TfOH-catalyzed domino cycloisomerization/hydrolytic defluorination of 2,3-allenyl perfluoroalkyl ketones

Can Xue, Xin Huang, Shangze Wu, Jing Zhou, Jianxin Dai, Chunling Fu and

Shengming Ma*

Laboratory of Molecular Recognition and Synthesis, Department of Chemistry,

Zhejiang University, Hangzhou 310027, Zhejiang, People's Republic of China

* Corresponding author. Tel.: 86-21-622-37360; Fax: 86-21-626-09305.

masm@sioc.ac.cn

Supporting Information

Index

1.	General	S2
2.	Table S1 and Fig. S1	S3
3.	Data of 3a-3l , 3j - ¹⁸ O, 4a and 5a	S4
4.	Reference	S22
5.	¹ H NMR, ¹³ C NMR, ¹⁹ F NMR and NOE spectra of these compounds	S23

General : Perfluoroalkyl allenones were prepared according to the literature procedure.^[1] Toluene was distilled from sodium wire/benzophenone. TfOH (Alfa) was stored in a glove box, and transferred with a micro-syringe. Other commercially available chemicals were used without additional purification. The reactions were performed under an atmosphere of nitrogen using standard Schlenk tubes unless otherwise stated. Petroleum ether with a boiling point ranges from 30 to 60 °C was used. Flash-column chromatography was carried out on silica gel H (10–40 μ). ¹H NMR spectra (300 MHz) were recorded using TMS as an internal standard (δ 0 ppm). ¹³C NMR spectra (75 MHz) were recorded using CDCl₃ as an internal standard (δ 77.00 ppm). ¹⁹F NMR spectra (282 MHz) were recorded using CFCl₃ as an internal standard (δ 0 ppm). IR spectra were recorded with a Perkin-Elmer 983G instrument. Mass spectrometry was taken with an HP 5989A system. High-resolution mass spectrometry was determined with a Finnigan MAT 8430 or Bruker APEXIII instrument. The structure of **3d-3f, 3k** and **3m'** were established by the NOE study.

Table S1 O	ntimization of	the coloctive of	unthosis of fury	1 porfluoroprop	\mathbf{v} l kotono $3\mathbf{o}^{a}$
Table 51. U	pumization of	i the selective s	ynthesis of fury	т регниогоргор	yi ketone sa .

Ph Pr Ph J	h_{1}^{n} H ₂ O (e TFOH (10 $-C_{4}F_{5}n$ toluene, 10	equiv) Ph <u>) mol%)</u> 0 ℃, time _{Ph}	Pr-n 	Ph Pr-n C3F7-n 3a	
F (Time (h)	NMR Yield (%) ^b		
Entry	H_2O (equiv)		2a	3a	
1	0	19.5	11	73	
2	1.0	2.5	0	98	
3 ^c	1.0	17	88	12	
4	1.4	2.5	0	96	
5	1.8	2.5	0	99	
6	2.8	3	0	97	
7	5.6	3	0	94	
8	10	2.5	0	93	
\mathbf{Q}^d	100	19.5	10	0	

^{*a*} The reactions were conducted on 0.2 mmol scale in toluene (2.0 mL). ^{*b*} Determined by the ¹H NMR spectra analysis with CH₂Br₂ as the internal standard. ^{*c*} The reaction was conducted at 60 °C with 5 mol% of TfOH. ^{*d*} Recovery of **1a** was 90%.

Figure S1. ORTEP representation of 3a.

1. TfOH-catalyzed domino cycloisomerization/hydrolytic defluorination reaction

of allenyl perfluorobutyl ketones 1a-1l.

(1) Synthesis of (4,5-diphenyl-3-(n-propyl)furan-2-yl) n-perfluoropropyl ketone (3a)(xc-6-008)

Typical Procedure I: Schlenk То dried added tube а were 1,1-diphenylhexa-1,2-dien-3-yl perfluorobutyl ketone **1**a (0.0960 g, 0.20 mmol)/rinsed with toluene (2 mL), H_2O (6.7 μ L, d = 1.00 g/mL, 0.0067 g, 0.37 mmol), and TfOH (1.8 μ L, d = 1.695 g/mL, 0.0031 g, 0.02 mmol) at room temperature under a nitrogen atmosphere. The resulting reaction mixture was placed in a pre-heated oil bath of 100 °C and strirried for 2.5 h as monitored by TLC. After being cooled to the room temperature, the crude reaction mixture was transferred to a round bottom flask. After removing the solvent via rotary evaporation, column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 100/1) afforded **3a** (0.0882 g, 96%) as a solid: ¹H NMR (300 MHz, CDCl₃) δ 7.56-7.40 (m, 5 H, ArH), 7.36-7.22 (m, 5 H, ArH), 2.70 (t, J = 7.8 Hz, 2 H, CH₂), 1.60-1.39 (m, 2 H, CH₂), 0.86 (t, J = 7.4 Hz, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 170.5 (t, J = 25.8 Hz), 154.5, 146.0, 143.3, 131.4, 130.0, 129.7, 129.2, 128.9, 128.7, 128.5, 127.0, 126.8, 26.6, 22.6, 14.0; ¹⁹F NMR (282 MHz, CDCl₃) δ -80.5 (t, J = 8.7 Hz, 3 F), -117.4 (q, J = 9.4 Hz, 2 F), -125.7~-125.9 (m, 2 F).

The following compounds 3b-3e were prepared following Typical Procedure I.

(2) Synthesis of (4,5-diphenyl-3-(*n*-propyl)furan-2-yl) *n*-perfluoropentyl ketone (3b)(xc-6-125)

The reaction of 1,1-diphenylhexa-1,2-dien-3-yl perfluorohexyl ketone **1b** (0.2925 g, 0.50 mmol) with TfOH (99%, 4.5 µL, d = 1.695 g/mL, 0.0076 g, 0.05 mmol), and H₂O (20 µL, d = 1.0 g/mL, 0.0200 g, 1.1 mmol) in toluene (6 mL) at 100 °C for 4 h afforded **3b** (0.2604 g, 93%) (petroleum ether/ethyl acetate = 100/1) as an oil: ¹H NMR (300 MHz, CDCl₃) δ 7.54-7.22 (m, 10 H, ArH), 2.69 (t, J = 7.8 Hz, 2 H, CH₂), 1.56-1.41 (m, 2 H, CH₂), 0.86 (t, J = 7.4 Hz, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 170.5 (t, J = 25.8 Hz), 154.5, 146.0, 143.3, 131.4, 130.0, 129.7, 129.2, 128.9, 128.7, 128.5, 127.0, 126.8, 26.6, 22.6, 14.0; ¹⁹F NMR (282 MHz, CDCl₃) δ -81.2 (t, J = 9.9 Hz, 3 F), -117.0 (t, J = 13.8 Hz), -121.8~122.2 (m, 2 F), -122.6~123.1 (m, 2 F), -126.4~127.0 (m, 2 F); IR (neat) v (cm⁻¹) 3068, 3034, 2965, 2934, 2875, 1682, 1569, 1531, 1477, 1446, 1414, 1381, 1348, 1239, 1087, 1074, 1057, 1029; MS (70 ev, EI) m/z (%) 558 (M⁺, 14.93), 289 (100); HRMS calcd for C₂₅H₁₇F₁₁O₂ (M⁺): 558.1053, Found: 558.1060.

(3) Synthesis of (4,5-diphenyl-3-methylfuran-2-yl) *n*-perfluoropropyl ketone (3c)(xc-6-165)

The reaction of 2-ethyl-4,4-diphenylbuta-2,3-dien-2-yl perfluorobutyl ketone **1c** (0.2265 g, 0.50 mmol) with TfOH (99%, 4.5 μ L, d = 1.695 g/mL, 0.0076 g, 0.05 mmol), and H₂O (20 μ L, d = 1.0 g/mL, 0.0200 g, 1.1 mmol) in toluene (6 mL) at 100 ^oC for 6 h afforded **3c** (0.2017 g, 94%) (petroleum ether/ethyl acetate = 100/1) as a solid: m.p. 55.3-56.7 ^oC (*n*-hexane/ethyl acetate); ¹H NMR (300 MHz, CDCl₃) δ 7.59-7.38 (m, 5 H, ArH), 7.36-7.22 (m, 5 H, ArH), 2.33 (s, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 170.9 (t, J = 26.2 Hz), 154.5, 143.6, 141.1, 131.2, 129.9, 129.8, 129.2, 128.9, 128.7, 128.5, 127.2, 126.9, 10.9; ¹⁹F NMR (282 MHz, CDCl₃) δ -80.9 (t, J = 8.9 Hz, 3 F), -117.7~-118.2 (m, 2 F), -126.0~-126.3 (m, 2 F); IR (KBr) v (cm⁻¹) 3066, 3030, 1682, 1573, 1537, 1477, 1446, 1410, 1380, 1353, 1329, 1231, 1118, 1075; MS (70 ev, EI) m/z (%) 430 (M⁺, 35.31), 261 (100); Elemental analysis calcd for C₂₁H₁₃F₇O₂: C, 58.61; H, 3.05; Found: C, 58.26; H, 3.41.

(4) Synthesis of (3-ethyl-5-methyl-4-phenylfuran-2-yl) *n*-perfluoropropyl ketone (3d)(xc-8-089)

The reaction of 2-phenylhexa-2,3-dien-4-yl perfluorobutyl ketone **1d** (0.2018 g, 0.50 mmol) with TfOH (99%, 4.5 μ L, d = 1.695 g/mL, 0.0076 g, 0.050 mmol), and H₂O (17 μ L, d = 1.0 g/mL, 0.0170 g, 0.94 mmol) in toluene (5 mL) at 100 °C for 8 h afforded **3d** (0.1672 g, 88%) (petroleum ether/ethyl acetate = 300/1) as an oil: ¹H NMR (300 MHz, CDCl₃) δ 7.52-7.36 (m, 3 H, ArH), 7.30-7.19 (m, 2 H, ArH), 2.78 (q, J = 7.5 Hz, 2 H, CH₂), 2.37 (s, 3 H, CH₃), 1.10 (t, J = 7.4 Hz, 3 H, CH₃); ¹³C NMR

(75 MHz, CDCl₃) δ 170.1 (t, J = 26.1 Hz), 156.9, 146.3, 143.4, 130.8, 129.5, 128.8, 128.0, 127.1, 18.3, 13.5, 13.0; ¹⁹F NMR (282 MHz, CDCl₃) δ -81.0 (t, J = 8.9 Hz, 3 F), -117.9 (q, J = 9.1 Hz, 2 F), -126.2~-126.6 (m, 2 F); IR (neat) v (cm⁻¹) 3061, 2978, 2938, 2878, 1674, 1612, 1591, 1533, 1492, 1463, 1442, 1424, 1376, 1337, 1317, 1231, 1119, 1081, 1013; MS (70 ev, EI) m/z (%) 382 (M⁺, 33.00), 213 (100); HRMS calcd for C₁₇H₁₃F₇O₂ (M⁺): 382.0804, Found: 382.0803.

(5) Synthesis of (3-(n-butyl)-5-methyl-4-(i-propyl)furan-2-yl) n-perfluoropropyl ketone (3e) (xc-8-035)

The reaction of 2,3-dimethylnona-3,4-dien-5-yl perfluorobutyl ketone **1e** (0.1995 g, 0.50 mmol) with TfOH (99%, 4.5 µL, d = 1.695 g/mL, 0.0076 g, 0.050 mmol), and H₂O (16.7 µL, d = 1.0 g/mL, 0.0167 g, 0.93 mmol) in toluene (5 mL) at 100 °C for 5 h afforded **3e** (0.1263 g, 67%) (petroleum ether/ethyl acetate = 100/1) as a liquid: ¹H NMR (300 MHz, CDCl₃) δ 2.96-2.83 (m, 1 H, CH), 2.80 (t, J = 7.5 Hz, 2 H, CH₂), 2.41 (s, 3 H, CH₃), 1.57-1.34 (m, 4 H, 2 × CH₂), 1.27 (d, J = 7.2 Hz, 6 H, 2 × CH₃) 0.95 (t, J = 7.1 Hz, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 169.5 (t, J = 25.2 Hz), 156.0, 145.5, 143.0, 130.0, 31.8, 24.7, 23.7, 22.9, 22.0, 14.0, 13.7; ¹⁹F NMR (282 MHz, CDCl₃) δ -81.1 (t, J = 9.0 Hz, 3 F), -117.7 (q, J = 8.8 Hz, 2 F), -126.6~-126.2 (m, 2 F); IR (neat) v (cm⁻¹) 2965, 2934, 2876, 1673, 1590, 1523, 1456, 1377, 1342, 1313, 1230, 1119, 1084, 1033; MS (70 ev, EI) *m/z* (%) 376 (M⁺, 14.80), 137 (100);

HRMS calcd for $C_{16}H_{19}F_7O_2$ (M⁺): 376.1273, Found: 376.1271.

(6) Synthesis of (3-(*n*-butyl)-4,5-di(*i*-propyl)furan-2-yl) *n*-perfluoropropyl ketone (**3f**) (xc-10-142)

Typical Procedure II: То dried Schlenk added tube а were 2-methyl-3-(*i*-propyl)nona-3,4-dien-5-yl perfluorobutyl ketone 1f (0.2138 g, 0.50 mmol)/rinsed with toluene (5 mL), TfOH (99%, 4.5 μ L, d = 1.695 g/mL, 0.0076 g, 0.050 mmol), and H₂O (17.0 μ L, d = 1.0 g/mL, 0.0170 g, 0.94 mmol) at room temperature under a nitrogen atmosphere. The resulting reaction mixture was placed in a pre-heated oil bath of 100 °C and strirried for 10 h as monitored by TLC. After being cooled to the room temperature, the crude reaction mixture was transferred to a round bottom flask. After removing the solvent via rotary evaporation, column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 500/1) afforded **3f** (0.1015 g, 50%) as an oil: ¹H NMR (300 MHz, CDCl₃) δ 3.27-3.10 (heptet, J = 6.8Hz, 1 H, CH), 3.00-2.85 (heptet, J = 7.1 Hz, 1 H, CH), 2.84-2.75 (m, 2 H, CH₂), 1.57-1.37 (m, 4 H, 2 × CH₂), 1.28 (d, J = 6.6 Hz, 6 H, 2 × CH₃), 1.27 (d, J = 7.2 Hz, 6 H, 2 × CH₃), 0.95 (t, J = 7.1 Hz, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 169.4 (t, J= 25.1 Hz), 164.1, 145.3, 142.9, 128.3, 31.8, 27.8, 24.9, 23.8, 23.0, 22.6, 20.8, 13.8; ¹⁹F NMR (282 MHz, CDCl₃) δ -80.8 (t, J = 9.2 Hz, 3 F), -117.6 (q, J = 9.3 Hz, 2 F), -125.9~-126.1 (m, 2 F); IR (neat) v (cm⁻¹) 2968, 2936, 2876, 1673, 1584, 1524, 1455, 1385, 1368, 1344, 1308, 1230, 1119, 1086, 1060, 1028; MS (70 ev, EI) m/z (%) 404

 $(M^+, 22.64)$, 165 (100); HRMS calcd for $C_{18}H_{23}F_7O_2$ (M^+) : 404.1586, Found: 404.1590.

The following compounds **3g-3l** were prepared following **Typical Procedure II**. (7) Synthesis of (5-phenyl-3-(*n*-propyl)furan-2-yl) *n*-perfluoropropyl ketone (**3g**) (xc-13-149)

The reaction of 1-phenylhexa-1,2-dien-3-yl *n*-perfluorobutyl ketone **1g** (0.2021 g, 0.50 mmol) with TfOH (99%, 4.5 µL, d = 1.695 g/mL, 0.0076 g, 0.05 mmol), and H₂O (16.2 µL, d = 1.00 g/mL, 0.0162 g, 0.90 mmol) in toluene (5 mL) at 100 °C for 21 h afforded **3g** (0.1168 g, 61%) (petroleum ether/ethyl acetate = 500/1) as an oil: ¹H NMR (300 MHz, CDCl₃) δ 7.83-7.73 (m, 2 H, ArH), 7.52-7.39 (m, 3 H, ArH), 6.83 (s, 1 H, =CH), 2.91 (t, J = 7.7 Hz, 2 H, CH₂), 1.78-1.62 (m, 2 H, CH₂), 1.02 (t, J = 7.4 Hz, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 170.4 (t, J = 26.1 Hz), 159.0, 146.8, 143.9, 130.2, 129.1, 128.5, 125.5, 110.3, 28.4, 22.3, 13.8; ¹⁹F NMR (282 MHz, CDCl₃) δ -81.0 (t, J = 9.0 Hz, 3 F), -117.9~118.2 (m, 2 F), -126.2~126.4 (m, 2 F); IR (neat) v (cm⁻¹) 3071, 3040, 2966, 2936, 2877, 1667, 1588, 1573, 1520, 1475, 1454, 1410, 1352, 1316, 1269, 1231, 1119, 1088, 1072, 1028; MS (70 ev, EI) *m/z* (%) 382 (M⁺, 36.86), 213 (100); HRMS calcd for C₁₇H₁₃F₇O₂ (M⁺): 382.0804, Found: 382.0812. (8) Gram scale reaction for the synthesis of (5-phenyl-3-(*n*-propyl)furan-2-yl) *n*-perfluoropropyl ketone (**3g**) (xc-13-158)

The reaction of 1-phenylhexa-1,2-dien-3-yl *n*-perfluorobutyl ketone **1g** (1.2123 g, 3.00 mmol) with TfOH (99%, 27 µL, d = 1.695 g/mL, 0.0453 g, 0.30 mmol) and H₂O (97.2 µL, d = 1.0 g/mL, 0.0972 g, 5.40 mmol) at 100 °C for 17 h to afford **3g** (0.7228 g, 63%) (petroleum ether/ethyl acetate = 500/1) as an oil: ¹H NMR (300 MHz, CDCl₃) δ 7.83-7.74 (m, 2 H, ArH), 7.51-7.38 (m, 3 H, ArH), 6.82 (s, 1 H, =CH), 2.90 (t, J = 7.7 Hz, 2 H, CH₂), 1.79-1.62 (m, 2 H, CH₂), 1.01 (t, J = 7.5 Hz, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 170.4 (t, J = 25.8 Hz), 159.1, 146.8, 143.9, 130.2, 129.1, 128.5, 125.4, 110.3, 28.4, 22.3, 13.8; ¹⁹F NMR (282 MHz, CDCl₃) δ -81.0 (t, J = 9.0 Hz, 3 F), -117.9~-118.1 (m, 2 F), -126.2~-126.4 (s, 2 F).

Besides, we have also got an unidentified compound, which is studying in our laboratory.

(9) Synthesis of (3-ethyl-5-phenylfuran-2-yl) *n*-perfluoropropyl ketone (**3h**) (xc-13-156)

The reaction of 1-phenylpenta-1,2-dien-3-yl perfluorobutyl ketone **1h** (0.1946 g, 0.50 mmol) with TfOH (99%, 4.5 μ L, d = 1.695 g/mL, 0.0076 g, 0.05 mmol) and H₂O (16.2 μ L, d = 1.0 g/mL, 0.0162 g, 0.90 mmol) at 100 °C for 17 h to afford **3h** (0.0966 g, 53%) (petroleum ether/ethyl acetate = 500/1) as a solid: m.p. 40.2-41.2 °C

(*n*-hexane/ethyl acetate); ¹H NMR (300 MHz, CDCl₃) δ 7.83-7.74 (m, 2 H, ArH), 7.52-7.39 (m, 3 H, ArH), 6.85 (s, 1 H, =CH), 2.95 (q, J = 7.5 Hz, 2 H, CH₂), 1.29 (t, J= 7.5 Hz, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 170.3 (t, J = 26.2 Hz), 159.2, 148.4, 143.5, 130.3, 129.1, 128.5, 125.4, 109.8, 20.0, 13.1; ¹⁹F NMR (282 MHz, CDCl₃) δ -81.0 (t, J = 9.0 Hz, 3 F), -117.9~-118.2 (m, 2 F), -126.2~-126.4 (m, 2 F); IR (KBr) v (cm⁻¹) 3071, 3039, 2977, 2939, 2884, 1671, 1587, 1572, 1523, 1475, 1464, 1453, 1411, 1353, 1332, 1271, 1230, 1123, 1083; MS (70 ev, EI) *m/z* (%) 368 (M⁺, 26.51), 199 (100); Elemental analysis calcd for C₁₆H₁₁F₇O₂: C, 52.19; H, 3.01; Found: C, 52.46; H, 3.06.

(10) Synthesis of (3-methyl-5-phenylfuran-2-yl) *n*-perfluoropropyl ketone (**3i**) (xc-13-151)

The reaction of 1-phenylbuta-1,2-dien-3-yl perfluorobutyl ketone **1i** (0.1877 g, 0.50 mmol) with TfOH (99%, 4.5 μ L, *d* = 1.695 g/mL, 0.0076 g, 0.05 mmol) and H₂O (16.2 μ L, *d* = 1.0 g/mL, 0.0162 g, 0.90 mmol) at 100 °C for 20 h to afford **3i** (0.0873 g, purity: 94.2% as determined by using dibromomethane as the internal standard, 47% yield) (petroleum ether/ethyl acetate = 500/1) as an oil: ¹H NMR (300 MHz, CDCl₃) δ 7.81-7.73 (m, 2 H, ArH), 7.52-7.40 (m, 3 H, ArH), 6.79 (s, 1 H, =CH), 2.51 (s, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 170.5 (t, *J* = 25.8 Hz), 158.9, 144.2, 141.9, 130.3, 129.1, 128.4, 125.4, 111.6, 12.6; ¹⁹F NMR (282 MHz, CDCl₃) δ -81.0 (t, *J* = 8.9 Hz, 3 F), -118.0~-118.2 (m, 2 F), -126.2~-126.4 (m, 2 F); IR (neat) v (cm⁻¹) 3071, 2928,

1672, 1574, 1524, 1475, 1453, 1407, 1379, 1352, 1292, 1270, 1230, 1118; MS (70 ev, EI) *m/z* (%) 354 (M⁺, 76.54), 185 (100); HRMS calcd for C₁₅H₉F₇O₂ (M⁺): 354.0491, Found: 354.0493.

(11) Synthesis of (5-(4'-methylphenyl)-3-(*n*-propyl)furan-2-yl) *n*-perfluoropropyl ketone (3j) (xc-13-152)

The reaction of 1-(4'-methylphenyl)hexa-1,2-dien-3-yl perfluorobutyl ketone **1j** (0.2085 g, 0.50 mmol) with TfOH (99%, 4.5 µL, d = 1.695 g/mL, 0.0076 g, 0.05 mmol) and H₂O (16.2 µL, d = 1.00 g/mL, 0.0162 g, 0.90 mmol) at 100 °C for 20 h to afford **3j** (0.1352 g, purity: 96.6% as determined by using dibromomethane as the internal standard, 66% yield) (petroleum ether/ethyl acetate = 500/1) as an oil: ¹H NMR (300 MHz, CDCl₃) δ 7.72-7.63 (m, 2 H, ArH), 7.31-7.24 (m, 2 H, ArH), 6.78 (s, 1 H, =CH), 2.90 (t, J = 7.7 Hz, 2 H, CH₂), 2.41 (s, 3 H, CH₃), 1.78-1.62 (m, 2 H, CH₂), 1.01 (t, J = 7.4 Hz, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 170.1 (t, J = 25.6 Hz), 159.4, 147.0, 143.7, 140.7, 129.8, 125.8, 125.5, 109.8, 28.4, 22.3, 21.5, 13.8; ¹⁹F NMR (282 MHz, CDCl₃) δ -81.0 (t, J = 9.0 Hz, 3 F), -117.9~118.1 (m, 2 F), -126.3~-126.4 (s, 2 F); IR (neat) v (cm⁻¹) 3031, 2966, 2934, 2876, 1668, 1615, 1586, 1574, 1532, 1482, 1401, 1351, 1317, 1293, 1267, 1231, 1119, 1088, 1066; MS (70 ev, EI) m/z (%) 396 (M⁺, 54.73), 227 (100); Elemental analysis calcd for C₁₈H₁₅O₂F₇: C, 54.55; H, 3.82; Found: C, 54.93; H, 3.80.

(12) Synthesis of (5-(4'-fluorophenyl)-3-(n-propyl)furan-2-yl) n-perfluoropropyl ketone (3k) (xc-13-153)

The reaction of 1-(4'-fluorophenyl)hexa-1,2-dien-3-yl perfluorobutyl ketone **1k** (0.2107 g, 0.50 mmol) with TfOH (99%, 4.5 µL, d = 1.695 g/mL, 0.0076 g, 0.05 mmol) and H₂O (16.2 µL, d = 1.0 g/mL, 0.0162 g, 0.90 mmol) at 100 °C for 17 h to afford **3k** (0.1263 g, purity: 95.1% as determined by using dibromomethane as the internal standard, 60% yield) (petroleum ether/ethyl acetate = 500/1) as an oil: ¹H NMR (300 MHz, CDCl₃) δ 7.82-7.72 (m, 2 H, ArH), 7.21-7.10 (m, 2 H, ArH), 6.78 (s, 1 H, =CH), 2.90 (t, J = 7.7 Hz, 2 H, CH₂), 1.78-1.62 (m, 2 H, CH₂), 1.02 (t, J = 7.4 Hz, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 170.3 (t, J = 25.7 Hz), 163.8 (d, J = 250.3 Hz), 158.0, 146.9, 143.8, 127.5 (d, J = 9.2 Hz), 124.9 (d, J = 3.2 Hz), 116.4 (t, J = 22.3 Hz), 110.1, 28.4, 22.3, 13.8; ¹⁹F NMR (282 MHz, CDCl₃) δ 81.0 (t, J = 9.0 Hz, 3 F), -109.3~-109.5 (m, 1 F), -117.9~-118.2 (m, 2 F), -126.2~-126.4 (m, 2 F); IR (neat) v (cm⁻¹) 2967, 2936, 2877, 1673, 1608, 1578, 1533, 1482, 1431, 1352, 1307, 1295, 1267, 1235, 1159, 1119, 1102; MS (70 ev, EI) m/z (%) 400 (M⁺, 37.50), 231 (100); HRMS caled for C₁₇H₁₂F₈O₂ (M⁺); 400.0710, Found: 400.0710.

(13) Synthesis of (3-(*n*-propyl)-5-(2'-thienyl)furan-2-yl) *n*-perfluoropropyl ketone (3l)(xc-13-154)

The reaction of 1-(2'-thienyl)hexa-1,2-dien-3-yl perfluorobutyl ketone **11** (0.0813 g, 0.20 mmol) with TfOH (99%, 1.8 µL, d = 1.695 g/mL, 0.0030 g, 0.02 mmol) and H₂O (6.5 µL, d = 1.0 g/mL, 0.0065 g, 0.36 mmol) at 100 °C for 17 h to afford **31** (0.0298 g, 39%) (petroleum ether/ethyl acetate = 500/1) as an oil: ¹H NMR (300 MHz, CDCl₃) δ 7.52 (dd, $J_I = 3.8$ Hz, $J_2 = 1.1$ Hz, 1 H, ArH), 7.45 (dd, $J_I = 5.1$ Hz, $J_2 = 1.2$ Hz, 1 H, ArH), 7.13 (dd, $J_I = 5.0$ Hz, $J_2 = 3.8$ Hz, 1 H, ArH), 6.66 (s, 1 H, =CH), 2.89 (t, J = 7.8 Hz, 2 H, CH₂), 1.78-1.60 (m, 2 H, CH₂), 1.01 (t, J = 7.4 Hz, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 170.1 (t, J = 26.1 Hz), 154.4, 147.0, 143.3, 131.4, 128.37, 128.35, 126.9, 110.1, 28.4, 22.2, 13.8; ¹⁹F NMR (282 MHz, CDCl₃) δ -81.1 (t, J = 8.9 Hz, 3 F), -117.9~-118.2 (m, 2 F), -126.3~-126.4 (m, 2 F); IR (neat) v (cm⁻¹) 2968, 2934, 2876, 1667, 1588, 1538, 1479, 1441, 1418, 1351, 1266, 1216, 1119, 1086, 1053, 1031; MS (70 ev, EI) m/z (%) 388 (M⁺, 44.60), 219 (100); HRMS calcd for C₁₅H₁₁F₇O₂S (M⁺): 388.0368, Found: 388.0372.

2. Mechanistic Studies.

TfOH-catalyzed transformation of 2-perfluorobutyl furan 2a to
(4,5-diphenyl-3-(n-propyl)furan-2-yl) n-perfluoropropyl ketone 3a (xc-4-169)

Typical Procedure III: To a dried Schlenk tube were sequentially added furan 2a (0.0958 g, 0.20 mmol)/rinsed with toluene (1 mL), TfOH (1.8 μ L, d = 1.695 g/mL, 0.0031 g, 0.02 mmol), and H₂O (3.6 μ L, d = 1.0 g/mL, 0.0036 g, 0.2 mmol) in toluene (1 mL) at room temperature under a nitrogen atmosphere. The resulting reaction mixture was placed in a pre-heated oil bath of 100 °C and strirried for 2 h as monitored by TLC. After being cooled to the room temperature, the crude reaction mixture was transferred to a round bottom flask. After removing the solvent via rotary evaporation, column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 100/1) afforded **3a** (0.0898 g, 97%) as a solid: m.p. 54.4-56.5 °C (*n*-hexane/ethyl acetate); ¹H NMR (300 MHz, CDCl₃) δ 7.59-7.39 (m, 5 H, ArH), 7.39-7.16 (m, 5 H, ArH), 2.70 (t, J = 7.7 Hz, 2 H, CH₂), 1.61-1.35 (m, 2 H, CH₂), 0.86 $(t, J = 7.4 \text{ Hz}, 3 \text{ H}, \text{CH}_3)$; ¹³C NMR (75 MHz, CDCl₃) δ 170.6 (t, J = 26.0 Hz), 154.5, 145.9, 143.4, 131.5, 130.0, 129.7, 129.2, 129.0, 128.7, 128.5, 127.0, 126.9, 26.6, 22.6, 14.0; ¹⁹F NMR (282 MHz, CDCl₃) δ -80.5 (t, J = 8.9 Hz, 3 F), -117.3 (q, J = 9.4 Hz, 2 F), $-125.6 \sim -125.8$ (m, 2 F); IR (neat) v (cm⁻¹) 3067, 2964, 2933, 2874, 1673, 1570, 1531, 1477, 1447, 1414, 1329, 1235, 1119, 1029; MS (70 ev, EI) m/z (%) 458 (M⁺, 37.17), 289 (100); Elemental analysis calcd for C₂₃H₁₇F₇O₂: C, 60.27; H, 3.74; Found: C, 60.07; H, 3.93.

(2) AuCl catalyzed cycloisomerization of 1j to form

5-(4'-methylphenyl)-2-(*n*-perfluorobutyl)-3-(*n*-propyl)furan (2j) (xc-8-148)

To a dried Schlenk tube were added anhydrous AuCl (97%, 0.0023 g, 0.010 mmol), 1-(4'-methylphenyl)hexa-1,2-dien-3-yl perfluorobutyl ketone 1j (0.0832 g, 0.20 mmol), and anhydrous toluene (2 mL) at room temperature under N₂ atmosphere. The resulting mixture was then placed in a pre-heated oil bath of 100 °C and stirred for 12 h as monitored by TLC. After being cooled to room temperature, the crude reaction mixture was filtrated through a short column of silica gel eluted with 30 mL of Et₂O. After removing the solvent via rotary evaporation, column chromatography on silica gel (eluent: petroleum ether) afforded **2j** (0.0812 g, 98%) as an oil: ¹H NMR $(300 \text{ MHz}, \text{CDCl}_3) \delta 7.56 \text{ (d, } J = 8.1 \text{ Hz}, 2 \text{ H}, \text{ArH}), 7.20 \text{ (d, } J = 8.1 \text{ Hz}, 2 \text{ H}, \text{ArH}),$ 6.56 (s, 1 H, =CH), 2.55 (t, J = 7.7 Hz, 2 H, CH₂), 2.37 (s, 3 H, CH₃), 1.74-1.54 (m, 2 H, CH₂), 0.97 (t, J = 7.4 Hz, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 156.1, 138.7, 134.0 (t, J = 32.3 Hz), 132.6, 129.5, 126.7, 124.3, 107.2, 26.3, 23.2, 21.3, 13.7; ¹⁹F NMR (282 MHz, CDCl₃) δ -81.5 (t, J = 9.4 Hz, 3 F), -110.8 (t, J = 11.6 Hz, 2 F), -124.0~-124.3 (m, 2 F), -126.6~-126.9 (m, 2 F); IR (neat) v (cm⁻¹) 3029, 2967, 2935, 2876, 1906, 1621, 1581, 1557, 1498, 1468, 1417, 1393, 1350, 1315, 1235, 1135, 1094, 1053; MS (70 ev, EI) m/z (%) 418 (M⁺, 20.78), 249 (100); HRMS calcd for C₁₈H₁₅F₉O (M⁺): 418.0979, Found: 418.0978.

(3) TfOH-catalyzed transformation of 2-perfluorobutyl furan **2j** to S16

¹⁸O-(5-(4'-methylphenyl)-3-(*n*-propyl)furan-2-yl) (*n*-perfluoropropyl) ketone **3j**-¹⁸O in the presence of $H_2^{18}O$. (xc-8-149)

Following Typical Procedure III, reaction of the 2-(perfluorobutyl)-3-propyl-5-(p-tolyl)furan 2j (0.0812 g, 0.19 mmol) with TfOH (99%, 0.9 μ L, d = 1.695 g/mL, 0.0015 g, 0.010 mmol) and H₂¹⁸O (97%, 5.6 μ L, d =1.1 g/mL, 0.0062 g, 0.30 mmol) (transferred with a syringe from a glove box) at 100 ^oC for 12 h to afford **3j**-¹⁸O (0.0625 g, 81%) (petroleum ether) as a liquid: ¹H NMR $(300 \text{ MHz}, \text{CDCl}_3) \delta 7.67 \text{ (d, } J = 8.1 \text{ Hz}, 2 \text{ H}, \text{ArH}), 7.26 \text{ (d, } J = 7.5 \text{ Hz}, 2 \text{ H}, \text{ArH}),$ 6.77 (s, 1 H, =CH), 2.89 (t, J = 7.7 Hz, 2 H, CH₂), 2.40 (s, 3 H, CH₃), 1.78-1.60 (m, 2 H, CH₂), 1.01 (t, J = 7.4 Hz, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 170.1 (t, J =26.1 Hz, 3 F), 159.4, 147.0, 143.7, 140.7, 129.8, 125.8, 125.4, 109.8, 28.4, 22.3, 21.5, 13.8; ¹⁹F NMR (282 MHz, CDCl₃) δ -81.0 (t, J = 8.9 Hz, 3 F), -117.7~-118.3 (m, 2 F), -126.0~-126.6 (m, 2 F); MS (70 ev, EI) m/z (%) 396 (M (¹⁶O)⁺, 22.56), 398 (M (¹⁸O)⁺, 45.41), 229 (100); HRMS (EI) Cacld for $C_{18}H_{15}^{16}O_{2}F_{7}$ (M⁺): 396.0960; Found: 396.0962; HRMS (EI) Cacld for $C_{18}H_{15}^{16}O^{18}OF_7$ (M⁺): 398.1003; Found : 398.1002.

The ¹⁸O% incorporation of **3j**-¹⁸O was determined via the analysis of MS spectrum. The natural abundances of the stable isotopes of C, H, and O are known. The naturally occurring isotopic ¹⁸O will also produce $[M(^{18}O)]^+$ peak. According to the natural abundance of ¹⁸O, the ratio $C_{18}H_{15}{}^{16}O_2F_7$: $C_{18}H_{15}{}^{16}O^{18}OF_7$ is 99.762:0.2.

Thus, the intensity of $[M(^{18}O)^+] (C_{18}H_{15}^{16}O^{18}OF_7)^+$ peak will be 0.2% of the intensity of the molecular peak $[M(^{16}O)^+] (C_{18}H_{15}^{16}O_2F_7)$. According to the MS spectrum of **3j**-¹⁸O, the relative abundances of **3j**-¹⁶O 396 $[M(^{16}O)^+]$ and **3j**-¹⁸O 398 $[M(^{18}O)^+]$ are 22.56, 45.41, respectively. The ¹⁸O% of **3j**-¹⁸O can be calculated as follows: $([M(^{18}O)^+] - [M(^{16}O)^+] \times 0.2\%)/([M(^{18}O)^+] - [M(^{16}O)^+] \times 0.2\% + [M(^{16}O)^+]) =$ 45.41-22.56×0.002/(45.41-22.56×0.002+22.56) ≈ 66.79%.

In addition, the contributions to the isotope peak intensities from background peaks or from impurities in the sample must be considered. According to the MS spectrum of **3j**, such contribution of **3j** to $[M(^{16}O)+2]^+$ is $(1.03-33.70\times0.002)\%$ ($\approx 0.96\%$).

So the ¹⁸O% of **3j**-¹⁸O is 66.79% - 0.96% \approx 65.83%.

(4) One-pot reaction of allenyl perfluorobutyl ketone **1j** sequentially catalyzed by AuCl (5 mol%) and TfOH (5 mol%) in the presence of $H_2^{18}O$.

¹⁸O-(5-(4'-methylphenyl)-3-(*n*-propyl)furan-2-yl) (*n*-perfluoropropyl) ketone (**3j**-¹⁸O) (xc-8-147)

To a dried Schlenk tube were added anhydrous AuCl (97%, 0.0025 g, 0.010 mmol), 1-(4'-methylphenyl)hexa-1,2-dien-3-yl perfluorobutyl ketone **1j** (0.0831 g, 0.20 mmol), and anhydrous toluene (2 mL) at room temperature under N_2 atmosphere. The resulting mixture was then placed in a pre-heated oil bath of 100 °C and stirred.

After 12 h as monitored by TLC, the cycloisomerization reaction was over, TfOH (99%, 0.9 μ L, d = 1.695 g/mL, 0.0015 g, 0.010 mmol) and H₂¹⁸O (97%, 5.6 μ L, d = 1.1 g/mL, 0.0062 g, 0.30 mmol) (transferred with a syringe from a glove box) were added to the above crude reaction mixture, and the resulting mixture was stirred at 100 °C for another 12 h as monitored by TLC. After being cooled to the room temperature, the reaction mixture was transferred to a round bottom flask. After removing the solvent via rotary evaporation, column chromatography on silica gel (eluent: petroleum ether) afforded **3j**-¹⁸O (0.0590 g, 75%) as a liquid: ¹H NMR (300 MHz, CDCl₃) δ 7.67 (d, J = 8.1 Hz, 2 H, ArH), 7.26 (d, J = 8.1 Hz, 2 H, ArH), 6.77 (s, 1 H, =CH), 2.89 (t, J = 7.8 Hz, 2 H, CH₂), 2.40 (s, 3 H, CH₃), 1.78-1.59 (m, 2 H, CH₂), 1.01 (t, J = 7.4 Hz, 3 H, CH₃); ¹⁹F NMR (282 MHz, CDCl₃) δ -81.0 (t, J = 9.0 Hz, 3 F), -117.8~-118.2 (m, 2 F), -126.2~-126.4 (m, 2 F); IR (neat) v (cm⁻¹) 3031, 2965, 2876, 1667, 1644, 1574, 1532, 1481, 1381, 1351, 1317, 1231, 1119, 1020; MS (70 ev, EI) m/z (%) 396 (M (¹⁶O)⁺, 30.22), 398 (M (¹⁸O)⁺, 41.10), 229 (100).

The ¹⁸O% incorporation of **3j**-¹⁸O was determined via the analysis of the MS spectrum. According to the MS spectrum of **3j**-¹⁸O, the relative abundances of **3j**-¹⁶O 396 $[M(^{16}O)^+]$, **3j**-¹⁸O 398 $[M(^{18}O)^+]$ are 30.22, 41.10, respectively. The ¹⁸O% of **3j**-¹⁸O can be calculated as follows: $([M(^{18}O)^+] - [M(^{16}O)^+] \times 0.2\%)/([M(^{18}O)^+] - [M(^{16}O)^+] \times 0.2\%) + [M(^{16}O)^+]) = 41.10-30.22 \times 0.002/(41.10-30.22 \times 0.002+30.22) \approx 57.59\%.$

In addition, the contributions to the isotope peak intensities from background peaks or from impurities in the sample must be considered. According to the MS spectrum of **3j**, such contribution of **3j** to $[M(^{16}O)+2]^+$ is $(1.03-33.70\times0.002)\%$ ($\approx 0.96\%$).

So the ¹⁸O% of **3j**-¹⁸O is 57.59% - 0.96%
$$\approx$$
 56.63%.

3. Synthetic application of 3a.

(1) 2-(4,5-Diphenyl-3-propylfuran-2-yl)-3,3,4,4,5,5,5-heptafluoropentan-2-ol (4a)

(wsz-7-055)

To a dried Schlenk tube were added (4,5-diphenyl-3-(*n*-propyl)furan-2-yl) *n*-perfluoropropyl ketone **3a** (0.0915 g, 0.20 mmol) and Et₂O (2 mL) at room temperature under a nitrogen atmosphere. The resulting mixture was cooled to -60 °C with a cooling bath. A solution of MeLi (0.11 mL, 3.0 M in diethoxymethane, 0.32 mmol) was added over 10 min at -60 °C and stirred for 14 h as monitored by TLC. The mixture was quenched with 5 mL of a saturated aqueous NH₄Cl solution at -60 °C. After warming up to rt naturally, the mixture was extracted with 20 mL × 3 of Et₂O. The combined organic extract was washed with brine and dried over anhydrous Na₂SO₄. Filtration, evaporation, and chromatography on silica gel (eluent: petroleum ether/ethyl acetate/triethylamine = 15/1/0.1) afforded **4a** (0.0758 g, 80%) as an oil: ¹H NMR (300 MHz, CDCl₃) δ 7.48-7.25 (m, 7 H, ArH), 7.24-7.11 (m, 3 H, ArH), 3.05 (s, 1 H, OH), 2.58-2.31 (m, 2 H, CH₂), 1.94 (s, 3 H, CH₃), 1.37-1.22 (m, 2 H, CH₂), 0.74 (t, *J* = 7.4 Hz, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 147.7, 143.2, 133.5, 130.4, 130.1, 128.8, 128.3, 127.6, 127.3, 126.6, 125.4, 125.0, 75.4 (t, J = 24.7 Hz), 25.7, 23.7, 22.3, 14.2; ¹⁹F NMR (282 MHz, CDCl₃) δ -81.3 (t, J = 11.1 Hz, 3 F), -118.8~-121.3 (m, 2 F), -124.7~-125.1 (m, 2 F); IR (neat) v (cm⁻¹) 3548, 3060, 3029, 2963, 2933, 2873, 1603, 1503, 1482, 1446, 1339, 1228, 1191, 1120, 1071; MS (70 ev, EI) m/z (%) 474 (M⁺, 10.18), 305 (100); HRMS calcd for C₂₄H₂₁F₇O₂ (M⁺): 474.1430, Found: 474.1432.

(2) 1-(4,5-Diphenyl-3-propylfuran-2-yl)-2,2,3,3,4,4,4-heptafluorobutan-1-ol (**5a**) (wsz-7-073)

To a dried Schlenk tube were added (4,5-diphenyl-3-(*n*-propyl)furan-2-yl) *n*-perfluoropropyl ketone **3a** (0.0915 g, 0.20 mmol) and toluene (1 mL) at room temperature under a nitrogen atmosphere. The resulting mixture was cooled to -78 °C with a cooling bath. A solution of DIBAL-H (0.48 mL, 1.0 M in toluene, 0.48 mmol) was added over 10 min at -78 °C and the resulting mixture was stirred for 12 h as monitored by TLC. After warming up to rt naturally, the mixture was quenched with 5 mL of EtOH with an ice-water bath followed by another 10 mL of HCl (5%, aq.). The mixture was extracted with 10 mL × 5 of Et₂O. The combined organic extract was washed with brine and dried over anhydrous Na₂SO₄. Filtration, evaporation, and chromatography on silica gel (eluent: petroleum ether/ethyl acetate/ triethylamine = 15/1/0.1) afforded **5a** (0.0733 g, 80%) as an oil: ¹H NMR (300 MHz, CDCl₃) δ 7.49-7.32 (m, 5 H, ArH), 7.32-7.26 (m, 2 H, ArH), 7.25-7.14 (m, 3 H, ArH), 5.25 (dd, $J_1 = 18.2$ Hz, $J_2 = 5.9$ Hz, 1 H, CH), 2.94 (brs, 1 H, OH), 2.34 (t, J = 7.8 Hz, 2 H, CH₂), 1.36-1.22 (m, 2 H, CH₂), 0.78 (t, J = 7.2 Hz, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 149.5, 140.6, 133.2, 130.3, 129.9, 128.9, 128.4, 128.3, 127.69, 127.66, 125.7, 123.7, 64.7 (dd, $J_1 = 28.0$ Hz, $J_2 = 23.1$ Hz), 25.2, 23.2, 13.8; ¹⁹F NMR (282 MHz, CDCl₃) δ -81.2 (dd, $J_1 = 11.3$ Hz, $J_2 = 9.0$ Hz, 3 F), -118.8 (dm, J = 281.4 Hz, one fluorine of CF₂), -125.4 (dm, J = 281.3 Hz, one fluorine of CF₂), -126.1 (dm, J = 290.6 Hz, one fluorine of CF₂), -127.4 (dm, J = 290.5 Hz, one fluorine of CF₂); IR (neat) v (cm⁻¹) 3482, 3054, 3024, 2956, 2929, 2878, 1605, 1507, 1447, 1382, 1343, 1233, 1177, 1120, 1070; MS (70 ev, EI) m/z (%) 460 (M⁺, 67.19), 291 (100); HRMS calcd for C₂₃H₁₉F₇O₂ (M⁺): 460.1273; Found: 460.1272.

Reference

[1] G. He, C. Xue, C. Fu, S. Ma, Synlett 2010, 2, 281-285.

S27

S29

S30

692.7 -

S46

S48

S57

000.0 —

4 58.0	-
668.0	
£88.0	
1. 4 30	$\overline{}$
£34.1	-
774.1	
1.503	
623.1	\sim
953.h	

2.723 2.69.2 2.672

2000 200 2000 2	
929.1	

2.366	
2.520	-/F
7.547	_//
178.5	

855.9 -

978.7 ----712.7 ---712.7 ----712.7 ----

Sample Information

E:\msm\xc-8-149_2013-1-25_5.qgd

Spectrum

Mass Table Line#:1 R.Time:5.6(Scan#:1086) MassPeaks:141 RawMode:Single 5.6(1086) BasePeak:229(127550) BG Mode:5.9(1158) Group 1 - Event 1 # m/r Abs. Int Rel. Int

#	m/z	Abs. Int.	Rel. Int.	#	m/z	Abs. Int.	Rel. Int.
1	38.05	1073	0.84	25	73.20	244	0.19
2	39.05	4456	3.49	26	74.00	2020	1.58
3	41.05	2707	2.12	27	75.00	3136	2.46
4	41.95	930	0.73	28	75.95	4165	3.27
5	43.05	1902	1.49	29	77.00	8519	6.68
6	45.05	696	0.55	30	78.10	2641	2.07
7	48.95	268	0.21	31	79.05	5130	4.02
8	49.95	2355	1.85	32	81.10	1420	1.11
9	51.10	2951	2.31	33	82.00	883	0.69
10	52.10	1092	0.86	34	82.95	1928	1.51
11	53.15	2339	1.83	35	84.00	512	0.40
12	55.05	3028	2.37	36	84.85	2360	1.85
13	57.10	2477	1.94	37	85.90	1983	1.55
14	58.10	1489	1.17	38	87.05	1702	1.33
15	59.10	1002	0.79	39	87.90	2058	1.61
16	63.10	5182	4.06	40	89.05	5041	3.95
17	63.95	3368	2.64	41	90.00	1924	1.51
18	65.00	7690	6.03	42	91.05	14851	11.64
19	66.10	1098	0.86	43	91.85	2245	1.76
20	67.10	134	0.11	44	93.10	1572	1.23
21	69.00	8646	6.78	45	95.15	894	0.70
22	69.90	3615	2.83	46	97.00	1962	1.54
23	70.90	4980	3.90	47	99.20	1790	1.40
24	71.95	1085	0.85	48	100.15	1385	1.09

#	m/z	Abs. Int.	Rel. Int.	#	m/z	Abs. Int.	Rel. Int.	
49	100.95	1834	1.44	96	171.05	12074	9.47	
50	101.90	2449	1.92	97	171.90	3044	2.39	
51	103.05	3913	3.07	98	173.15	1731	1.36	
52	104.00	3242	2.54	99	179.10	1175	0.92	
53	105.00	12119	9.50	100	181.10	4964	3.89	
54	106.00	2366	1.85	101	181.95	1875	1.47	
55	107.10	3569	2.80	102	183.05	2012	1.58	
56	111.20	2084	1.63	103	184.00	1380	1.08	
57	111.95	1055	0.83	104	185.00	1060	0.83	
58	112.90	2762	2.17	105	192.90	1066	0.84	
59	114.05	4245	3.33	106	196.00	1002	0.79	
60	115.00	29578	23.19	107	197.00	2084	1.63	
61	116.00	6756	5.30	108	198.00	1649	1.29	
62	117.00	1937	1.52	109	199.00	4938	3.87	
63	118.05	1427	1.12	110	200.00	1118	0.88	
64	119.05	18063	14.16	111	200.95	5449	4.27	
65	120.10	2660	2.09	112	206.95	1272	1.00	
66	121.10	2314	1.81	113	207.80	1610	1.26	
67	125.00	1585	1.24	114	208.85	1270	1.00	
68	126.05	2394	1.88	115	211.00	1092	0.86	
69	127.10	7460	5.85	116	212.85	1702	1.33	
70	128.10	22327	17.50	117	213.90	1540	1.21	
71	129.05	15242	11.95	118	226.05	1346	1.06	
72	130.05	2260	1.77	119	227.00	63844	50.05	
73	131.05	2399	1.88	120	228.05	17091	13.40	
74	132.75	1190	0.93	121	229.00	127550		
75	137.00	1265	0.99	122	230.00	20202	15.84	
76	139.10	6289	4.93	123	231.05	2313	1.81	
77	140.15	2322	1.82	124	280.95	1282	1.01	
78	141.10	36804	28.85	125	341.05	1115	0.87	
79	142.10	21047	16.50	126	349.05	2835	2.22	
80	143.05	15337	12.02	127	366.95	1146	0.90	
81	143.90	1841	1.44	128	367.90	2538	1.99	
82	150.95	1822	1.43	129	368.95	2175	1.71	
83	152.00	4695	3.68	130	370.00	4343	3.40	
84	153.05	6553	5.14	131	371.00	1054	0.83	
85	154.00	4567	3.58	132	377.00	1962	1.54	
86	155.00	15710	12.32	133	379.00	3479	2.73	
87	156.10	8260	6.48	134	381.00	3050	2.39	
88	157.10	1674	1.31	135	383.00	7998	6.27	
89	158.10	2212	1.73	136	395.05	1233	0.97	
90	158.95	1025	0.80	137	396.00	28772	22.56	
91	165.05	4239	3 32	138	397.05	7760	6.08	
92	166.05	4645	3.64	139	398.00	57924	45.41	
93	166.95	1999	1.57	140	399.00	8356	6.55	
94	169.05	4873	3.82	141	400.10	1278	1.00	
95	170.05	4332	3.40					

xc-8-149

The naturally occurring isotopic ¹⁸O will also produce $[M+2]^+$ peak. According to the theoretical calculations, the ratio $C_{18}H_{15}{}^{16}O_2F_7$: $C_{18}H_{15}{}^{16}O^{18}OF_7 = 99.762:0.2$. Thus, the intensity of $[M+2]^+$ ($C_{18}H_{15}{}^{16}O^{18}OF_7$)⁺ peak will be 0.2% of the intensity of the molecular peak M ($C_{18}H_{15}{}^{16}O_2F_7$). According to the MS spectrum of xc-8-149, the relative abundances of **3j**-¹⁶O 396 [M(¹⁶O)⁺] and **3j**-¹⁸O 398 [M(¹⁸O)⁺] are 22.56, 45.41, respectively. The ¹⁸O% of **3j**-¹⁸O can be calculated as follows: ([M(¹⁸O)⁺] - [M(¹⁶O)⁺] × 0.2%)/([M(¹⁸O)⁺] - [M(¹⁶O)⁺] × 0.2% + [M(¹⁶O)⁺]) = 45.41-22.56×0.002/(45.41-22.56×0.002+22.56) ≈ 66.79%.

xc-8-138

The spurious contribution of **3j** to M+2: $(1.03-33.70\times0.002)\% \approx 0.96\%$.

Mass Table
Line#:1 R.Time:5.6(Scan#:1086)
MassPeaks:132
RawMode:Single 5.6(1086) BasePeak:227(228017)
BG Mode: 5.7(1109) Group 1 - Event 1
m/z Abs Int Rel Int

J INIOUC.	J./(1109) U	ioup i - Even	1				
#	m/z	Abs. Int.	Rel. Int.	#	m/z	Abs. Int.	Rel. Int.
1	34.95	1217	0.53	25	70.05	3299	1.45
2	37.95	1086	0.48	26	71.05	7305	3.20
3	39.05	6292	2.76	27	72.95	1010	0.44
4	40.00	5222	2.29	28	73.90	2164	0.95
5	41.05	2012	0.88	29	75.05	4795	2.10
6	42.05	434	0.19	30	76.05	4690	2.06
7	43.05	3240	1.42	31	77.10	11943	5.24
8	44.05	1482	0.65	32	77.95	3652	1.60
9	45.90	1006	0.44	33	79.05	5541	2.43
10	46.95	381	0.17	34	82.15	709	0.31
11	50.05	1648	0.72	35	83.10	1413	0.62
12	51.00	3991	1.75	36	84.10	825	0.36
13	52.00	1959	0.86	37	85.10	2784	1.22
14	53.00	2286	1.00	38	86.05	238	0.10
15	55.00	4199	1.84	39	86.85	2366	1.04
16	56.10	560	0.25	40	88.00	2068	0.91
17	57.15	2616	1.15	41	89.00	7937	3.48
18	58.05	1468	0.64	42	90.05	3878	1.70
19	60.05	1141	0.50	43	91.00	16295	7.15
20	63.00	5652	2.48	44	92.00	2484	1.09
21	64.15	3487	1.53	45	92.95	1837	0.81
22	65.10	9569	4.20	46	95.05	1735	0.76
23	65.95	1431	0.63	47	97.15	815	0.36
24	69.00	10458	4.59	48	98.05	1837	0.81

#	m/z	Abs. Int.	Rel. Int.	#	m/z	Abs. Int.	Rel. Int.
49	99.00	3572	1.57	91	158.10	2670	1.17
50	100.00	2855	1.25	92	165.00	5006	2.20
51	101.00	1626	0.71	93	166.10	6190	2.71
52	102.15	2447	1.07	94	167.05	1858	0.81
53	103.10	3937	1.73	95	169.05	5184	2.27
54	104.05	3364	1.48	96	170.05	5063	2.22
55	105.10	14604	6.40	97	171.10	15482	6.79
56	106.10	6049	2.65	98	172.15	2660	1.17
57	106.90	3591	1.57	99	173.10	1607	0.70
58	108.80	1684	0.74	100	177.20	1031	0.45
59	110.95	1332	0.58	101	178.95	1715	0.75
60	113.05	2376	1.04	102	181.10	5934	2.60
61	114.00	3783	1.66	103	181.95	1403	0.62
62	115.05	37780	16.57	104	182.95	3484	1.53
63	116.10	6164	2.70	105	184.05	1730	0.76
64	117.00	2465	1.08	106	185.05	2156	0.95
65	118.15	1118	0.49	107	197.05	2544	1.12
66	119.10	22404	9.83	108	198.00	3322	1.46
67	120.10	2202	0.97	109	199.00	10478	4.60
68	125.05	1796	0.79	110	199.90	2497	1.10
69	126.05	2162	0.95	111	208.80	1146	0.50
70	127.10	10483	4.60	112	211.10	2254	0.99
71	128.10	29088	12.76	113	212.00	1575	0.69
72	129.05	16539	7.25	114	225.05	1285	0.56
73	130.00	2350	1.03	115	226.05	2713	1.19
74	131.05	2412	1.06	116	227.05	228017	100.00
75	133.00	1191	0.52	117	228.05	35837	15.72
76	139.05	8038	3.53	118	229.15	3652	1.60
77	140.10	3079	1.35	119	281.00	1249	0.55
78	141.05	46203	20.26	120	299.00	1127	0.49
79	142.05	24504	10.75	121	349.10	3476	1.52
80	143.10	18042	7.91	122	367.05	1789	0.78
81	144.15	2934	1.29	123	368.05	7856	3.45
82	145.10	1178	0.52	124	369.05	2395	1.05
83	146.90	1550	0.68	125	377.10	5818	2.55
84	150.95	1915	0.84	126	378.00	1735	0.76
85	151.95	5593	2.45	127	381.00	11495	5.04
86	153.10	6830	3.00	128	382.10	2279	1.00
87	154.10	4961	2.18	129	395.05	3188	1.40
88	155.05	13819	6.06	130	396.05	76845	33.70
89	156.05	9784	4.29	131	397.05	19325	8.48
90	157.00	2247	0.99	132	398.00	2356	1.03

xc-8-138

The spurious contribution of 3j to M+2: $(1.03-33.70\times0.002)\%\approx0.96\%$.

#	m/z	Abs. Int.	Rel. Int.	#	m/z	Abs. Int.	Rel. Int.
49	109.10	1737	3.30	77	1 66.0 0	2774	5.27
50	113.05	2052	3.90	78	169.05	2240	4.26
51	114.05	1928	3.66	79	170.00	2198	4.18
52	115.00	12706	24.14	80	171.05	7882	14.97
53	116.00	2306	4.38	81	172.10	1257	2.39
54	117.10	1782	3.39	82	180.95	2125	4.04
55	119.00	8286	15.74	83	183.15	1796	3.41
56	120.05	1908	3.62	84	185.10	1193	2.27
57	121.10	1276	2.42	85	198.05	1212	2.30
58	126.05	1051	2.00	86	199.05	3378	6.42
59	127.10	3059	5.81	87	200.00	1327	2.52
60	128.05	14062	26.71	88	200.90	2268	4.31
61	129.05	8530	16.20	89	207.00	583	1.11
62	130.15	1348	2.56	90	227.05	41596	79.02
63	131.10	1103	2.10	91	228.00	8105	15.40
64	138.95	2774	5.27	92	229.05	52639	100.00 -
65	140.10	1378	2.62	93	229.95	8358	15.88
66	141.10	20105	38.19	94	348.90	2102	3.99
67	142.10	9346	17.75	95	369.95	2642	5.02
68	143.10	8028	15.25	96	377.05	1098	2.09
69	152.05	2657	5.05	97	379.15	1486	2.82
70	153.10	2153	4.09	98	381.00	1839	3.49
71	154.05	2317	4.40	99	383.00	2940	5.59
72	155.05	6913	13.13	100	396.00	15906	30.22
73	156.10	3766	7.15	101	396.95	4258	8.09
74	156.90	1193	2.27	102	398.00	21634	41.10
75	159.05	1042	1.98	103	399.10	5033	9.56
76	165.05	1552	2.95				

xc-8-147

The ¹⁸O% incorporation of 3j-¹⁸O was determined by MS spectrum. According to the MS spectrum of xc-8-147, the relative abundances of 3j-¹⁶O 396 $[M(^{16}O)^+]$, 3j-¹⁸O 398 $[M(^{18}O)^+]$ are 30.22, 41.10, respectively. The ¹⁸O% of 3j-¹⁸O can be calculated as follows: $([M(^{18}O)^+] - [M(^{16}O)^+] \times 0.2\%)/([M(^{18}O)^+] - [M(^{16}O)^+] \times 0.2\% + [M(^{16}O)^+]) = 41.10-30.22 \times 0.002/(41.10-30.22 \times 0.002+30.22) \approx 57.59\%.$

S87

S92

