 1579, 1525, 1473,1340, 762, 725. Anal. Calcd for C₁₉H₁₉F₂N₃O₂ (359.14): calcd. C, 63.50; H, 5.33; N, 11.69. found C, 63.46; H, 5.37; N, 11.64

2-(1,1-Difluoro-2-(2-nitrophenyl)ethyl)-6-methylbenzo[d]oxazole (3a'd)

108 mg, 85% yield, yellow solid. Mp 91-92 °C; ¹H NMR (CDCl₃, 500 MHz) δ : 7.89 (d, *J* = 8.1 Hz, 1H), 7.52-7.48 (m, 3H), 7.43-7.38 (m, 2H), 7.19 (d, *J* = 8.4 Hz, 1H), 4.26 (t, *J* = 16.6 Hz, 2H), 2.43 (s, 3H); ¹⁹F NMR (CDCl₃, 470 MHz) δ : -96.72 (t, *J* = 16.7 Hz, 2F); ¹³C NMR (CDCl₃, 125 MHz) δ : 157.0 (t, ²*J*_{C-F} = 33.0 Hz), 150.5, 148.9, 140.0, 135.4, 134.0, 132.9, 129.2, 128.3, 125.3, 125.1, 121.0, 115.1 (t, ¹*J*_{C-F} = 243.1 Hz), 110.7, 37.8 (t, ²*J*_{C-F} = 24.3 Hz), 21.4; IR (KBr, cm⁻¹) *v*: 3018, 1611, 1581, 1522, 1485, 1348, 1054, 786, 724. Anal. Calcd for C₁₆H₁₂F₂N₂O₃ (318.08): calcd. C, 60.38; H, 3.80; N, 8.80. found C, 60.41; H, 3.77; N, 8.76

3. Synthesis of benzyl-TEMPO adducts 5

A 10 mL round-bottom flask was charged with **2a** (110 mg, 0.5 mmol), **4** (94 mg, 0.6 mmol), CuBr (72 mg, 0.5 mmol), 1,10-phenanthroline (90 mg, 0.5 mmol) and DMSO (2 mL) under nitrogen atmosphere. The reaction mixture was stirred at 50 °C for 4 h. After the reaction was completed, the crude product was directly purified by flash chromatography (petroleum ether/ethyl acetate, 100:1 v/v), to give 83 mg (56% yield) of **5** as white solid. Mp 68-69 °C; ¹H NMR (CDCl₃, 500 MHz) δ : 7.86-7.82 (m, 4H), 7.51-7.46 (m, 3H), 5.00 (s, 2H), 1.64-1.26 (m, 6H), 1.32 (s, 6H), 1.20 (s, 6H); ¹³C NMR (CDCl₃, 125 MHz) δ : 135.8, 133.4, 132.9, 127.9, 127.8, 127.7, 126.0, 125.9, 125.8, 125.7, 78.9, 60.1, 39.8, 33.2, 20.4, 17.2; IR (KBr, cm⁻¹) *v*: 3010, 2976, 2925, 2880, 1469, 1446, 1373, 1359, 1132.

A 10 mL round-bottom flask was charged with **1a** (124 mg, 0.5 mmol), 2,3-dihydrofuran (175 mg, 2.5 mmol) and copper powder (38 mg, 0.6 mmol) and DMSO (2 mL) under nitrogen atmosphere. The reaction mixture was stirred at 50 °C for 4 h. After the reaction was completed, the mixture was analyzed by ¹⁹F NMR and the yield, 28%, based on **1a** using PhCF₃ as internal standard. ¹⁹F NMR (CDCl₃, 470 MHz) δ : -101.64 (AB, J = 275.4 Hz, 1F), -104.22 (AB, J = 275.4 Hz, 1F). The compound **6**, MS (EI): m/z (%) 317 (M⁺), 319 (M⁺+2), 149 (M⁺- C4H6BrO), 151(M⁺+2- C4H6BrO)

5. Cross-coupling reaction of benzo-1,3-oxazolic difluoromethyl bromide with *o*-nitrobenzyl bromide

Figure S1. The reaction of benzo-1,3-oxazolic difluoromethyl bromide with *o*-nitrobenzyl bromide A 10 mL round-bottom flask was charged with *o*-nitrobenzyl bromide (43 mg, 0.2 mmol), **8** (64 mg, 0.3 mmol), copper powder (45 mg, 0.7 mmol), CuBr₂ (2 mg, 0.01 mmol), 1,10-phenanthroline (7 mg, 0.04 mmol) and DMSO (2 mL) under nitrogen atmosphere. The reaction mixture was stirred at 50 °C for 8 h. After the reaction was completed, the crude product was analyzed by GC-MS, and the yield of 9 < 5%, based on 1 using PPh₃ as internal standard.

6. Cross-coupling reaction of ethyl bromodifluoroacetate with 2-(bromomethyl)naphthalene.

Figure S2. The reaction of ethyl bromodifluoroacetate with 2-(bromomethyl)naphthalene.

A 10 mL round-bottom flask was charged with 2-(bromomethyl)naphthalene (0.2 mmol), ethyl bromodifluoroacetate (0.3 mmol), copper powder (45 mg, 0.7 mmol), CuBr₂ (2 mg, 0.01 mmol), 1,10-phenanthroline (7 mg, 0.04 mmol) and DMSO (2 mL) under nitrogen atmosphere. The reaction mixture was stirred at 50 °C for 8 h, after the reaction was completed, the crude product was directly purified by flash chromatography (petroleum ether/ethyl acetate, 100:1 v/v), to give the desired compound **10**. 36 mg, 34% yield, colorless oil. ¹H NMR (CDCl₃, 500 MHz) δ : 7.87-7.83(m, 3H), 7.77 (s, 1H), 7.52-7.50 (m, 2H), 7.42 (d, *J* = 8.4 Hz, 1H), 4.26 (q, *J* = 7.1 Hz, 2H), 3.59 (t, *J* = 16.4 Hz, 2H), 1.24 (t, *J* = 7.1 Hz, 3H); ¹⁹F NMR (CDCl₃, 470 MHz) δ : -104.12 (t, *J* = 16.1 Hz, 2F); ¹³C NMR (CDCl₃, 125 MHz) δ : 163.9 (t, ²*J*_{C-F} = 32.8 Hz), 133.3, 132.8, 129.7, 128.3, 128.1, 127.8, 127.7,

126.3, 126.2, 115.5 (t, ${}^{1}J_{C-F} = 251.0 \text{ Hz}$), 62.9, 41.1 (t, ${}^{2}J_{C-F} = 23.8 \text{ Hz}$), 13.9; IR (KBr, cm⁻¹) *v*: 3059, 3023, 1724, 1260, 1216, 694, 662.

7. Capture the free radicals 1A and 2A

To prove the existence of radical intermediates, the TEMPO trapping reaction was carried out ^[S3] One equiv of TEMPO was reacted with benzyl bromide (**2a**) in the presence of stoichiometric Cu⁰ and catalytic amount of CuBr₂ using 1,10-phenanthroline as ligand in DMSO. The TEMPO trapped complex **5** was isolated in 64% yield (Table 2, entry3). The other copper sources could also provide the complex **5** (Table 2, entries 1-2). The results supports the formation of benzylic radical species **2A**. Furthermore, when TEMPO was added in the standard reaction system (Table 1, entry 6), the *gem*-difluoromethylenation reaction was significantly suppressed (Scheme S1) and TEMPO trapped complex **5** was formed in 5% isolated yield. However, the adduct of TEMPO with **1a** was not detected on the basis of ¹⁹F NMR analysis. Nevertheless, evidence of the formation of 1,3-azolic difluoromethyl radical **1A** was found by the observation of radical adduct **6** in the reaction of 2,3-dihydrofuran with substrate **1a** in the presence of copper (0) in DMSO by ¹⁹F NMR and GC-MS analysis (Scheme 5).^[S4] Thus, the *gem*-difluoromethylenation of sp3-hybirdized carbon center was demonstrated to be a radical process.

Scheme S1 The trapping reaction of radical 1A and radical 2A

Table S1 The reaction of 2a with 4 in the presence of different copper sources

	Br + . 2a	Cu source Phen DMSO,50°C	
Entry	Copper source (mol%)	Additive $(mol\%)^b$	Yield $(\%)^a$ of 5
1	Cu(0) (120), CuBr (10)	Phen (20)	65
2	CuBr (100)	Phen (100)	56
3	Cu(0) (120), CuBr ₂ (5)	phen (20)	64
4	CuBr ₂ (100)	Phen (100)	0

^a Isolated yield; ^b Phen = 1,10-Phenanthroline.

8. Reference.

- M. Medebielle, S. Ait-Mohand, C. Vurkhloder, W. R. Dolbier, Jr., G. Laumond, A-M. Aubertin, J. Fluorine Chem. 2005, 126, 535-542.
- S2. C. Burkholder, W. R. Dolbier, Jr., J. Org. Chem. 1998, 63, 5385-5394.
- S3. a) For a review on the use of TEMPO, see: Vogler, T.; Studer, A. Synthesis, 2008, 1979 -1993. b)

Gildner, P. G.; Gietter, A. A. S.; Cui, D.; Watson, D. A. J. Am. Chem. Soc. 2012, 134, 9942-

9945. c) Sorin, G.; Mallorquin, R. M.; Contie, Y.; Baralle, A.; Malacria, M.; Goddard, J. P.;

Fensterbank, L.; Angew. Chem. Int. Ed. 2010, 49, 8721-8723.

S4. Burkholder, C.; Dolbier, Jr., W. R. J. Org. Chem. 1998, 63, 5385

9. ¹H NMR, ¹³C NMR and ¹⁹F NMR spectrums for all compounds 2-(1,1-Difluoro-2-naphthalen-2-yl-ethyl)-benzooxazole (3aa)

0 -20 -40	F ₂ C-N	
-60 -80		
-100		-96.98 -97.02 -97.05
-120		
-140		
-160	NAME EXPNO PROCNO PROCNO PROCNO TIME INSTRUM PROBHD SULVENT NS SULVENT NS SULVENT NS SULVENT NS SULVENT NS SULVENT NS SULVENT NS SULVENT NS SULVENT NS SULVENT SUL PL1 PL1 SUL SUL SUL SUL SUL SUL SUL SUL SUL SUL	1
-180 ppm	WJ20130408 1 20130408 17.34 Spect spect spect 100000.000 Hz 0.762939 Hz 0.6554150 sec 5.000 usec 287.4 1.00000000 sec 19.30 usec 470.5453180 MHz 470.5923770 MHz 0.000 Hz 0.000 Hz	XMJ-1-F 9Fdeft CDC13

0 -20 -40																									N N]		
-60																															
- 1																															
-100	 																										¥	\leq	-97 -97 -97	.5(.54 .57) 1 7
-120																															
-140																															
-160	PC	GB	SSB	WDW	л су П	SF01	PL1	P1			TDO	Di	카타	DW	RG	AQ	FIDRES	SWH		SOLVENT	TD	PULPROG	PROBHD	TNCTRIM	Date_	PROCNO	EXPNO	NAME			
-180	1.00	0.00		no	470 5923770	470.5453180	4.00	19.30	= CHANNEL II === 19F	2	1	1.00000000	297 4	2.000	645.1	0.6554150	0.762939	100000.000	× 0	CDC13	131072	202	5 mm PATXO 19F	21-1-6	/ TCNFTN7	1	12	jhz20130517		19Fdeft CDC13	BN-2
mdđ		HZ	6		MHZ	MHz	dB	usec			-	10 00	N LUGEC	usec		Sec	Hz	Hz												ω	

0 -20	F ₂ C N
-40	
- 60	
- 80	
-100	-97.56 -97.60 -97.64
-120	
-140	
-160	NAME EXPNO PROCNO Date_ Time INSTRUM PROBUD PROBU SULVENT NS SULVENT NS AQ DE TE DI TDO DE TE DI TDO PL1 SEO1 SEO1 SEO1 SE SE SE SE SE SE SE SE SE SE SE SE SE
-180	MB-2 19Fdeft 2013 2013 2013 5 mm PATX0 100000 100000 0.655 0.655 8 5 1.00000 CHANNEL f1 1 470.545 6 470.592
mdð I	CDC13 0517 0517 0517 0517 0517 199-20 090.20 090.20 090.20 199-20 199-20 199-20 199-20 199-20 000 199- 2939 Hz 2939 Hz 2939 Hz 2939 Hz 2000 usec 199-20 000 usec 199-20 199-20 000 usec 199-20 199-20 2000 usec 199-20 2000 usec 1000 usec 10000

0 -20	O ₂ N F ₂
-40	
- 60	
-80	c -97.18
-100 .	
-120	
, -140	
-160	NAME EXPNO PROCNO Date_ Time_ INSTRUM PROBHD PULPROG TD SOLVENT NS AQ DE TE D1 TD0 TD0 NUC1 P11 SF01 SF01 SF01 SF01 SF01 SF01 SF01 SF
-180	XMJ-3-NO2 19Fdeft CDC1 jhz201304 201304 9. 5 mm PATXO 1 0.65541 2.295 1.000000 6. 2.295 1.000000 CHANNEL f1 = 19. 470.54531 19. 655 4. 470.54531 19. 19. 295 1.000000 0. 655 1.000000 0. 19. 295 1.000000 0. 6. 19. 19. 295 1.000000 0. 19. 295 1.000000 0. 19. 295 1.000000 0. 19. 295 1.0000000 0. 19. 295 1.0000000 0. 295 1.0000000 0. 295 1.0000000 0. 19. 295 1.0000000 0. 295 1.0000000 0. 295 1.0000000 0. 295 1.0000000 0. 295 1.0000000 0. 295 1.0000000 0. 295 1.0000000 0. 295 1.0000000 0. 295 1.0000000000 0. 295 1.00000000 0. 295 1.0000000 0. 295 1.0000000 0. 295 1.0000000 0. 295 1.0000000 0. 295 1.0000000 0. 295 1.0000000 0. 0. 295 1.0000000 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0
ppm	.3 .3 .3 .3 .3 .3 .3 .3 .3 .3

190 180 170 160 150 140 130 120 1			O ₂ N - - - - - - - - - - - - -
10 1			×111.47
00			
90			
08	L		
70			
09			
50			~ 42.01
40 30	PL2 PL2 PL12 PL13 SFO2 SF SF SF SF SF SF SF SF SF SF PL2 PL2 PL2 PL2 PL2 PL2 PL2 PL2 PL2 PL2	AG AG DE DE TE D1 DELTA TD0 TD0 P1 P1 P1 P1 P1 SF01 SF01 SF01	41.82 41.63 NAME 41.63 EXPNO TI DERCO TIME FROBHD FULPROG TD SOLVENT SSWH SSWH SSWH SSWH
20 10 0 ppm	1.00 dB 1.00 dB 16.05 dB 16.50 dB 500.1320005 MHz 32768 125.7577890 MHz no 0 0 0.00 Hz 0.10	1.0912410 Sec 322.5 16.650 usec 6.00 usec 2.0000000 sec 0.0300000 sec 1.8999998 sec 1.8999998 sec 1.8999998 sec 1.8999998 sec 1.8999998 sec 1.8999998 sec 1.8999998 sec 1.8999998 sec 1.89999998 sec 1.8999998 sec 1.89999998 sec 1.8999998 sec 1.8999998 sec 1.8999998 sec 1.8999998 sec 1.8999998 sec 1.8999998 sec 1.89999998 sec 1.89999998 sec 1.8999998 sec 1.89999998 sec 1.8999998 sec 1.999998 sec 1.999998 sec 1.999998 sec 1.9900000000000000000000000000000000000	JHZ20140112 20140113 8.55 5 mm PATXO 19F 2GPG30 65536 CDC13 13500 30030.029 Hz 0.458222 Hz

S33

0-	F ₃ C
-20	F ₂ C
-40	z
-60	
- 80	
-100	-97.19 -97.22 -97.26
-120	
-140	
-160	NAME EXPNO PROCNO Date_ INSTRUM PROBHD PROBHD PROBHD PROBHD PROBHD SULVENT NS SULVENT NS AQ DB TE DN DE TE D1 TD0 NUC1 P11 SF SF SF SF SF SF SF SF SF SF SF SF SF
-180	XMJ-CF3 19Fdeft CD 201304 201304 201304 201304 201304 1000000.0 0.7629 0.65541 1.0000000 0.7629 0.65541 1.0000000 1.0000000 CHANNEL f1 = 1.1 470.54533 470.59237 4.70.59237 1.1
mdd	C13 C13 119 119 119 119 119 119 119 119 119 1

0-	F3CO-
-20	F ₂ C
-40	
-60	
- 80	
-100	
-120	
-140	
-160	XMJ-OCE 19Fdeft C NAME EXPNO PROCNO Date_ INSTRUM PROBHD PULPROG TD SOLVENT NS SOLVENT NS SOLVENT NS AQ DE TE D1 TD D2 FID FID SE SE SE SE SE SE SE SE SE SE SE SE SE
-180	F3 DC13 JHZ20130509 12 20130509 12 12 12 12 12 12 131072 131072 131072 131072 131072 131072 131072 131072 131072 12 131072 131072 12 131072 12 131072 12 131072 12 131072 12 131072 12 131072 12 131072 13 10 10 10 10 10 10 10 10 10 10 10 10 10
mdđ	Hz Hz Hz Hz Hz Hz Hz

0 -	MeOOC
-20	
-40	
- 60	
- 80 - 1	
-100	-97.05 -97.08 -97.12
-120	
-140	
-160	NAME EXPNO PROCNO Date_ Time INSTRUM PROBHD PULPROG DB DE TD SULVENT NS SULVENT NS SULVENT NS SULVENT NS SULVENT NS SE D1 SID P1 SID SE SE SE SE SE SE SE SE SE SE SE SE SE
-180	19Fdeft 19Fdeft 20130 20130 20130 12 5 mm PATX0 0.762 0.762 0.6554 5. 65 1.000000 1.000000 1.000000 1.000000 1.0000000 1.00000000
سطط ۱	CDC13 12 12 1412 19F 19F 19F 19F 19F 19F 19F 19F 19F 19F

0-	
-20	F ₂ C
-40	
- 80	-97.12
-100	-97.16 -97.19
-120	
-140	
-160	NAME EXPNO PROCNO Date_ Time INSTRUM PROBHD PULPROG TD SOLVENT DS SULPROG TD SSULPROG DS SULPROG SULPROG DS SULPROG SULPROG SULPROG DS SULPROG S
-180	19Fdefi 19Fdefi 201304 201304 201304 15. spe 5 mm PATXO 1 1310 CDC 1000000.0 0.65541 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 0.65541 1.92.54531 4.70.54531 4.70.59237 1.
udd I	CDC13 117 15 117 15 117 15 117 117 115 117 115 115

4-(2-(Benzo[d]oxazol-2-yl)-2,2-difluoroethyl)benzonitrile (3ak)

0-	
-20	F ₂ O
-40	z
- 60	
- 80	
- 100	-96.92 -96.96 -96.99
-120	
-140	
-160	NAME EXPNO PROCNO Date Instre INSTRUM PROBED TD PROBED TD SULVENT
-180	19Fdef JHZ2013 2013 5 mm PAIX0 0.655 5 cHANNEL f1 470.592 470.592
urdd 	T-CN t CDC13 0412 2.46 pect 19F 19F 2239 Hz 2539 Hz 4150 sec 0000 usec 0000 usec 19F 9.30 usec 19F 9.30 usec 19F 19F 19F 19F 19F 2239 Hz 100 Hz 19F 19F 19F 19F 19F 19F 19F 19F 19F 19F

S50

2-(2-(4-Bromophenyl)-1,1-difluoroethyl)benzo[d]oxazole (3an)

S56

2-(2-(2,6-Dichlorophenyl)-1,1-difluoroethyl)benzo[d]oxazole (3ao)

0-	
-20	F ₂ C _H V
-40	
-60	
-80 I	
-100	
-120	
-140	
-160	NAME EXPNO PEROCNO Date_ Inste_ Instru PE INSTRU PE ISWA SOLVEN NS SOLVEN NS SOLVEN NS SOLVEN NS SE DI TDO PI SE SE SE SE SE SE SE SE SE SE SE SE SE
-180	19 3 JH220 4 5 mm PAJ 5 mm PAJ 11000 0.6 470.5 470.5
udd 1	XMJ-2-H 130621 11 1130621 11 14.08 spect spect spect Spect 131072 CDC13 CDC13 131072 CDC13 131072 CDC13 131072 CDC13 8 8 8 600 usec 6.00 usec 6.00 usec 19.30 Hz 65536 MHz 65536 MHz 65536 MHz 1.00 Hz

2-(2-(5-Chlorobenzo[b]thiophen-3-yl)-1,1-difluoroethyl)benzo[d]oxazole (3aq)

0 20 - 40	
6-	
- 8. –	
-100	
-120	
-140	
-160	NAME EXPNO PROCNO Date Time Time Time Top Solven NSTRUD PULPRO NS SWH FIDRES AQ DE TE DI TDO TE DI TE DI SFOI SFOI SFOI SFOI SF SF SF SF SF SF SF SF SF SF SF SF SF
-180	XMJ-3-C 19Fdeft CD 2013 2 5 mm PATX0 3 5 mm PATX0 0.655 0.655 0.655 1.00000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.000000 1.000000 1.00000 1.00000 1.00000 1.000000 1.000000 1.00000 1.00000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.00000000

0	
-20	
-40	
-60	
-80	
-100	$-\frac{-97}{-97}$
-120	
-140	
-160	REAL REAL REAL REAL REAL REAL REAL REAL
-180	WJ2013 2013 5 mm PATXO 0.655 0.655 1.00000 9.655 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 5.545 470.592
mdd	1220 19 1220 1220 1220 1220 1220 1220 12

S68

1-*n*-Butyl-2-(1,1-difluoro-2-(2-nitrophenyl)ethyl)-1H-benzo[d]imidazole (3cd)

0 -20	
-40	
-60	
- 80	
	$-\frac{-92.21}{-92.24}$
-100	92.28
-120	
-140	
-160	NAME EXPNO PROCNO Date_ Time_ Time_ INSTRUM PROBHD PROBHD PROBHD SULVENT NS SULVENT NS SULVENT NS AQ DE TE TE TE TE TE TE TE TE TE TE TE TE TE
-180	N,N 19Fdeft CDC1 3HZ20130614 20130614 20130614 20130614 16.36 16.36 1131072 203.2 1.0 00000000 1.0 00000000000000000000
ppm	Hz Hz Hz Hz Hz

Benzyl-TEMPO adducts 5

5 6 .87 .86 п COOEt .85 .84 83 77 1.03 52 .52 .52 7.51 7.50 7.43 7.41 -12 a. in. 4.28 4.27 2.00 2 4.24 3.62 2.07 فنبا 10 $\begin{pmatrix} 1.25 \\ 1.24 \\ 1.22 \end{pmatrix}$ 3.08 VNAME EXPNO PEROPNO Date Time INSTRUM PULPROG TD PULPROG TD SOLVENT NS SWH FIDRES AQ PULPROG SOLVENT NS SWH FIDRES AQ DE TE DU DE TE NUC1 PL1 SFOI SFOI SF MDW SSB CB CB ++ CHANNEL (*j*) mn PATXO 19F 0 14.14 1.00 500.1330885 500.1390122 1.00000000 WJ20131206 10330.578 0.157632 3.1720407 20131206 48.400 6.00 296.4 t zg30 65536 CDC13 0.00 1.00 U ppm use K Sec Hz Hz dB MHz 82 MHZ

Ethyl 2,2-difluoro-3-(naphthalen-2-yl)propanoate

mdd L	-114	-112	-110	-108	-106	-104	-102	-100	-98	-96	Ces.
				8							022
						-					
						-					
1.00		PC									
0,00		8				_					
0 00 C						-					
no		MOM				_					
23770 MHz	470.59	() hij				_					
65536		12									
53180 MHz	470.54	SPOI									
4.00 dB		110									
10 10 10000		NUCT									
1	CHANNEL I										
1		TDO				-					
00000 sec	1.000	D1									
296.4 %		18									
6.00 usec		DE									
5.000 usec		DW				-					
Dag 00760	0.00										
62939 Hz	0.7	FIDRES									
0.000 Hz	10000	HMS									
40		DS									
CTCT2		TRIDATION									
31072	-	TD									
52		PULPROG									
0 19F	5 mm PATX	PROBHD								<	
spect		INSTRUM							т т		
17.38	101	Time				ļ			'>		
74075	100	120020				<			200		
11		EXPNO				-			200	>	
31206	WJ201	NAME				-10 -10 -10					
						4.(4.1 4.1					
						19					

10. GC-MS Spectra and ¹⁹F NMR

1) Cross-coupling reaction of benzo-1,3-oxazolic difluoromethyl bromide with *o*-nitrobenzyl

bromide (2d)

Figure S1 GC-MS of Reaction of 2-bromomethyl-benzooxazole with o-nitrobenzyl bromide (2d)

2) a) GC-MS for step by step reaction of addition of 2a to mixture of 1a with copper powder

b) ¹⁹ F NMR for step by step reaction of addition of 2a to mixture of 1a with copper powder

3) a) GC-MS for step by step reaction of addition of 1a to mixture of 2a with CuBr

S90

b) 19 F NMR for step by step reaction of addition of 2a to mixture of 1a with copper powder

4) a) GC-MS for one-pot reaction of 1a and 2a under Cu-mediated

Da Da Da Op Sa Ot AL	ita pa ata file ite: perato imple: hers: .S nur	th: e: r: mber:	2 4 18	sdeta Dui nple pr	oduct fact	-3/11.4 13 /11 or:	Tr.		k	DENJ GUBT + 2400 Contactor Jan
Int	egra l egrate	paramete or:	e: chemis	stry work	station					pula
Me Tit	ethod: le:		5,199	-1(1)+(0.1546	thide	(Georgies			打作L
Sig	gna l :			det a	11.0					
peak	s tir	ne/min	scan from	top scan	scan end at	type of peaks	peak height	revised area total area	revised are relative are	a area a proportion
of the local diversion of	Suum.	110 409 274 253 043	229 747 843 834 542	114 773 837 836 390	250 765 854 813 37	20 20 20 20 20 20 20 20 20 20 20 20 20 2	1486363 4746535 2151756 1708522 805203	24070074 67091609 37395993 26859911 12831288	1.00% 2.7%% 1.05% 1.11% 0.57%	9.000-054-604 2.000 1.000
100	1111111	11111	1111	3231 3318 1466 1642 1659	1139 1330 1477 1645 1712	100 200 200 200 200 200 200	4145040 6540111 1006402 65632272 1496522	64766114 54260201 15665035 2409224783 24224146	2 69% 3.50% 0.65% 1.00.00% 1.01%	2.2458 2.2258 0.5448 0.5448 0.6418 0.6418
112	15	03.5 164) 803	2376 2440 2538	1744 2445 2543	1813 2407 2503	10 10 50 2	1941519 343518 541450	51506404 41251356 21063574	1.14% 1.71% 0.91%	1.75m 1.473% 0.253%
					total	revise	d area:	2000913639		

b) ¹⁹F NMR for one-pot reaction of 1a and 2a under Cu-mediated

5) a) GC-MS for the reaction of 1a with 2,3-Dihydrofuran^{S2}

GC-MS yield: 9%

Dat Dat Dat	a path: a file: e: erator:	0.	D a Jul	2014	15:30	1	March 1								
San	nple:	1.5	ample	1											
ALS	number:	1 1	0	product	t factor:	2									
Inte Inte	gral param grator:	iete: che	mistry w	vorkstatio	'n										
Met Title	hod: ::	5.9	entrbe	a/1/m	othoda	N. TOPE			1	1.79	\$70 ×	O	De l'Unit	CE	1-8
Sigr	nal: TI	C: 4.1	>-deta	1.00									Same		W
peaks	time/mi	n scan from	top scan	scan end at	type of peaks	peak height	revised area total area	revised area	a area proportion						
- about	5 11 8 42 9 35 10 70 10 90	2 33 7 76 5 85 0 105 9 109	0 33 7 27 2 89 7 307 8 310	5 351 5 991 4 901 7 1082 4 1119	BV BV BV BB	872201 3731704 1640968 530578 1590034	16971652 463602236 25181113 8586636 27391368	3.66% 100.00% 5.43% 1.85% 5.91%	2.3455 61.3135 3.3306 1.1368 3.6235	et de	FVH				
WF # 9 10	11 71 11 867 12 494 12 711 12 821	+ 120 3 122 4 135 1 133 1 145	7 131 6 133 5 131 4 13 <i>8</i> 9 146	2 1229 1 1241 5 2324 9 1254 4 1472	30B 30B 30B VD 80b	4756296 2327094 3664533 2440089 771529	44455809 49963643 33821334 11467017	14 31% 9 59% 10.78% 3 30% 2 47%	8.774% 5.873% 6.60% 6.472% 1.517%	00.7-1 00.7-1	Ar Ar	Ð			
11	14 919	362	5 162	7 1642	BV.	545550	8353778	1.80%	1.1055						
				total r	evise	d area:	754240627								

b) ¹⁹F NMR for the reaction of 1a with 2,3-Dihydrofuran^{S2}

