Electronic Supplementary Information

AIEE Phenomenon: Tetraaryl vs Triaryl Pyrazoles

Sayani Mukherjee, ${ }^{\text {a P P. S. Salini, }}{ }^{\text {a A. Srinivasan }}{ }^{\text {a }}$ and S. Peruncheralathan ${ }^{\text {a* }}$

${ }^{\text {a }}$ School of Chemical Sciences, National Institute of Science Education and Research, Institute of Physics Campus, Sainik School (PO), Bhubaneswar-751005, Odisha, India
Table of Contents: Page No.
General Consideration
ESI-2
General Procedure for Synthesis of 1,3,5-Triarylpyrazoles ESI-3
General Procedure for Synthesis of 4-Bromo-1,3,5-triaryl-1H-pyrazoles ESI-5
Optimization of Cross-coupling of 4-Bromo-1,3,5-triphenyl-1H-pyrazole with ESI-8
Phenylboronic Acid

General Procedure for Synthesis of 1,3,4,5-Tetraaryl-1H-pyrazoles by Suzuki
ESI-8

Reaction
References
ESI-13

Titration Experiments and Crystal Structural Analysis
ESI-14
NMR Spectra of the Isolated Products
ESI-31

EXPERIMENTAL SECTION

General Consideration

Reagents

All experiments were carried out in oven-dried glasswares under nitrogen atmosphere. 1,3-Diphenylpropan-1,3-dione, aryl and heteroaryl hydrazines were purchased from Aldrich and Acros and used as received. $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$, aryl and heteroaryl boronic acids were purchased from Aldrich. N-Bromosuccinimide was purchase from Aldrich and recrystallized from water. $\mathrm{Cs}_{2} \mathrm{CO}_{3}, \mathrm{KOH}, \mathrm{K}_{2} \mathrm{CO}_{3}$ and $\mathrm{Et}_{3} \mathrm{~N}$ were purchased from Aldrich, Acros, Merck or Alfa-Aesar and used as received. All other reagents were purchased from common suppliers and used without further purification. Flash chromatography was performed by using Merck Silica gel 60 (230400 mesh). Reactions were monitored by thin-layer chromatography on pre-coated with silica gel 60 F254 plates (Merck \& co.) and were visualized by UV. 1,3,4-triphenylpyrazole was synthesized by reported method. ${ }^{1}$

Analytical Methods

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra were recorded in CDCl_{3} solution using Brucker Avance DRX(400 MHz). The signals were referenced to residual chloroform ($7.26 \mathrm{ppm}, 77.16 \mathrm{ppm},{ }^{13} \mathrm{C}$). Chemical shifts are reported in ppm, multiplicities are indicated by s (singlet), d (doublet), t (triplet), dd (doublet of a doublet). Gas chromatography analysis was performed on ThermoFisher ITQ 900 instrument with a FID detector and HP-5 capillary column (polydimethylsiloxane with 5\% phenyl groups, $30 \mathrm{~m}, 0.32 \mathrm{~mm}$ i.d., $0.25 \mu \mathrm{~m}$ film thickness) using helium as carrier gas. Gas chromatographymass analysis was carried out on ThermoFisher ITQ 900 instrument (EI) and TG-SQC capillary column using helium carrier gas. ESI HR-MS measurements were performed on Bruker micrOTOF-Q-II mass-spectrometer. The fluorescence spectra were recorded on a SPEXFluorolog F112X spectrofluorimeter. The electronic absorption spectra were recorded with Shimadzu 3101PC UV-Vis-NIR Scanning spectrophotometer. DLS analyses were carried out with a Zetasizer Nano S from Malvern Instruments at $25^{\circ} \mathrm{C}$. The X-ray quality crystals for the compounds were grown by slow diffusion of n-hexane over $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution. Single-crystal Xray diffraction data of $\mathbf{2 a}, \mathbf{2 i}$ and $\mathbf{4 a}$ were collected in a Bruker KAPPA APEX-II, four angle rotation system, Mo-K α radiation ($0.71073 \AA$).

Scheme 1: General Procedure for Synthesis of 1,3,5-Triaryl-1H-pyrazoles

To a solution of 1,3-diphenylpropan-1,3-dione ($2.46 \mathrm{~g}, 11 \mathrm{mmol}$) in $\mathrm{AcOH}(20 \mathrm{~mL})$ was added arylhydrazine (13 mmol) at room temperature. The reaction mixture was refluxed until 1,3diketone was consumed. The reaction mixture was cooled and neutralized by saturated sodium carbonate solution. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Purification of the crude product by flash chromatography afforded the corresponding pyrazole as a colourless solid.

1,3,5-Triphenyl-1H-pyrazole (4a) ${ }^{\mathbf{2}}$

Yield: $2.61 \mathrm{~g}(80 \%)$ as a colourless solid.
Melting point: $130-132{ }^{\circ} \mathrm{C}$
$\mathrm{R}_{\mathrm{f}}: 0.31$ in 5% ethyl acetate in hexane
IR ($v \mathrm{~cm}^{-1}$, in KBr): 3448, 3120, 3061, 1596, 1497, 1482, 1457, 1433, 1363, 1213, 1174, 1065, 1021, 972, 957, 921, 814, 765, 700, 693, 504.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.94-7.92(\mathrm{~m}, 2 \mathrm{H}), 7.46-7.42(\mathrm{~m}$, $2 \mathrm{H}), 7.34-7.28(\mathrm{~m}, 11 \mathrm{H}), 6.83(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=152.10,144.53,140.26,133.17,130.71,129.05,128.88$, $128.78,128.61,128.43,128.13,127.57,125.95,125.45,105.34$.

HR-MS (ESI): Calcd. for $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{~N}_{2}(\mathrm{M}+\mathrm{H}): 297.1386$, found: 297.1354.

1-(4-Methoxyphenyl)-3,5-diphenyl-1H-pyrazole (4b) ${ }^{\mathbf{3}}$

Yield: $2.69 \mathrm{~g}(75 \%)$ as a colourless solid.
Melting point: $101-104{ }^{\circ} \mathrm{C}$
$\mathrm{R}_{\mathrm{f}}: 0.68$ in 10% ethyl acetate in hexane
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.92(\mathrm{dd}, J=8.3,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.46-$
$7.40(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.27(\mathrm{~m}, 8 \mathrm{H}), 6.90-6.84(\mathrm{~m}, 2 \mathrm{H}), 6.81(\mathrm{~s}, 1 \mathrm{H})$, $3.82(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=158.99,151.77,144.49,133.59$, 133.30, 130.75, $128.84,128.77,128.59,128.32,128.03,126.89$, 125.93, 114.25, 104.78, 55.64.

HR-MS (ESI): Calcd. for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}(\mathrm{M}+\mathrm{H}): 327.1492$, found: 327.1520.

1-(4-Trifluoromethylphenyl)-3,5-diphenyl-1H-pyrazole (4c)

Yield: $3.12 \mathrm{~g}(78 \%)$ as a colourless solid.
Melting point: $113-115{ }^{\circ} \mathrm{C}$
$\mathrm{R}_{\mathrm{f}}: 0.51$ in 2% ethyl acetate in hexane
IR ($v \mathrm{~cm}^{-1}$, in KBr): 3064, 2372, 1611, 1523, 1509, 1484, 1458, 1410, $1364,1325,1168,1159,1125,1108,1075,1057,1016,969,851,766$, 697, 613.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.98-7.86(\mathrm{~m}, 2 \mathrm{H}), 7.60(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 2 \mathrm{H}), 7.51(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.43-7.34$ (m, 4H), 7.31 (dt, $J=7.6,3.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=152.81,144.74,142.94,132.76,130.38,129.05(\mathrm{q}, J=33 \mathrm{~Hz}$), $128.92,128.87$ (2C), 128.84, 128.44, $126.14(\mathrm{q}, J=4 \mathrm{~Hz}), 125.97$, 124.91, $124.00(\mathrm{q}, J=271$ Hz), 106.39.

HR-MS (ESI): Calcd. for $\mathrm{C}_{22} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{~F}_{3}(\mathrm{M}+\mathrm{H}): 365.1260$, found: 365.1245 .

1-(2-Pyridyl)-3,5-diphenyl-1H-pyrazole (4d) ${ }^{4}$

Yield: 1.80 g (55\%) as a colourless solid.
Melting point: $104-106{ }^{\circ} \mathrm{C}$
$\mathrm{R}_{\mathrm{f}}: 0.26$ in 20% ethyl acetate in hexane
IR ($\mathrm{v} \mathrm{cm}^{-1}$, in KBr): 2373, 2345, 1580, 1469, 1362, 1329, 1074, 791, 765, 742, 699, 670, 460.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.38(\mathrm{ddd}, J=4.9,2.0,0.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.96-7.93$ (m, 2H), 7.77 (ddd, $J=8.0,7.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}$), $7.60-7.56$
$(\mathrm{m}, 1 \mathrm{H}), 7.47-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.28(\mathrm{~m}, 6 \mathrm{H}), 7.22(\mathrm{ddd}, J=7.4,4.9,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~s}$, 1H).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=152.79,152.71,148.61,145.23,138.34,132.95,131.20$, $128.85,128.77,128.40,128.37$ (2C), 126.15, 122.55, 119.09, 106.57.

HR-MS (ESI): Calcd. for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{~N}_{3}(\mathrm{M}+\mathrm{H}):$ 298.1339, found: 298.1372.

Scheme 2: General Procedure for Synthesis of 4-Bromo-1,3,5-triaryl-1H-pyrazoles

To a solution of 1,3,5-triarylpyrazole (8 mmol) in $\mathrm{CCl}_{4}(50 \mathrm{~mL})$ was added N -bromosuccinimide $(1.71 \mathrm{~g}, 9.6 \mathrm{mmol})$ at room temperature. The reaction mixture was stirred at the same temperature until the pyrazole was consumed. The reaction mixture was poured into $\mathrm{H}_{2} \mathrm{O}$ and was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Purification of the crude product by flash chromatography afforded the corresponding pyrazole as a colourless solid.

4-Bromo-1,3,5-triphenyl-1H-pyrazole (3a) ${ }^{2}$

Yield: $2.43 \mathrm{~g}(81 \%)$ as a colourless solid.
Melting point: $224-226^{\circ} \mathrm{C}$
$\mathrm{R}_{\mathrm{f}}: 0.35$ in 5% ethyl acetate in hexane
IR ($v \mathrm{~cm}^{-1}$, in KBr): 3047, 1482, 1492, 1453, 1358, 1157, 1091, 1072,
1029, 963, 769, 760, 693, 674.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.02-7.99(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.46(\mathrm{~m}$, 2H), $7.43-7.38$ (m, 4H), $7.36-7.27(\mathrm{~m}, 7 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=149.87,142.15,139.91,132.08,130.34,129.16,129.12$, 129.03, 128.65, 128.58, 128.50, 128.21, 127.73, 124.94, 95.04.

HR-MS (ESI): Calcd. for $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{Br}(\mathrm{M}+\mathrm{H})$: 375.0491, found: 375.0497.
377.0471, found: 377.0479 .

4-Bromo-1-(4-methoxyphenyl)-3,5-diphenyl-1H-pyrazole (3b)

Yield: 3.14 g (97%) as a colourless solid.

Melting point: $109-110{ }^{\circ} \mathrm{C}$
$\mathrm{R}_{\mathrm{f}}: 0.36$ in 20% ethyl acetate in hexane
IR ($v_{\mathrm{cm}^{-1}}$, in KBr): 2933, 2835, 2345, 1542, 1509, 1479, 1458, 1357, $1301,1243,1169,1108,1026,968,837,806,768,730,699,615,531$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.01-7.98(\mathrm{~m}, 2 \mathrm{H}), 7.49-7.44(\mathrm{~m}$, $2 \mathrm{H}), 7.42-7.32(\mathrm{~m}, 6 \mathrm{H}), 7.20(\mathrm{dd}, J=6.8,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.81(\mathrm{dd}, J=$ $6.8,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.78$ (s, 3H).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=159.02,149.50,142.15,133.22$,
132.21, 130.36, 129.19, 129.03, 128.59, 128.47 (2C), 128.19, 126.41, 114.16, 94.42, 55.60.

HR-MS (ESI): Calcd. for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{OBr}(\mathrm{M}+\mathrm{H}): 405.0471$, found: 405.0552. 407.0451, found: 407.0533.

4-Bromo-1-(4-trifluoromethylphenyl)-3,5-diphenyl-1H-pyrazole (3c)

Yield: $3.44 \mathrm{~g}(97 \%)$ as a colourless solid.
Melting point: $104-106{ }^{\circ} \mathrm{C}$
$\mathrm{R}_{\mathrm{f}}: 0.51$ in 20% ethyl acetate in hexane
IR ($v \mathrm{~cm}^{-1}$, in KBr): 3448, 2372, 2345, 1701, 1324, 1167, 1121, 1065, 842, 765, 695, 460.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.03-8.00(\mathrm{~m}, 2 \mathrm{H}), 7.57(\mathrm{~d}, J=8.8$
$\mathrm{Hz}, 2 \mathrm{H}$), $7.52-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.42(\mathrm{~m}, 6 \mathrm{H}), 7.38-7.34(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=150.66,142.57,142.40,131.74$,
$130.29,129.61,129.36(\mathrm{q}, ~ J=33 \mathrm{~Hz}), 128.99,128.88,128.86,128.59,128.21,126.22(\mathrm{q}, J=4$ $\mathrm{Hz}), 123.88(\mathrm{q}, J=270 \mathrm{~Hz}), 124.48$, 96.29.

HR-MS (ESI): Calcd. for $\mathrm{C}_{22} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{~F}_{3} \mathrm{Br}(\mathrm{M}+\mathrm{H}): 443.0365$, found: 443.0377. 445.0346, found: 445.0364.

4-Bromo-1-(2-pyridyl)-3,5-diphenyl-1H-pyrazole (3d) ${ }^{4}$

Yield: $2.86 \mathrm{~g}(95 \%)$ as a colourless solid.
Melting point: $121{ }^{\circ} \mathrm{C}$
$\mathrm{R}_{\mathrm{f}}: 0.28$ in 20% ethyl acetate in hexane
IR ($v_{\mathrm{cm}^{-1}}$, in KBr): 3056, 1590, 1483, 1471, 1360, 1313, 1161, 1143 , 1087, 1074, 1030, 995, 980, 967, 925, 771, 706, 697, 617, 512, 463.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.32(\mathrm{ddd}, J=4.8,2.0,0.8 \mathrm{~Hz}, 1 \mathrm{H})$, $8.04-8.01(\mathrm{~m}, 2 \mathrm{H}), 7.74$ (ddd, $J=8.1,7.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.53$ (dt, $J=$ $8.0,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.34(\mathrm{~m}, 6 \mathrm{H}), 7.20(\mathrm{ddd}, J=7.4,4.8,0.8 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=152.27,150.60,148.57,142.70,138.37,131.92,130.17$,
129.74, 128.94, 128.77, 128.47, 128.39 (2C), 122.76, 118.58, 96.45.

HR-MS (ESI): Calcd. for $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{Br}(\mathrm{M}+\mathrm{H}): 376.0443$, found: 376.0100.
378.0424, found: 378.0079 .

Scheme 3: Optimization of Cross-coupling of 4-Bromo-1,3,5-triphenyl-1H-pyrazole with Phenyl boronic Acid

Table 1: Standardization of Cross-coupling Reaction ${ }^{\text {a }}$

S. No	Base	Solvent	Catalyst	Product		
				2a		5
1	$\mathrm{Na}_{2} \mathrm{CO}_{3}(2 \mathrm{M})$	${ }^{\text {i }} \mathrm{PrOH}$	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	11\%	36\%	20\%
2	$\mathrm{Na}_{2} \mathrm{CO}_{3}(2 \mathrm{M})$	${ }^{\text {i }} \mathrm{PrOH}$	$\mathrm{Pd}(\mathrm{dba})_{2}$	-	70\%	15 \%
3	$\mathrm{Ba}(\mathrm{OH})_{2}(2 \mathrm{M})$	Toluene	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	38\%	17\%	5%
4	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	Toluene	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	38\%	17	-
5	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	THF	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	38\%	17	-
6	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	Toluene	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	16\%	-	-
$7{ }^{\text {b }}$	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	THF	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	64\%	-	-
7 ${ }^{\text {b,c }}$	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	THF	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	75\%	-	-

${ }^{\text {a Reaction }}$ Conditions: 4-Bromopyrazole (0.5 mmol), Phenyl Boronic Acid (0.6 $\mathrm{mmol})$, Catalyst ($5 \mathrm{~mol}-\%$), Base (1.5 mmol), Solvent (2 mL), $80^{\circ} \mathrm{C}, 12 \mathrm{~h}$; ${ }^{\mathrm{b}}$ Reaction was performed in Sealed tube; ${ }^{\mathrm{c}}$ Reaction time was 16 h .

Scheme 4: General Procedure for Synthesis of 1,3,4,5-Tetraaryl-1H-pyrazoles by Suzuki Reaction

An oven-dried sealed tube was charged with $\mathrm{Pd}_{(}\left(\mathrm{PPh}_{3}\right)_{4}$ (5-15 mol\%), 4-bromo-1,3,5triarylpyrazole (0.45 mmol), arylboronic acid $(0.54 \mathrm{mmol})$ and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(0.67 \mathrm{mmol})$ in THF (5 mL) and was stirred at $80^{\circ} \mathrm{C}$. The reaction was monitored by TLC or GC/MS analysis. After the
starting material was completely consumed, the reaction mixture was then cooled to room temperature and was purified by flash chromatography.

1,3,4,5-Tetraphenyl-1H-pyrazole (2a) ${ }^{5}$

Yield: $0.126 \mathrm{~g}(75 \%)$ as a colourless solid.
Melting point: $202{ }^{\circ} \mathrm{C}$
$\mathrm{R}_{\mathrm{f}}: 0.47$ in 20 \% ethyl acetate in hexane
UV ($\lambda_{\max }$): $240 \mathrm{~nm}\left(15 \mu \mathrm{M}\right.$ solution in $\left.\mathrm{CH}_{3} \mathrm{CN}\right)$
IR ($v_{\mathrm{cm}}{ }^{-1}$, in KBr): 2925, 2854, 2372, 2345, 1594, 1496, 1458, 1362, 1074, 964, 921, 793, 746, 768, 700, 650.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.54-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.28(\mathrm{~m}$, $8 \mathrm{H}), 7.24-7.18(\mathrm{~m}, 6 \mathrm{H}), 7.13-7.10(\mathrm{~m}, 2 \mathrm{H}), 7.08-7.05(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=150.30,141.54,140.0,133.21,133.19,133.16,130.84$, 130.56, 130.17, 128.89, 128.54, 128.39, 128.32, 128.29, 127.78, 127.37, 126.80, 125.47, 120.85. HR-MS (ESI): Calcd. for $\mathrm{C}_{27} \mathrm{H}_{20} \mathrm{~N}_{2}(\mathrm{M}+\mathrm{H})$: 373.1699, Found: 373.1728.

4-(4-Methoxyphenyl)-1,3,5-triphenyl-1H-pyrazole (2b)

Yield: $0.116 \mathrm{~g}(64 \%)$ as a colourless solid.
Melting point: $138^{\circ} \mathrm{C}$
$\mathrm{R}_{\mathrm{f}}: 0.26$ in 5% ethyl acetate in hexane
IR ($v \mathrm{~cm}^{-1}$, in KBr): 3050, 3003, 2926, 1595, 1553, 1508, 1496, 1361, 1246, 1174, 1028, 969, 837, 770, 760, 700.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $7.76-7.54$ (m, 2H), $7.32-7.20$ (m, $11 \mathrm{H}), 7.08-7.05(\mathrm{~m}, 2 \mathrm{H}), 7.03-7.01(\mathrm{~m}, 2 \mathrm{H}), 6.76(\mathrm{~d}, J=8.4 \mathrm{~Hz}$,

2H), 3.78 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=158.50,150.29,141.41,140.09,133.31,131.88,130.57$, $130.30,128.88,128.50,128.39,128.32,128.21,127.72,127.32,125.45,125.40,120.47,113.83$, 55.23.

HR-MS (ESI): Calcd. for $\mathrm{C}_{28} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}(\mathrm{M}+\mathrm{H}): 403.1805$, found: 403.1853 .

4-(2-Methoxyphenyl)-1,3,5-triphenyl-1H-pyrazole (2c)

Yield: $0.132 \mathrm{~g}(73 \%)$ as a colourless solid.

Melting point: $116^{\circ} \mathrm{C}$
$\mathrm{R}_{\mathrm{f}}: 0.23$ in 20 \% ethyl acetate in hexane
IR ($v_{\mathrm{cm}}{ }^{-1}$, in KBr): 2373, 2345, 1593, 1495, 1364, 1273, 1249, 1179, $1113,1074,1024,970,791,763,733,699,670$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.54-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.34(\mathrm{~m}$, 2H), $7.30-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.22(\mathrm{~m}, 5 \mathrm{H}), 7.20-7.14(\mathrm{~m}, 3 \mathrm{H})$, $7.06-7.01(\mathrm{~m}, 3 \mathrm{H}), 6.84-6.81(\mathrm{~m}, 2 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=157.65,150.76,141.98,140.18,133.91,132.79,130.78$, 129.95 , 128.83(2C), 128.18, 128.17, 127.99, 127.66, 127.54, 127.17, 125.41, 122.47, 120.69, 117.10, 111.33, 55.11.

HR-MS (ESI): Calcd. for $\mathrm{C}_{28} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}(\mathrm{M}+\mathrm{H}): 403.1805$, found: 403.1777.

4-(4-Formylphenyl)-1,3,5-triphenyl-1H-pyrazole (2d)

Yield: $0.067 \mathrm{~g}(37 \%)$ as a colourless solid.
Melting point: $147-148{ }^{\circ} \mathrm{C}$
$\mathrm{R}_{\mathrm{f}}: 0.44$ in 25 \% ethyl acetate in hexane
IR ($v_{\mathrm{cm}}{ }^{-1}$, in KBr): 2925, 2373, 2345, 1718, 1700, 1604, 1496, 1363, 1212, 1172, 1062, 970, 835, 769, 697.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=9.96(\mathrm{~s}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, 2H), $7.49-7.47$ (m, 2H), $7.31-7.29$ (m, 9H), $7.25-7.21$ (m, 4H), 7.06-7.05 (m, 2H).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=192.10,150.54,141.96,140.05,139.73,134.71,132.73$, $131.25,130.52,129.76,129.69,128.99,128.76,128.73,128.70,128.55,128.18,127.68,125.51$, 119.59.

HR-MS (ESI): Calcd. for $\mathrm{C}_{28} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}(\mathrm{M}+\mathrm{H}): 401.1648$, found: 401.1594.

1-(4-Methoxyphenyl)-3,4,5-triphenyl-1H-pyrazole (2e)

Yield: $0.127 \mathrm{mg}(70 \%)$ as a colourless solid.
Melting point: $186^{\circ} \mathrm{C}$
$\mathrm{R}_{\mathrm{f}}: 0.32$ in 20% ethyl acetate in hexane
IR ($v \mathrm{~cm}^{-1}$, in KBr): 3807, 2931, 2372, 2345, 1542, 1512, 1298, 1253, 1167, 1066, 1032, 969, 834, 771, 724, 699, 614, 540, 463.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.53-751(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.18(\mathrm{~m}$, 11H), 7.12-7.09 (m, 2H), 7.05 (dd, $J=8.2,1.6 \mathrm{~Hz}, 2 \mathrm{H}$), $6.85-6.81$ $(\mathrm{m}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=158.79,149.96,141.51,133.39,133.37$ (2C), 130.85, 130.59, $130.25,128.54,128.35$, 128.31 (2C), 128.16, 127.67, 126.86, 126.71, 120.39, 114.08, 55.60.

HR-MS (ESI): Calcd. for $\mathrm{C}_{28} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}(\mathrm{M}+\mathrm{H}): 403.1805$, found: 403.1803.

1,4-Di(4-methoxyphenyl)-3,5-diphenyl-1H-pyrazole (2f)

Yield: 0.136 mg (70%) as a colourless solid.
Melting point: $187-188^{\circ} \mathrm{C}$
$\mathrm{R}_{\mathrm{f}}: 0.26$ in 20% ethyl acetate in hexane
IR ($v \mathrm{~cm}^{-1}$, in KBr): 3456, 2932, 1546, 1515, 1458, 1370, 1291, 1250, 1171, 1035, 971, 838, 771, 702, 680.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.55-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.24$ (m, 4H), 7.22-7.17 (m, 4H), 7.05 (dd, $J=8.0,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.03-$ 6.99 (m, 2H), $6.85-6.79$ (m, 2H), $6.77-6.73$ (m, 2H), 3.79 (s, 3H), 3.77 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=158.8,158.47,149.82,141.46,133.28,133.25,131.87$, $130.58,130.26,128.51,128.35,128.31,128.12,127.68,126.88,125.47,120.00,114.08,113.83$, 55.59, 55.23.

HR-MS (ESI): Calcd. for $\mathrm{C}_{29} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H})$: 433.1911, found: 433.1856.

1-(4-Trifluoromethylphenyl)-3,4,5-triphenyl-1H-pyrazole (2g)

Yield: 0.135 mg (68%) as a colourless solid.
Melting point: $175{ }^{\circ} \mathrm{C}$
$\mathrm{R}_{\mathrm{f}}: 0.34$ in 4% ether in hexane
IR ($v \mathrm{~cm}^{-1}$, in KBr): 3057, 2372, 2345, 1609, 1522, 1437, 1366, 1327, $1162,1123,1106,1073,1058,1018,967,846,776,797,766,735,726$, 697, 684, 662, 593.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.57(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.56-7.48$ (m, 2H), $7.46(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.33-7.28(\mathrm{~m}, 5 \mathrm{H}), 7.24-7.20(\mathrm{~m}$,

4H), 7.11-7.08 (m, 4H).
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=151.15,142.80,141.66,132.84,132.74,130.76,130.49$, 129.86, 128.93 (q, $J=33 \mathrm{~Hz}$), 128.73 (2C), 128.48, 128.41, 128.38, 128.07, 127.04, 126.07 (q, J $=4 \mathrm{~Hz}), 124.93,124.01(\mathrm{q}, J=270 \mathrm{~Hz}), 121.83$.

HR-MS (ESI): Calcd. for $\mathrm{C}_{28} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{~N}_{2}(\mathrm{M}+\mathrm{H}): 441.1573$, found: 441.1513.

1-(2-Pyridyl)-3,4,5-triphenyl-1H-pyrazole (2i)

Yield: 0.114 mg (68%) as a colourless solid ($15 \mathrm{~mol} \%$ of catalyst).
Melting point: $174{ }^{\circ} \mathrm{C}$
$\mathrm{R}_{\mathrm{f}}: 0.34$ in 50% ether in hexane
IR ($v \mathrm{~cm}^{-1}$, in KBr): 2372, 2345, 1586, 1458, 1470, 1449, 1361, 1179, 1146, 1074, 991, 971, 800, 787, 770, 742, 701, 651.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.35$ (ddd, $J=5.0,1.6,0.8 \mathrm{~Hz}, 1 \mathrm{H}$), $7.75-7.71(\mathrm{~m}, 1 \mathrm{H}), 7.54-7.51(\mathrm{~m}, 3 \mathrm{H}), 7.29-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.23-$
7.18 (m, 7H), $7.14-7.07$ (m, 4H).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=152.58,151.19,148.63,141.92,138.19,133.07,133.01$, $130.89,130.59,130.39,128.62,128.31,128.27,128.15,128.11,127.92,126.92,122.46,121.81$, 119.28.

HR-MS (ESI): Calcd. for $\mathrm{C}_{26} \mathrm{H}_{19} \mathrm{~N}_{3}(\mathrm{M}+\mathrm{H}): 374.1651$, found: 374.1674.

4-(2-Fluoro-3-pyridyl)-1,3,5-triphenyl-1H-pyrazole (2h)

Yield: $0.132 \mathrm{~g}(75 \%)$ as a colourless solid ($15 \mathrm{~mol} \%$ of catalyst).
Melting point: $225^{\circ} \mathrm{C}$
$\mathrm{R}_{\mathrm{f}}: 0.25$ in 20% ethyl acetate in hexane
IR ($v_{\mathrm{cm}}{ }^{-1}$, in KBr): 3448, 2925, 2372, 2345, 1498, 1426, 1365, 1246,
$1211,1111,1073,102,971,844,809,790,767,738,700,670$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.14(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.48$ $(\mathrm{m}, 3 \mathrm{H}), 7.36-7.27(\mathrm{~m}, 9 \mathrm{H}), 7.24-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.10-7.06(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=161.43(\mathrm{~d}, J=239.0 \mathrm{~Hz}), 150.84,146.89(\mathrm{~d}, J=14 \mathrm{~Hz})$, 143.57 (d, $J=5.0 \mathrm{~Hz}$), 142.86, 139.75, 132.77, 129.93, 129.57, 128.98, 128.77, 128.66, 128.61, $128.18,127.86,127.66,125.36,121.38(\mathrm{~d}, J=5.0 \mathrm{~Hz}), 116.51(\mathrm{~d}, J=31 . \mathrm{Hz}), 112.73(\mathrm{~d}, J=4.0$ Hz).

HR-MS (ESI): Calcd. for $\mathrm{C}_{26} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{~F}(\mathrm{M}+\mathrm{H}): 392.1558$, found: 392.1633.

References:

1. S. Peruncheralathan, T. A. Khan, H. Ila, H. Junjappa J. Org. Chem. 2005, 70, 10030.
2. X. Li, L. He, H. Chen, W. Wu, H. Jiang, J. Org. Chem., 2013, 78, 3636.
3. R. N. Butler, J. M. Hanniffy, J. C. Stephens, L. A. Burke, J. Org. Chem., 2008, 73, 1354.
4. M. A. Khan, A. Augusto, A. Pinto, J. Heterocyclic Chem., 1981, 18, 9.
5. M. Komatsu, Y. Yoshida, M. Uesaka, Y. Ohshiro, T. Agawa, J. Org. Chem., 1984, 49,1300.

Figure S1: Absorption (a) and emission (b) spectrum of 2a in acetonitrile

Figure S2: (a) Emission spectra of 2a in acetonitrile/water mixtures with increasing addition of water $\left(f_{w}=0-90 \mathrm{vol} \%\right)$. (b) The changes in the emission intensity of 2a with the water contents in the acetonitrile/water mixture.

Figure S3: Absorption spectra of 2a in acetonitrile ($f_{w}=0 \mathrm{vol} \%$) and acetonitrile/water mixture ($f_{w}=90 \mathrm{vol} \%$)

Figure S4: Temperature effect on the emission intensity of $\mathbf{2 a}$ in acetonitrile/water ($1: 9 \mathrm{v} / \mathrm{v}$), $\left(\lambda_{\mathrm{ex}}\right.$ $=280 \mathrm{~nm}$)

Figure S5: Absorption (a) and emission (b) spectrum of $\mathbf{2 e}$ in acetonitrile

Figure S6: (a) Emission spectra of $\mathbf{2 e}$ in acetonitrile/water mixtures with increasing addition of water $\left(f_{w}=0-90 \mathrm{vol} \%\right)$. (b) The changes in the emission intensity of $\mathbf{2 e}$ with the water contents in the acetonitrile/water mixture.

Figure S7: Absorption spectra of $\mathbf{2 e}$ in acetonitrile ($f_{w}=0 \mathrm{vol} \%$) and acetonitrile/water mixture ($f_{w}=90 \mathrm{vol} \%$)

Figure S8: Temperature effect on the emission intensity of $\mathbf{2 e}$ in acetonitrile/water ($1: 9 \mathrm{v} / \mathrm{v}$), ($\lambda_{\mathrm{ex}}=280 \mathrm{~nm}$)

Figure S9: Absorption (a) and emission (b) spectrum of $\mathbf{2 i}$ in acetonitrile

Figure S10: (a) Emission spectra of $\mathbf{2 i}$ in acetonitrile/water mixtures with increasing addition of water ($f_{w}=0-95 \mathrm{vol} \%$). (b) The changes in the emission intensity of $\mathbf{2 i}$ with the water contents in the acetonitrile/water mixture.

Figure S11: Absorption spectra of $\mathbf{2 i}$ in acetonitrile ($f_{w}=0 \mathrm{vol} \%$) and acetonitrile/water mixture ($f_{w}=90 \mathrm{vol} \%$)

Figure S12: Temperature effect on the emission intensity of $\mathbf{2 i}$ in acetonitrile/water ($1: 9 \mathrm{v} / \mathrm{v}$), ($\lambda_{\mathrm{ex}}=280 \mathrm{~nm}$)

Figure S13: Single crystal X-ray structure of 2a with the dihedral angle between the planes.

Figure S14: 1-D array in 2a. The array is formed between one of the phenyl-CHs (C7-H7; C25H 25) with two different units of pyrazole nitrogens (N2) with the bond distances and angles of $\mathrm{C} 7-\mathrm{H} 7 \ldots \mathrm{~N} 2$ and $\mathrm{C} 25-\mathrm{H} 25 \ldots \mathrm{~N} 2$ are $2.78 \AA ; 141^{\circ}$ and $2.80 \AA ; 140^{\circ}$.

Figure S15: 1-D array in 2a. The array is formed between one of the phenyl-CHs (C6-H6) and N-phenyl-CH (C26-H26) unit with two different phenyl π-clouds with the bond distances and angles of $\mathrm{C} 6-\mathrm{H} 6 \ldots \mathrm{Ph}(\pi)$ and $\mathrm{C} 26-\mathrm{H} 26 \ldots \mathrm{Ph}(\pi)$ are: $3.00 \AA$ and 144°.

Figure S16: 2-D array in 2a. The $\pi-\pi$ distance between two closely packed molecules is $10.60 \AA$. The bond distance and angles of $\mathrm{C} 7-\mathrm{H} 7 \ldots \mathrm{~N} 2 ; \mathrm{C} 25-\mathrm{H} 25 \ldots \mathrm{~N} 2 ; \mathrm{C} 6-\mathrm{H} 6 \ldots \mathrm{Ph}(\pi)$ and $\mathrm{C} 26-$ $\mathrm{H} 26 \ldots \mathrm{Ph}(\pi)$ are $2.78 \AA \& 141^{\circ} ; 2.80 \AA \& 140^{\circ}$ and $3.00 \AA \& 144^{\circ}$.

Figure S17: Crystal packing in 2a.

Figure S18: The $\pi-\pi$ distance between two closely packed molecules in 2a is $10.60 \AA$.

A and $B: 50.8^{\circ}$
A and $C: 53.0^{\circ}$
A and $\mathrm{D}: 53.1^{\circ}$
A and $E: 50.8^{\circ}$

Figure S19: Single crystal X-ray structure of $\mathbf{2 i}$ with the dihedral angle between the planes.

Figure S20: 1-D array in 2i. The array is formed between one of the phenyl-CHs (C7-H7; C25H 25) with two different units of pyrazole nitrogens (N2) with the bond distances and angles of $\mathrm{C} 7-\mathrm{H} 7 \ldots \mathrm{~N} 2$ and $\mathrm{C} 25-\mathrm{H} 25 \ldots \mathrm{~N} 2$ are $2.66 \AA ; 133^{\circ}$ and $2.70 \AA ; 145^{\circ}$.

Figure S21: 1-D array in 2i. The array is formed between one of the phenyl-CHs (C6-H6) and N-phenyl-CH (C26-H26) unit with two different phenyl π-clouds with the bond distances and angles of $\mathrm{C} 6-\mathrm{H} 6 \ldots \mathrm{Ph}(\pi)$ and $\mathrm{C} 26-\mathrm{H} 26 \ldots \mathrm{Ph}(\pi)$ are $3.05 \AA ; 144^{\circ}$ and $2.92 \AA ; 145^{\circ}$.

Figure S22: 2-D array in $\mathbf{2 i}$. The $\pi-\pi$ distance between two closely packed molecules is $10.54 \AA$. The bond distances and angles of $\mathrm{C} 7-\mathrm{H} 7 \ldots \mathrm{~N} 2 ; \mathrm{C} 25-\mathrm{H} 25 \ldots \mathrm{~N} 2 ; \mathrm{C} 6-\mathrm{H} 6 \ldots \mathrm{Ph}(\pi)$ and $\mathrm{C} 26-$ $\mathrm{H} 26 \ldots \mathrm{Ph}(\pi)$ are $2.66 \AA \& 133^{\circ} ; 2.70 \AA \& 145^{\circ} ; 3.05 \AA \& 144^{\circ}$ and $2.92 \AA \& 145^{\circ}$.

Figure S23: Crystal packing in 2a.

Figure S24: The $\pi-\pi$ distance between two closely packed molecules in $\mathbf{2 i}$ is $10.54 \AA$.

Figure S25: a) Emission spectra of $\mathbf{4 a}$ in acetonitrile, b) Emission spectra of $\mathbf{4 a}$ in acetonitrile /water mixtures with increasing addition of water ($f_{w}=0-90 \mathrm{vol} \%$).

Dihedral Angle (${ }^{\circ}$) between Planes
A and $B: 33.6^{\circ}$
A and C: $29 . \mathbf{5}^{\circ}$
A and D: 64.1°
Figure S26: Single crystal X-ray structure of $\mathbf{4 a}$ with the dihedral angle between the planes.

Figure S27 1-D array in 4a. The array is formed between one of the phenyl-CHs (C4-H4) and second pyrazole unit phenyl π-cloud with the bond distance and angle of $\mathrm{C} 4-\mathrm{H} 4 \ldots \mathrm{Ph}(\pi)$ is: 2.88 \AA and 147°.

Figure S28: 1-D array in 4a. The array is formed between one of the pyrazole N-phenyl-CHs (C10-H10) and second pyrazole unit phenyl π-cloud with the bond distance and angle of C10$\mathrm{H} 10 \ldots \mathrm{Ph}(\pi)$ is: $2.88 \AA$ and 156°. The $\pi-\pi$ distance between two closely packed molecules is 5.87 Å.

Figure S29: Crystal packing in 4a.

Figure S30: The $\pi-\pi$ distance between two closely packed molecules in $\mathbf{4 a}$ is $5.87 \AA$.

Crystallographic data of $\mathbf{2 a}, \mathbf{2 i}$ and 4a:

Crystallographic data of 2a in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / n$-hexane: $\mathrm{C}_{27} \mathrm{H}_{20} \mathrm{~N}_{2}, \mathrm{Mw}=372.45$, monoclinic, space group $\mathrm{P} 2_{1}, \mathrm{a}=9.9297(3) \AA, \mathrm{b}=9.6354(3) \AA, \mathrm{c}=10.6037(3) \AA, \alpha=90.00^{\circ}, \beta=90.080(2)^{\circ}, \gamma=$ $90.00^{\circ}, V=1014.53(5) \AA^{3}, Z=2, D$ calc $=1.219 \mathrm{mg} / \mathrm{m} 3, T=296(2) \mathrm{K}, \mathrm{R} 1=0.0443\{\mathrm{I}>2 \sigma(\mathrm{I})\}$, $\mathrm{R} 2 \mathrm{w}=0.1085, \mathrm{GOF}=1.038$.

Crystallographic data of 2 i in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / n$-hexane: $\mathrm{C}_{26} \mathrm{H}_{19} \mathrm{~N}_{3}, \mathrm{Mw}=373.44$, monoclinic, space group $\mathrm{P} 2{ }_{1}, \mathrm{a}=9.7331(3) \AA, \mathrm{b}=9.7771(3) \AA, \mathrm{c}=10.5392(3) \AA, \alpha=90.00^{\circ}, \beta=90.204(2)^{\circ}, \gamma=$ $90.00^{\circ}, V=1002.92(5) \AA^{3}, Z=2, D$ calc $=1.237 \mathrm{mg} / \mathrm{m} 3, T=296(2) \mathrm{K}, \mathrm{R} 1=0.0431\{\mathrm{I}>2 \sigma(\mathrm{I})\}$, $\mathrm{R} 2 \mathrm{w}=0.1021, \mathrm{GOF}=1.002$.

Crystallographic data of $\mathbf{4 a}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / n$-hexane: $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{~N}, \mathrm{Mw}=296.36$, orthorhombic, space group Fdd2, $a=29.627(10) \AA, b=36.790(12) \AA, c=5.865(2) \AA, \alpha=90.00^{\circ}, \beta=90.00^{\circ}, \gamma=$ $90.00^{\circ}, V=6393(6) \AA^{3}, Z=16, D$ calc $=1.232 \mathrm{mg} / \mathrm{m} 3, T=296(2) \mathrm{K}, \mathrm{R} 1=0.0401\{\mathrm{I}>2 \sigma(\mathrm{I})\}$, $\mathrm{R} 2 \mathrm{w}=0.0992, \mathrm{GOF}=0.978$.

CCDC-1032189, $1032190 \& 1032191$ contain the supplementary crystallographic data for $\mathbf{2 a}, \mathbf{2 i}$ and $\mathbf{4 a}$. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Figure S31: (a) Emission spectra of 1,3,4-triphenyl-1H-pyrazole (5a) in acetonitrile/water mixtures with increasing addition of water $\left(f_{w}=0-90 \mathrm{vol} \%\right)$.

${ }^{1}$ H NMR Spectra of $\mathbf{4 a}$

${ }^{13} \mathrm{C}$ NMR Spectra of $\mathbf{4 a}$

${ }^{1}$ H NMR Spectra of $\mathbf{4 b}$

${ }^{13}$ C NMR Spectra of $\mathbf{4 b}$

${ }^{1}$ H NMR Spectra of $\mathbf{4 c}$

${ }^{13} \mathrm{C}$ NMR Spectra of $\mathbf{4 c}$

ESI-33

${ }^{1}$ H NMR Spectra of $\mathbf{4 d}$

${ }^{13}$ C NMR Spectra of $\mathbf{4 d}$

${ }^{1} \mathrm{H}$ NMR Spectra of $\mathbf{3 a}$

${ }^{13} \mathrm{C}$ NMR Spectra of $\mathbf{3 a}$

${ }^{1} \mathrm{H}$ NMR Spectra of $\mathbf{3 b}$

${ }^{13}$ C NMR Spectra of $\mathbf{3 b}$

${ }^{1} \mathrm{H}$ NMR Spectra of $\mathbf{3 c}$

[^0]

${ }^{1}$ H NMR Spectra of 2a

${ }^{13}$ C NMR Spectra of 2a

${ }^{1}$ H NMR Spectra of $\mathbf{2 b}$

${ }^{13}$ C NMR Spectra of $\mathbf{2 b}$

${ }^{1}$ H NMR Spectra of $\mathbf{2 c}$

${ }^{13}$ C NMR Spectra of $\mathbf{2 c}$

${ }^{1}$ H NMR Spectra of 2d

${ }^{13}$ C NMR Spectra of $\mathbf{2 d}$

${ }^{13} \mathrm{C}$ NMR Spectra of 2 e

${ }^{1} \mathrm{H}$ NMR Spectra of $\mathbf{2 g}$

${ }^{13}$ C NMR Spectra of $\mathbf{2 g}$

${ }^{1}$ H NMR Spectra of $\mathbf{2 i}$

[^1]
${ }^{1}$ H NMR Spectra of $\mathbf{2 h}$

[^0]: ${ }^{13} \mathrm{C}$ NMR Spectra of 3d

[^1]: ${ }^{13} \mathrm{C}$ NMR Spectra of $\mathbf{2 i}$

