Supporting information

A Porous Zr-cluster-based Cationic Metal-Organic Framework for Highly Efficient Cr₂O₇²⁻ Removal in Water

Qi Zhang, ^a Jiancan Yu, ^a Jianfeng Cai, ^a Ling Zhang, ^a Yuanjing Cui, ^a Yu Yang, ^a Banglin Chen^{*ab} and Guodong Qian^{*a}

^{*a*} State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, Department of Materials Science & Engineering, Zhejiang University, Hangzhou 310027, China.

^b Department of Chemistry, University of Texas at San Antonio, San Antonio, TX 78249, USA.

Corresponding Authors:

Bangli.Chen@utsa.edu, gdqian@zju.edu.cn;

1.1 Materials and characterization.

All the chemicals were commercially available and used without further purification. ¹H NMR spectra were recorded on a Bruker Advance DMX 500 spectrometer using tetramethylsilane (TMS) as an internal standard. Thermogravimetric analyses (TGA) were carried out on a Netzsch TG209F3 with a heating rate of 1 °C/min in N₂ atmosphere. Infrared spectrum (IR) was recorded on Thermo Fisher Nicolet iS10 spectrometer using KBr pallets. Powder X-ray diffraction (PXRD) patterns were collected in the $2\theta = 5-50^{\circ}$ range on an X'Pert PRO diffractometer with Cu K α ($\lambda = 1.542$ Å) radiation at room temperature.

1.2 Synthesis of MOF-867 and ZJU-101

Synthesis of MOF-867: To a 50 mL vial containing ZrCl_4 (116.7 mg, 0.5 mmol), 2,2'-bipyridine-5,5'-dicarboxylate (H₂bpydc) (122.1 mg, 0.5 mmol) was added DMF (18 mL) and glacial acetic acid (1 mL, 17.5 mmol). The resulting mixture was sonicated for 20 min until fully dissolved. The temperature was kept at 120 °C for 24 hours. The resulting white solid was isolated by filtration, and was washed with DMF and methanol repeatedly before being dried under vacuum.

Synthesis of ZJU-101: MOF-867 (ca. 200 mg) was placed in a vial with 20 mL solution of trifluoromethanesulphonate (10 folder molar excess of N atoms in MOF-867) in CHCl₃. The solution was stirred for 48 h at room temprature. The resulting solid was washed with CHCl₃, aqueous solution of 0.1mol/L NaNO₃ and acetone for several times, isolated by centrifugation, and dried under vacuum for at least 6 h.

1.3 Details of Cr₂O₇²⁻ absorption test

Before adsorption, **MOF-867** and **ZJU-101** was dried overnight under vacuum at 60 °C and kept in a desiccator. Then the adsorbent (10 mg) was weighed precisely. During the adsorption process, adsorbents (10 mg) were used for the removal of dichromate with the concentration of 50 ppm. The dichromate solutions (20ml) containing the adsorbents were mixed well with magnetic stirring and maintained for a fixed time (5 min to 12 h) at 25 °C. The solution was separated from the adsorbent with a syringe filter (PTFE, 0.25 μ m) for calculation of dichromate concentration by comparing the UV/vis absorbance (at λ =257 nm).

The pseudo second-order equation can be expressed as non-linear forms by Eq. (1):

$$Q_t = \frac{k_2 Q_e^2 t}{1 + k_2 Q_e t} \tag{1}$$

Where Q_e and Q_t are the amount of adsorbate (mg/g) onto adsorbent at the equilibrium and time t (min), respectively. Based on the pseudo second-order kinetic model, the initial adsorption rate h ($mg \cdot g^{-1} \cdot min^{-1}$) and half-adsorption time $t_{1/2}$ (min) were calculated acording to the following equations:

$$h = k_2 Q_e^2$$
(2)
$$t_{1/2} = \frac{1}{k_2 Q_e}$$
(3)

To obtain the adsorption capacity, **ZJU-101** (10 mg) and **MOF-867** was dispersed in 20 mL of $Cr_2O_7^{2-}$ solutions with a known concentration between 50 and 500 ppm respectively. 12 hours later, the solution was separated from the adsorbent with a syringe filter and UV/vis spectroscopy was used to analyze the residual concentrations of $Cr_2O_7^{2-}$. The equilibrium adsorption capacity Q_e was calculated according to Eq. (4):

$$Q_e = \frac{(C_0 - C_e)V}{m} \tag{4}$$

Where C_o and C_e (mg/L) were the initial and final concentrations of $Cr_2O_7^{2-}$, respectively. V (L) was the volume of the solution, and m (g) was the mass of sorbent.

Figure S1. PXRD data for MOF-867 and ZJU-101.

Figure S2. PXRD data for ZJU-101 and ZJU-101after adsorption.

Figure S3. TGA curves of MOF-867 and ZJU-101 under a nitrogen atmosphere at a heating rate of 1 K·min⁻¹.

Figure S4. NMR analysis of ZJU-101 at different times.

Figure S5. SEM photos for ZJU-101.

Table S1. Adsor	ption cap	acities for	dichromate on	various	porous materials.

MOF-type Adsorbents	Maximum capacities (mg/g)	References	Other types Adsorbents	Maximum capacities (mg/g)	References
Zn _{0.5} Co _{0.5} - SLUG-35	68.5	1	Amino starch	12.12	5
2-D Ag- based-MOFs	60.0	2	β-CD and quaternary ammonium	61.05	6
			groups modified cellulose		
3-D Dy-MOFs	62.9	3	Hexadecylpyridinium bromide modified natural zeolites	14.31	7
FIR-53	74.2	4	Modified magnetic chitosan chelating	58.48	8
			resin		
FIR-54	103.1	4	NH ₂ -TNTs	153.85	9
ZJU-101	243	This Work			

Figure S6. FT-IR spectra of MOF-867 and ZJU-101.

REFERENCES

- 1 H. Fei, C. S. Han, J. C. Robins and S. R. J. Oliver, Chem. Mater., 2013, 25, 647.
- H. Fei, M. R. Bresler and S. R. J. Oliver, J. Am. Chem. Soc., 2011, 133, 11110.
- 2 3 4 5 6 7 P.-F. Shi, B. Zhao, G. Xiong, Y.-L. Hou and P. Cheng, chem.cummun., 2012, 48, 8231.
- H. B. Fu, Z.-X. Xu and J. Zhang, *Chem. Mater.*, 2015, **27**, 205.
 A. Dong, J. Xie, W. Wang, L. Yu, Q. Liu and Y. Yin, *J. Hazard. Mater.*, 2010, **181**, 448.
- Y. Zhou, Q. Jin, T. Zhu and Y. Akama, J. Hazard. Mater., 2011, 187, 303.
- Y. Zeng, H. Woo, G. Lee and J. Park, Microporous Mesoporous Mater., 2010, 130, 83.
- Y. G. Abou El-Reash, M. Otto, I. M. Kenawy and A. M. Ouf, International Journal of Biological Macromolecules, 2011, 49, 513.
- 8 9 L. Wang, W. Liu, T. Wang and J. Ni, Chemical Engineering Journal, 2013, 225, 153.