Asymmetric allylic alkylations of 3-alkylidene oxindoles

Junjun Feng,^{a,b} Xin Li^{a,b}* and Jin-Pei Cheng^{b,c}

^a State Key Laboratory of Elemento-Organic Chemistry, Department of Chemistry, ^b Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, ^c Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100084.

xin_li@nankai.edu.cn

Contents

1.General Information	
2. General experimental reaction procedure	
3. Results for other substrates	
4. X-ray crystallography data of 3h	S11
5. NMR Spectra (¹ H NMR, ¹³ C NMR)	
6.Chiral HPLC Chromatography	S36

1. General Information

Commercial reagents were used as received, unless otherwise stated. ¹H and ¹³C NMR were recorded on 400 MHz spectrometer. Chemical shifts are reported in ppm from tetramethylsilane with the solvent resonance as the internal standard. The following abbreviations were used to designate chemical shift mutiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet. All first-order splitting patterns were assigned on the basis of the appearance of the multiplet. Splitting patterns that could not be easily interpreted are designated as multiplet (m). Mass spectra were obtained using electrospray ionization (ESI) or electron impact ionization (EI) mass spectrometer. In each case, enantiomeric ratio was determined by chiral HPLC analysis on Chiralcel column in comparison with authentic racemates. 3-Alkylidene oxindoles and isopropylidene benzofuran-2-one were synthesized according to the literature procedure.¹ MBH carbonates were synthesized by the reported method.²

References:

- (1) (a) G. Rassu, V. Zambrano, R. Tanca, A. Sartori, L. Battistini, F. Zanardi, and C. Curti, G. Casiraghi, *Eur. J. Org. Chem.*, 2012, **3**, 466. (b) B. M. Trost, N. Cramer, and S. M. Silverman, *J. Am. Chem. Soc.*, 2007, **129**, 12396.
- (2) (a) M. Kamlar, S. Hybelbauerová, I. Císařovác and J. Veselý, Org. Biomol. Chem., 2014, 12, 5071.
 (b) D. J. V. C. van Steenis, T. Marcelli, M. Lutz, A. L. Spek, J. H. van Maarseveen, and H. Hiemstra, Adv. Synth. Catal., 2007, 349, 281. (c) N.-J. Zhong, F. Wei, Q.-Q. Xuan, L. Liu, D. Wang and Y.-J. Chen, Chem. Coummun., 2013, 49, 11071.

2. General experimental reaction procedure

To a stirred solution of (E)-*tert*-butyl 2-oxo-3-(1-phenylethylidene)indoline-1-carboxylate (1.5 equiv) and MBH carbonates (0.1 mmol) in dry PhCF₃ was added biscinchona alkaloid catalyst (0.1 equiv) at 50 °C. After the reaction was complete, the reaction solution was concentrated in *vacuo*, the crude was purified by flash chromatography to afford the product.

(E)-tert-butyl-3-(4-(methoxycarbonyl)-1,3-diphenylpent-4-en-1-ylidene)-2-oxoindoline-1-carboxyl ate(3a)

Light yellow oil. Yield 63%, ee 97%. ¹H NMR (400 MHz, CDCl₃) δ 7.70 (d, *J* = 8.2 Hz, 1H), 7.43 (s, 3H), 7.23 – 7.16 (m, 4H), 7.12 (dd, *J* = 14.1, 5.9 Hz, 2H), 7.04 (s, 1H), 6.90 (s, 1H), 6.65 (t, *J* = 7.7 Hz, 1H), 6.31 (s, 1H), 5.96 (d, *J* = 7.9 Hz, 1H), 5.86 (s, 1H), 4.14 (dd, *J* = 17.2, 10.8 Hz, 1H), 4.00 – 3.89 (m, 2H), 3.61 (s, 3H), 1.68 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 167.1, 166.1, 158.6, 149.3, 142.5, 141.7, 139.7, 138.1, 129.2, 128.7, 128.5, 128.3, 126.9, 126.6, 125.9, 123.3, 123.0, 123.0, 114.2, 84.2, 51.8, 44.3, 38.0, 28.2; HRMS (ESI⁺) calcd for [C₃₂H₃₁NO₅+Na]⁺ 532.2094, found: 532.2094. [α]²⁰D -15.9° (c = 2.0, CHCl₃); The enantiomeric excess was determined by HPLC with an IC column at 210 nm (2-propanol: hexane=2:98), 1.0 mL/min; t_R= 20.2 min (minor), 21.6 min (major).

(E)-tert-butyl-3-(4-(methoxycarbonyl)-1-(4-methoxyphenyl)-3-phenylpent-4-en-1-ylidene)-2-oxoi ndoline-1-carboxylate(3b)

Light yellow oil. Yield 54%, ee >99%. ¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, *J* = 8.1 Hz, 1H), 7.32 (s, 1H), 7.28 (d, *J* = 12.7 Hz, 3H), 7.23 – 7.15 (m, 2H), 7.01 (s, 3H), 6.93 (d, *J* = 8.5 Hz, 1H), 6.76 (t, *J* = 7.7 Hz, 1H), 6.37 (s, 1H), 6.21 (d, *J* = 7.9 Hz, 1H), 5.91 (s, 1H), 4.14 (td, *J* = 11.3, 7.4 Hz, 1H), 4.08 – 3.99 (m, 2H), 3.95 (s, 3H), 3.67 (s, 3H), 1.75 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 167.2, 166.3, 160.0, 159.0, 149.4, 142.7, 141.8, 138.1, 131.9, 128.6, 128.4, 128.3, 126.7, 126.0, 123.9, 123.4, 123.4, 123.0, 114.6, 114.3, 84.3, 55.4, 51.9, 44.7, 38.1, 28.3; HRMS (ESI⁺) calcd for [C₃₃H₃₃NO₆+Na]⁺ 562.2200, found: 562.2195; [α]²⁰D -24.3° (c = 0.6, CHCl₃); The enantiomeric excess was determined by HPLC with an AS-H column at 210 nm (2-propanol: hexane=2:98), 1.0 mL/min; t_R= 8.2 min (major).

(E)-tert-butyl-3-(4-(methoxycarbonyl)-3-phenyl-1-(p-tolyl)pent-4-en-1-ylidene)-2-oxoindoline-1-c arboxylate(3c)

Light yellow oil. Yield 61%, ee >99%. ¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, *J* = 8.2 Hz, 1H), 7.33 – 7.25 (m, 6H), 7.19 (dt, *J* = 15.6, 5.5 Hz, 2H), 7.00 (d, *J* = 6.4 Hz, 1H), 6.88 (dd, *J* = 16.5, 7.0 Hz, 1H), 6.73 (t, *J* = 7.7 Hz, 1H), 6.37 (s, 1H), 6.12 (d, *J* = 7.9 Hz, 1H), 5.92 (s, 1H), 4.18 (dd, *J* = 17.0, 11.1 Hz, 1H), 4.06 – 3.93 (m, 2H), 3.66 (s, 3H), 2.50 (s, 3H), 1.74 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 167.2, 166.3, 159.2, 149.4, 142.7, 141.8, 138.7, 138.1, 136.7, 129.9, 128.6, 128.5, 128.3, 126.9, 126.7, 126.0, 123.8, 123.3, 123.1, 114.2, 84.3, 51.8, 44.5, 38.1, 28.3; [α]²⁰D -29.0° (c = 0.8, CHCl₃); HRMS (ESI⁺) calcd for [C₃₃H₃₃NO₅+Na]⁺ 546.2251, found: 546.2250. The enantiomeric excess was determined by HPLC with an AS-H column at 210 nm (2-propanol: hexane=2:98), 1.0 mL/min; t_R= 5.1 min (major).

(E)-tert-butyl-3-(1-(4-chlorophenyl)-4-(methoxycarbonyl)-3-phenylpent-4-en-1-ylidene)-2-oxoind oline-1-carboxylate(3d)

Light yellow oil. Yield 44%, ee 95%. ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, *J* = 8.3 Hz, 1H), 7.47 – 7.35 (m, 2H), 7.25 – 7.11 (m, 6H), 7.00 (t, *J* = 9.9 Hz, 1H), 6.83 (d, *J* = 8.1 Hz, 1H), 6.71 (t, *J* = 7.7 Hz, 1H), 6.31 (s, 1H), 6.05 (d, *J* = 7.9 Hz, 1H), 5.80 (s, 1H), 4.02 (d, *J* = 8.1 Hz, 2H), 3.93 (t, *J* = 8.0 Hz, 1H), 3.63 (s, 3H), 1.69 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 167.1, 166.0, 156.9, 149.3, 142.7, 141.4, 138.4, 138.2, 134.8, 129.5, 128.9, 128.6, 128.4, 126.8, 126.1, 124.3, 123.5, 123.0, 122.8, 114.4, 84.4, 77.5, 77.2, 76.8, 51.9, 44.5, 37.9, 28.3; HRMS (ESI⁺) calcd for [C₃₂H₃₀ClNO₅+Na]⁺ 566.1705, found: 566.1700; [α]²⁰D -15.0° (c = 0.9, CHCl₃); The enantiomeric excess was determined by HPLC with an AD-H column at 210 nm (2-propanol: hexane=2:98), 1.0 mL/min; t_R= 7.6 min (minor), 6.9 min (major).

(E)-tert-butyl-3-(1-(3-chlorophenyl)-4-(methoxycarbonyl)-3-phenylpent-4-en-1-ylidene)-2-oxoind oline-1-carboxylate(3e)

Light yellow oil. Yield 42%, ee 97%. ¹H NMR (400 MHz, CDCl₃) δ 7.73 (d, *J* = 8.2 Hz, 1H), 7.38 (dt, *J* = 14.7, 7.7 Hz, 2H), 7.25 – 7.11 (m, 6H), 6.94 (t, *J* = 10.3 Hz, 1H), 6.83 (d, *J* = 9.3 Hz, 1H), 6.71 (t, *J* = 7.7 Hz, 1H), 6.33 (d, *J* = 7.0 Hz, 1H), 6.01 (t, *J* = 7.6 Hz, 1H), 5.83 (s, 1H), 4.18 – 4.02 (m, 1H), 3.90 (ddd, *J* = 22.4, 16.1, 8.4 Hz, 2H), 3.64 (d, *J* = 8.1 Hz, 3H), 1.69 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 166.9, 165.9, 156.2, 149.2, 142.5, 141.6, 141.3, 138.3, 135.1, 130.6, 128.9, 128.8, 128.5, 128.4, 128.3, 127.2, 127.1, 126.8, 125.9, 125.8, 125.2, 124.3, 123.5, 122.9, 122.6, 114.4, 84.4, 51.9, 44.3, 38.1, 37.7; HRMS (ESI⁺) calcd for [C₃₂H₃₀ClNO₅+Na]⁺ 566.1705, found: 566.1702; [α]²⁰D -29.0° (c = 0.8, CHCl₃); The enantiomeric excess was determined by HPLC with an IC column at 210 nm (2-propanol: hexane=2:98), 1.0 mL/min; t_R= 16.1 min (minor), 17.2 min (major).

(E)-tert-butyl-3-(1-(3-bromophenyl)-4-(methoxycarbonyl)-3-phenylpent-4-en-1-ylidene)-2-oxoind oline-1-carboxylate(3f)

Light yellow oil. Yield 53%, ee >99%. ¹H NMR (400 MHz, CDCl₃) δ 7.72 (t, *J* = 8.6 Hz, 1H), 7.57 (d, *J* = 8.0 Hz, 1H), 7.35 – 7.28 (m, 1H), 7.26 – 7.04 (m, 7H), 6.98 (d, *J* = 6.1 Hz, 1H), 6.72 (t, *J* = 7.7 Hz, 1H), 6.33 (d, *J* = 10.7 Hz, 1H), 6.01 (t, *J* = 7.8 Hz, 1H), 5.83 (d, *J* = 7.6 Hz, 1H), 4.18 – 3.76 (m, 3H), 3.64 (d, *J* = 10.5 Hz, 3H), 1.69 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 166.9, 165.9, 156.1, 149.2, 142.5, 141.9, 141.6, 141.3, 141.2, 138.3, 131.7, 130.8, 130.0, 129.9, 128.9, 128.5, 128.5, 128.4, 128.3, 126.9, 126.8, 126.0, 125.8, 125.6, 125.5, 123.5, 123.0, 122.5, 114.4, 84.4, 52.0, 51.9, 44.3, 38.2, 37.7, 28.2; HRMS (ESI⁺) calcd for [C₃₂H₃₀BrNO₅+Na]⁺ 610.1200, found: 610.1198; [α]²⁰D -25.0° (c = 1.3, CHCl₃); The enantiomeric excess was determined by HPLC with an IA column at 210 nm (2-propanol: hexane=2:98), 1.0 mL/min; t_R= 7.5 min (major).

(E)-tert-butyl-5-chloro-3-(4-(methoxycarbonyl)-1,3-diphenylpent-4-en-1-ylidene)-2-oxoindoline-1 -carboxylate(3g)

Light yellow oil. Yield 46%, ee 95%. ¹H NMR (400 MHz, CDCl₃) δ 7.66 (d, J = 8.7 Hz, 1H), 7.50 – 7.42 (m, 3H), 7.25 – 7.13 (m, 5H), 7.08 (dd, J = 8.7, 1.9 Hz, 1H), 7.03 (d, J = 4.4 Hz, 1H), 6.88 (d, J = 6.9 Hz, 1H), 6.31 (s, 1H), 5.83 (s, 2H), 4.11 (dd, J = 17.3, 10.6 Hz, 1H), 3.98 (q, J = 8.2 Hz, 2H), 3.61 (s, 3H), 1.68 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 167.1, 165.6, 160.7, 149.3, 142.7, 141.6, 139.2, 136.7, 129.5, 129.2, 128.9, 128.6, 128.4, 128.3, 126.8, 126.0, 124.6, 123.2, 123.2, 115.4, 84.7, 51.9, 44.5, 38.2, 28.3; HRMS (ESI⁺) calcd for [C₃₂H₃₀CINO₅+ Na]⁺ 566.1705, found: 566.1700; [α]²⁰D -32.1°

(c = 0.6, CHCl₃); The enantiomeric excess was determined by HPLC with an IA column at 210 nm (2-propanol: hexane=2:98), 1.0 mL/min; t_R = 7.7 min (minor), 6.7 min (major).

(E)-tert-butyl-3-(3-(4-fluorophenyl)-4-(methoxycarbonyl)-1-phenylpent-4-en-1-ylidene)-2-oxoind oline-1-carboxylate(3h)

White solid. Yield 46%, ee 95%. ¹H NMR (400 MHz, CDCl₃) δ 7.70 (d, J = 8.2 Hz, 1H), 7.44 (s, 3H), 7.19 – 7.09 (m, 3H), 7.06 (s, 1H), 6.89 (t, J = 8.5 Hz, 3H), 6.66 (t, J = 7.7 Hz, 1H), 6.30 (s, 1H), 5.98 (d, J = 7.9 Hz, 1H), 5.82 (s, 1H), 4.10 – 3.89 (m, 3H), 3.61 (s, 3H), 1.68 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 166.9, 166.1, 162.9, 160.4, 158.1, 142.6, 139.6, 138.1, 137.2, 137.2, 130.1, 123.0, 129.3, 128.8, 128.6, 127.0, 126.8, 125.7, 123.9, 123.3, 123.0, 122.9, 115.1, 114.9, 114.20, 84.3, 51.8, 43.7, 37.9, 28.2; HRMS (ESI⁺) calcd for [C₃₂H₃₀FNO₅+Na]⁺ 550.2000, found: 550.2000; [α]²⁰D -32.2° (c = 1.6, CHCl₃); The enantiomeric excess was determined by HPLC with an AD-H column at 210 nm (2-propanol: hexane=2:98), 1.0 mL/min; t_R= 7.9 min (major), 9.6 min (minor).

(E)-tert-butyl-3-(3-(4-chlorophenyl)-4-(methoxycarbonyl)-1-phenylpent-4-en-1-ylidene)-2-oxoind oline-1-carboxylate(3i)

Light yellow oil. Yield 76%, ee 94%. ¹H NMR (400 MHz, CDCl₃) δ 7.70 (d, J = 4.2 Hz, 1H), 7.44 (s, 3H), 7.16 (d, J = 9.2 Hz, 5H), 7.06 (s, 1H), 6.91 (s, 1H), 6.66 (s, 1H), 6.31 (s, 1H), 5.98 (s, 1H), 5.83 (s, 1H), 4.13 – 4.03 (m, 1H), 3.95 (d, J = 15.5 Hz, 2H), 3.61 (s, 3H), 1.68 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 167.0, 166.3, 158.0, 149.4, 142.5, 140.2, 139.7, 138.3, 132.5, 130.1, 129.2, 129.0, 128.8, 128.5, 126.9, 126.0, 124.2, 123.4, 123.1, 123.0, 114.4, 84.4, 52.0, 44.0, 37.8, 28.4; HRMS (ESI⁺) calcd for [C₃₂H₃₀ClNO₅+ Na]⁺ 566.1705, found: 566.1702; [α]²⁰D -27.6° (c = 1.0, CHCl₃); The enantiomeric excess was determined by HPLC with an AD-H column at 210 nm (2-propanol: hexane=3:97), 1.0 mL/min; t_R= 8.7 min (minor), 6.8 min (major).

(E) - tert-butyl-3-(4-(methoxycarbonyl)-3-(4-nitrophenyl)-1-phenylpent-4-en-1-ylidene)-2-oxoindol ine-1-carboxylate (3j)

Light yellow oil. Yield 51%, ee 91%. ¹H NMR (400 MHz, CDCl₃) δ 8.06 (d, J = 8.4 Hz, 2H), 7.70 (d, J = 7.9 Hz, 1H), 7.50 – 7.31 (m, 5H), 7.12 (dd, J = 17.8, 9.6 Hz, 2H), 6.94 (s, 1H), 6.67 (t, J = 7.6 Hz, 1H), 6.38 (s, 1H), 6.02 (d, J = 7.8 Hz, 1H), 5.91 (s, 1H), 4.19 – 3.94 (m, 3H), 3.61 (s, 3H), 1.68 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 166.6, 166.3, 156.8, 149.6, 149.3, 147.0, 141.6, 139.5, 138.4, 129.6, 129.2, 129.0, 127.2, 126.7, 124.5, 123.6, 123.1, 122.8, 114.4, 84.6, 52.1, 44.5, 37.64, 28.3; HRMS (ESI⁺) calcd for [C₃₂H₃₀N₂O₇+Na]⁺ 577.1945, found: 577.1946; [α]²⁰D -53.5° (c = 1.2, CHCl₃); The enantiomeric excess was determined by HPLC with an AD-H column at 210 nm (2-propanol: hexane=2:98), 1.0 mL/min; t_R= 32.6 min (minor), 19.1 min (major).

(E)-tert-butyl-3-(4-(methoxycarbonyl)-1-phenyl-3-(m-tolyl)pent-4-en-1-ylidene)-2-oxoindoline-1-c arboxylate(3k)

Light yellow oil. Yield 40%, ee 95%. ¹H NMR (400 MHz, CDCl₃) δ 7.70 (d, J = 8.2 Hz, 1H), 7.43 (s, 3H), 7.15 – 6.99 (m, 6H), 6.92 (d, J = 6.6 Hz, 1H), 6.65 (t, J = 7.7 Hz, 1H), 6.29 (s, 1H), 5.95 (d, J = 7.9 Hz, 1H), 5.85 (s, 1H), 4.11 (dd, J = 13.8, 7.2 Hz, 1H), 3.99 – 3.87 (m, 2H), 3.60 (s, 3H), 2.28 (s, 3H), 1.69 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 167.2, 166.2, 158.9, 149.5, 142.9, 139.8, 138.8, 138.2, 136.2, 129.2, 129.1, 128.8, 128.6, 128.5, 127.0, 125.9, 123.9, 123.4, 123.2, 123.1, 114.3, 84.3, 51.9, 44.1, 38.1, 28.4, 21.2; HRMS (ESI⁺) calcd for [C₃₃H₃₃NO₅+Na]⁺ 546.2251, found: 546.2250;

 $[\alpha]^{20}$ D -31.3° (c = 0.9, CHCl3); The enantiomeric excess was determined by HPLC with an AD-H column at 210 nm (2-propanol: hexane=2:98), 1.0 mL/min; t_R= 9.4 min (minor), 7.7 min (major).

(E)-tert-butyl-3-(3-(3-chlorophenyl)-4-(methoxycarbonyl)-1-phenylpent-4-en-1-ylidene)-2-oxoind oline-1-carboxylate(3l)

Light yellow oil. Yield 53%, ee 88%. ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, *J* = 8.2 Hz, 1H), 7.44 (d, *J* = 3.9 Hz, 3H), 7.18 – 7.08 (m, 5H), 7.05 (s, 1H), 6.96 (s, 1H), 6.67 (t, *J* = 7.7 Hz, 1H), 6.35 (s, 1H), 6.00 (d, *J* = 7.9 Hz, 1H), 5.90 (s, 1H), 4.16 (dd, *J* = 13.7, 7.3 Hz, 1H), 3.97 – 3.82 (m, 2H), 3.61 (s, 3H), 1.69 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 166.7, 166.0, 157.7, 149.3, 143.8, 141.8, 139.5, 138.2, 134.0, 129.5, 129.2, 128.8, 128.6, 126.9, 126.8, 126.6, 126.3, 124.0, 123.3, 123.0, 122.9, 114.2, 84.3, 51.8, 44.1, 37.9, 28.2; HRMS (ESI⁺) calcd for [C₃₂H₃₀CINO₅+Na]⁺ 566.1705, found: 566.1704; [α]²⁰D -35.8° (c = 1.0, CHCl₃); The enantiomeric excess was determined by HPLC with an OD-H column at 210 nm (2-propanol: hexane=1:99), 1.0 mL/min; t_R= 10.7 min (minor), 8.9 min (major).

(E)-tert-butyl-3-(3-(3-bromophenyl)-4-(methoxycarbonyl)-1-phenylpent-4-en-1-ylidene)-2-oxoind oline-1-carboxylate(3m)

Light yellow oil. Yield 85%, ee 91%. ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, *J* = 8.2 Hz, 1H), 7.44 (d, *J* = 4.3 Hz, 3H), 7.30 (d, *J* = 7.5 Hz, 2H), 7.17 – 7.01 (m, 4H), 6.96 (s, 1H), 6.67 (t, *J* = 7.7 Hz, 1H), 6.35 (s, 1H), 6.00 (d, *J* = 7.9 Hz, 1H), 5.90 (s, 1H), 4.15 (dd, *J* = 13.5, 7.2 Hz, 1H), 3.95 – 3.81 (m, 2H), 3.61 (s, 3H), 1.69 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 166.8, 166.2, 157.8, 149.4, 144.2, 141.9, 139.6, 138.3, 131.7, 129.9, 129.9, 129.3, 129.0, 128.8, 127.2, 127.0, 126.4, 124.2, 123.4, 123.1, 123.0, 122.4, 114.4, 84.4, 52.0, 44.3, 38.0, 28.3; HRMS (ESI⁺) calcd for [C₃₂H₃₀BrNO₅+Na]⁺ 610.1200, found: 610.1195; [α]²⁰D -28.1° (c = 0.7, CHCl₃); The enantiomeric excess was determined by HPLC with an AD-H column at 210 nm (2-propanol: hexane=2:98), 1.0 mL/min; t_R= 7.0 min (minor), 8.0 min (major).

(E)-tert-butyl-3-(4-(methoxycarbonyl)-3-(3-nitrophenyl)-1-phenylpent-4-en-1-ylidene)-2-oxoindol ine-1-carboxylate(3n)

Light yellow oil. Yield 79%, ee 89%. ¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, *J* = 7.5 Hz, 2H), 7.72 (d, *J* = 8.2 Hz, 1H), 7.60 (d, *J* = 7.6 Hz, 1H), 7.48 – 7.35 (m, 4H), 7.13 (t, *J* = 7.8 Hz, 1H), 7.09 – 6.94 (m, 2H), 6.67 (t, *J* = 7.7 Hz, 1H), 6.39 (s, 1H), 6.04 (d, *J* = 7.9 Hz, 1H), 5.95 (s, 1H), 4.13 – 3.97 (m, 3H), 3.60 (s, 3H), 1.68 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 166.6, 166.1, 156.9, 149.3, 148.23, 144.0, 141.6, 139.6, 138.4, 134.9, 129.4, 129.2, 129.0, 127.1, 126.7, 124.4, 123.7, 123.5, 123.1, 122.8, 121.9, 114.4, 84.5, 52.1, 44.4, 37.9, 28.3; HRMS (ESI⁺) calcd for [C₃₂H₃₀N₂O₇+Na]⁺ 577.1945, found: 577.1945; [α]²⁰D -47.7° (c = 1.2, CHCl₃); The enantiomeric excess was determined by HPLC with an AD-H column at 210 nm (2-propanol: hexane=2:98), 1.0 mL/min; t_R= 28.2 min (minor), 16.1 min (major).

(E)-tert-butyl-3-(3-(2-bromophenyl)-4-(methoxycarbonyl)-1-phenylpent-4-en-1-ylidene)-2-oxoind oline-1-carboxylate(30)

Light yellow oil. Yield 92%, ee 94%. ¹H NMR (400 MHz, CDCl₃) δ 7.73 (d, J = 8.2 Hz, 1H), 7.48 – 7.37 (m, 5H), 7.24 (dd, J = 13.8, 6.3 Hz, 1H), 7.13 (t, J = 7.6 Hz, 2H), 7.04 (t, J = 7.6 Hz, 1H), 6.83 (d, J = 7.1 Hz, 1H), 6.67 (t, J = 7.7 Hz, 1H), 6.40 (s, 1H), 5.97 (d, J = 7.9 Hz, 1H), 5.73 (s, 1H), 4.35 (t, J = 8.0 Hz, 1H), 4.16 (dd, J = 15.5, 8.1 Hz, 1H), 3.87 (dd, J = 15.6, 8.0 Hz, 1H), 3.63 (s, 3H), 1.69 (s,

9H); ¹³C NMR (100 MHz, CDCl₃) δ 166.9, 166.4, 158.7, 149.4, 141.4, 140.8, 138.9, 138.2, 133.1, 129.6, 129.4, 129.2, 128.8, 128.6, 128.3, 127.6, 127.3, 126.8, 125.3, 123.9, 123.5, 123.1, 114.3, 84.4, 52.0, 43.6, 36.9, 28.3; HRMS (ESI⁺) calcd for [C₃₂H₃₀BrNO₅+Na]⁺ 610.1200, found: 610.1196; [α]²⁰D 21.8° (c = 1.2, CHCl₃); The enantiomeric excess was determined by HPLC with an AD-H column at 210 nm (2-propanol: hexane=2:98), 1.0 mL/min; t_R= 6.1 min (minor), 7.2 min (major).

(E)-tert-butyl-3-(3-(3,4-dichlorophenyl)-4-(methoxycarbonyl)-1-phenylpent-4-en-1-ylidene)-2-oxo indoline-1-carboxylate(3p)

Light yellow oil. Yield 85%, ee 90%. ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, *J* = 8.2 Hz, 1H), 7.41 (dd, *J* = 18.9, 7.3 Hz, 4H), 7.29 (s, 1H), 7.14 (dd, *J* = 15.2, 7.8 Hz, 3H), 6.83 (d, *J* = 7.0 Hz, 1H), 6.67 (t, *J* = 7.7 Hz, 1H), 6.38 (s, 1H), 5.99 (d, *J* = 7.9 Hz, 1H), 5.72 (s, 1H), 4.33 (t, *J* = 8.0 Hz, 1H), 4.10 (dd, *J* = 15.3, 7.8 Hz, 1H), 3.89 (dd, *J* = 15.3, 8.3 Hz, 1H), 3.64 (s, 3H), 1.69 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 166.7, 166.4, 158.1, 149.4, 141.1, 138.9, 138.3, 138.0, 135.0, 133.1, 130.4, 129.5, 129.0, 128.8, 127.4, 127.3, 124.1, 123.5, 123.2, 123.0, 114.4, 84.5, 52.1, 40.6, 36.7, 28.3; HRMS (ESI⁺) calcd for [C₃₂H₂₉Cl₂NO₅+Na]⁺ 600.1315, found: 600.1314; [α]²⁰D -0.4° (c = 1.1, CHCl₃); The enantiomeric excess was determined by HPLC with an OD-H column at 210 nm (2-propanol: hexane=1:99), 1.0 mL/min; t_R= 11.5 min (minor), 9.8 min (major).

(E)-tert-butyl-3-(3-(2,4-dichlorophenyl)-4-(methoxycarbonyl)-1-phenylpent-4-en-1-ylidene)-2-oxoindoline-1-carboxylate(3q)

Light yellow oil. Yield 88%, ee 93%. ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, *J* = 8.2 Hz, 1H), 7.45 (d, *J* = 5.3 Hz, 3H), 7.27 (d, *J* = 8.3 Hz, 2H), 7.14 (t, *J* = 7.9 Hz, 1H), 7.07 (d, *J* = 8.2 Hz, 2H), 6.96 (s, 1H), 6.67 (t, *J* = 7.7 Hz, 1H), 6.34 (s, 1H), 6.02 (d, *J* = 7.9 Hz, 1H), 5.88 (s, 1H), 4.07 – 3.87 (m, 3H), 3.61 (s, 3H), 1.68 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 166.6, 166.1, 157.2, 149.2, 142.0, 141.7, 139.5, 138.3, 132.1, 130.6, 130.5, 130.1, 129.2, 129.0, 128.8, 127.9, 126.9, 126.2, 124.2, 123.3, 123.0, 122.8, 114.3, 84.3, 51.9, 43.7, 37.7, 28.2. HRMS (ESI⁺) calcd for [C₃₂H₂₉Cl₂NO₅+Na]⁺ 600.1315, found: 600.1313. [α]²⁰D -45.0° (c = 1.1, CHCl₃); The enantiomeric excess was determined by HPLC with an AD-H column at 210 nm (2-propanol: hexane=3:97), 1.0 mL/min; t_R= 7.7 min (minor), 6.0 min (major).

(E)-tert-butyl-3-(3-(2-bromophenyl)-1-(3-chlorophenyl)-4-(methoxycarbonyl)pent-4-en-1-ylidene) -2-oxoindoline-1-carboxylate(3r)

Light yellow oil. Yield 92%, ee 87%. ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, *J* = 8.2 Hz, 1H), 7.49 (dd, *J* = 12.5, 8.0 Hz, 1H), 7.37 (dd, *J* = 22.0, 9.8 Hz, 3H), 7.25 – 7.12 (m, 2H), 7.09 – 6.99 (m, 2H), 6.81 – 6.67 (m, 2H), 6.40 (d, *J* = 14.9 Hz, 1H), 6.08 – 6.00 (m, 1H), 5.71 (s, 1H), 4.34 (dt, *J* = 24.8, 8.0 Hz, 1H), 4.12 (td, *J* = 14.8, 7.8 Hz, 1H), 3.82 (ddd, *J* = 37.1, 15.5, 8.3 Hz, 1H), 3.66 (d, *J* = 13.7 Hz, 3H), 1.69 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 166.7, 166.1, 156.1, 155.9, 149.2, 141.2, 141.0, 140.7, 140.4, 140.3, 138.2, 135.2, 135.0, 133.1, 133.0, 130.7, 130.5, 129.4, 129.3, 128.9, 128.8, 128.3, 127.5, 127.3, 127.1, 126.9, 125.2, 125.1, 124.9, 124.3, 124.2, 123.5, 123.0, 122.5, 114.4, 84.4, 52.0, 51.9, 43.4, 43.2, 36.9, 36.6, 28.2; HRMS (ESI⁺) calcd for [C₃₂H₂₉BrClNO₅+NH₄]⁺ 639.1256, found: 641.1243; [α]²⁰D +7.0° (c = 1.2, CHCl₃); The enantiomeric excess was determined by HPLC with an OD-H column at 210 nm (2-propanol: hexane=2:98), 1.0 mL/min; t_R= 12.3 min (minor), 16.0 min (major).

(E) - tert-butyl-3-(3-(2-bromophenyl)-1-(3-bromophenyl)-4-(methoxycarbonyl)pent-4-en-1-ylidene

)-2-oxoindoline-1-carboxylate(3s)

Light yellow oil. Yield 87%, ee 88%. ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, *J* = 8.2 Hz, 1H), 7.58 (d, *J* = 7.8 Hz, 1H), 7.49 (dd, *J* = 15.0, 7.9 Hz, 1H), 7.34 (ddd, *J* = 24.3, 14.7, 7.6 Hz, 2H), 7.20 (dd, *J* = 19.0, 9.5 Hz, 2H), 7.15 – 7.01 (m, 2H), 6.94 – 6.79 (m, 1H), 6.73 (t, *J* = 7.7 Hz, 1H), 6.45 – 6.36 (m, 1H), 6.05 (t, *J* = 7.2 Hz, 1H), 5.71 (d, *J* = 9.3 Hz, 1H), 4.33 (dt, *J* = 32.5, 7.9 Hz, 1H), 4.20 – 4.05 (m, 1H), 3.94 – 3.69 (m, 1H), 3.66 (d, *J* = 16.6 Hz, 3H), 1.68 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 166.8, 166.1, 156.1, 155.8, 149.2, 141.2, 141.1, 140.7, 140.3, 138.2, 133.1, 131.8, 130.7, 129.9, 129.3, 128.9, 128.3, 127.3, 125.4, 123.6, 123.0, 114.4, 84.5, 52.0, 43.4, 36.6, 28.2; HRMS (ESI⁺) calcd for [C₃₂H₂₉Br₂NO₅+NH₄]⁺ 683.0751, found: 683.0717; [α]²⁰D +3.69° (c = 1.3, CHCl₃); The enantiomeric excess was determined by HPLC with an OD-H column at 210 nm (2-propanol: hexane=2:98), 1.0 mL/min; t_R= 11.5 min (minor), 14.9 min (major).

(E)-tert-butyl-3-(3-(4-chlorophenyl)-4-(ethoxycarbonyl)-1-phenylpent-4-en-1-ylidene)-2-oxoindoli ne-1-carboxylate(3t)

Light yellow oil. Yield 41%, ee 94%. ¹H NMR (400 MHz, CDCl₃) δ 7.70 (d, *J* = 8.2 Hz, 1H), 7.44 (s, 3H), 7.22 – 7.09 (m, 5H), 7.07 (s, 1H), 6.90 (d, *J* = 6.5 Hz, 1H), 6.66 (t, *J* = 7.7 Hz, 1H), 6.31 (s, 1H), 5.98 (d, *J* = 7.9 Hz, 1H), 5.80 (s, 1H), 4.13 – 4.02 (m, 3H), 4.02 – 3.87 (m, 2H), 1.68 (s, 9H), 1.17 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.4, 166.1, 158.0, 149.2, 142.6, 140.2, 139.5, 138.2, 132.3, 123.0, 129.3, 128.8, 128.6, 128.3, 126.8, 125.7, 124.0, 123.3, 123.0, 122.9, 120.8, 114.2, 84.3, 60.7, 43.8, 37.7, 28.2, 14.1; HRMS (ESI⁺) calcd for [C₃₃H₃₂ClNO₅+Na]⁺ 580.1861, found: 580.1861; [α]²⁰D -68.9° (c = 0.7, CHCl₃); The enantiomeric excess was determined by HPLC with an AD-H column at 210 nm (2-propanol: hexane=2:98), 1.0 mL/min; t_R= 9.7 min (minor), 7.4 min (major).

(Z) - tert-butyl-3-(4-(3-chlorophenyl)-5-(methoxycarbonyl) hex-5-en-2-ylidene)-2-oxoindoline-1-carboxylate(3u)

Light yellow oil. Yield 56%, ee 94%. ¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, *J* = 8.2 Hz, 1H), 7.48 (d, *J* = 7.8 Hz, 1H), 7.29 (d, *J* = 7.7 Hz, 2H), 7.20 – 7.08 (m, 4H), 6.38 (s, 1H), 5.87 (s, 1H), 4.32 (t, *J* = 7.9 Hz, 1H), 3.89 (dd, *J* = 12.6, 6.9 Hz, 1H), 3.65 (s, 3H), 3.41 (dd, *J* = 12.5, 9.1 Hz, 1H), 2.15 (s, 3H), 1.66 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 167.0, 165.5, 157.3, 149.3, 144.1, 141.9, 138.1, 134.1, 129.6, 128.2, 126.9, 126.5, 125.7, 123.8, 123.7, 123.4, 114.5, 84.2, 52.0, 44.9, 40.2, 28.2, 24.1; HRMS (ESI⁺) calcd for [C₂₇H₂₈ClNO₅+H]⁺ 482.1729, found: 482.1734; [α]²⁰D -37.8° (c = 0.33, CHCl₃); The enantiomeric excess was determined by HPLC with an AD-H column at 210 nm (2-propanol: hexane=3:97), 1.0 mL/min; t_R= 7.4 min (minor), 8.1 min (major).

Dimethyl-5-(1-(tert-butoxycarbonyl)-2-oxoindolin-3-ylidene)-2,8-dimethylene-3,7-diphenylnonan edioate(3v)

Light yellow oil. Yield 60%, ee 89%. ¹H NMR (400 MHz, CDCl₃) δ 7.86 (d, *J* = 8.2 Hz, 1H), 7.35 – 7.27 (m, 2H), 7.25 – 7.18 (m, 5H), 7.05 (ddd, *J* = 22.7, 15.5, 7.4 Hz, 6H), 6.32 (s, 1H), 6.25 (s, 1H), 5.41 (s, 2H), 4.06 (dd, *J* = 13.8, 9.4 Hz, 2H), 3.84 – 3.68 (m, 2H), 3.66 – 3.59 (m, 1H), 3.57 (d, *J* = 11.4 Hz, 6H), 2.92 (dd, *J* = 13.1, 4.4 Hz, 1H), 1.68 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 167.0, 166.5, 165.3, 162.1, 149.3, 142.5, 142.3, 142.3, 140.9, 138.4, 128.6, 128.4, 128.3, 128.1, 128.0, 127.1, 126.6, 124.3, 124.2, 124.0, 123.9, 123.3, 122.8, 114.7, 84.3, 52.0, 51.7, 45.5, 44.2, 41.2, 39.8, 28.2; HRMS (ESI⁺) calcd for [C₃₈H₃₉NO₇+Na]⁺ 644.2619, found: 644.2612; [α]²⁰D -271.1° (c = 0.4, CHCl₃); The enantiomeric excess was determined by HPLC with an AD-H column at 210 nm (2-propanol:

hexane=1:19), 1.0 mL/min; t_R = 11.2 min (minor), 4.6 min (major).

(Z)-methyl 2-methylene-5-(2-oxobenzofuran-3(2H)-ylidene)-3-phenylhexanoate(5)

Light yellow oil. Yield 60%, ee 40%. ¹H NMR (400 MHz, CDCl₃) δ 7.45 (d, J = 7.7 Hz, 1H), 7.33 – 7.26 (m, 3H), 7.25 – 7.14 (m, 3H), 7.14 – 7.06 (m, 2H), 6.35 (s, 1H), 5.81 (s, 1H), 4.41 – 4.33 (m, 1H), 3.72 (dd, J = 12.8, 6.8 Hz, 1H), 3.66 (s, 3H), 3.53 (dd, J = 12.8, 9.3 Hz, 1H), 2.21 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.2, 166.7, 160.7, 152.5, 142.5, 141.2, 128.9, 128.7, 128.4, 128.1, 127.8, 126.9, 125.3, 124.3, 123.7, 123.5, 119.7, 110.6, 51.9, 44.9, 39.8, 22.9; HRMS (ESI⁺) calcd for [C₂₇H₂₂O₄+H]⁺ 349.1434, found: 349.1429. [α]²⁰D -12.9° (c = 0.5, CHCl₃); The enantiomeric excess was determined by HPLC with an OD-H column at 210 nm (2-propanol: hexane=2:98), 1.0 mL/min; t_R= 20.8 min (minor), 30.7 min (major).

(Z)-methyl 2-methylene-5-(2-oxobenzofuran-3(2H)-ylidene)-3-phenylhexanoate(6)

Orange powder. Yield 40%, ee 15%.¹H NMR (400 MHz, CDCl₃) δ 7.63 (d, J = 8.2 Hz, 1H), 7.51 (s, 1H), 7.44 – 7.34 (m, 2H), 7.29 (d, J = 9.1 Hz, 2H), 7.25 – 7.13 (m, 5H), 7.06 (t, J = 7.2 Hz, 2H), 6.86 (t, J = 7.5 Hz, 1H), 6.58 (t, J = 7.7 Hz, 1H), 6.51 (d, J = 7.8 Hz, 1H), 6.40 (s, 2H), 6.18 (s, 1H), 5.91 (d, J = 7.9 Hz, 1H), 5.50 (d, J = 13.4 Hz, 1H), 4.58 (d, J = 15.7 Hz, 1H), 3.62 (d, J = 15.8 Hz, 1H), 3.49 (d, J = 13.4 Hz, 1H), 3.27 (s, 3H), 1.66 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 176.7, 166.2, 166.0, 155.4, 149.2, 143.4, 140.3, 138.2, 135.9, 130.7, 129.4, 129.2, 128.7, 128.5, 128.3, 127.8, 127.8, 127.3, 125.3, 124.5, 123.1, 123.0, 122.9, 122.2, 114.1, 108.7, 84.2, 54.7, 51.6, 44.0, 37.4, 28.2; HRMS (ESI⁺) calcd for [C₄₀H₃₆N₂O₆+Na]⁺ 641.2652, found: 641.2639; [α]²⁰D +10.8° (c = 0.3, CHCl₃); The enantiomeric excess was determined by HPLC with an IA column at 210 nm (2-propanol: hexane=1:4), 1.0 mL/min; t_R= 19.1 min (minor), 13.1 min (major).

3. Results for other examples and large scale.

Scheme S2

4. X-ray crystallography data of 3h.

Figure S1 ORTEP diagram showing of compound 3h.

Table 1. Crystal data and structur	e refinement for shelxl.
Identification code	shelxl
Empirical formula	C32 H30 F N O5
Formula weight	527.57
Temperature	173(2) K
Wavelength	1.54187 A
Crystal system, space group	Monoclinic, P2(1)
Unit cell dimensions	a = 11.665(2) A alpha = 90 deg.
	b = 18.047(3) A beta = 106.488(5) deg.
	c = 13.710(3) A gamma = 90 deg.
Volume	2767.5(9) A^3
Z, Calculated density	4, 1.266 Mg/m^3
Absorption coefficient	0.735 mm^-1
F(000)	1112
Crystal size	0.220 x 0.200 x 0.120 mm
Theta range for data collection	6.302 to 79.251 deg.
Limiting indices	-13<=h<=10, -22<=k<=22, -17<=l<=17
Reflections collected / unique	46860 / 11424 [R(int) = 0.0298]
Completeness to theta $= 67.687$	98.4 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.915 and 0.677
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	11424 / 1 / 712
Goodness-of-fit on F^2	1.083
Final R indices [I>2sigma(I)]	R1 = 0.0357, wR2 = 0.1020
R indices (all data)	R1 = 0.0375, $wR2 = 0.1029$
Absolute structure parameter	0.10(6)
Extinction coefficient	0.0016(3)
Largest diff. peak and hole	0.218 and -0.163 e.A^-3

5. NMR Spectra (¹H NMR, ¹³C NMR)

6. Chiral HPLC Chromatography

Detector A Ch1 210nm Height % 2.453 97.547 Peak# Ret. Time Height Area % Area 20.230 439477 14102 1.496 1 2 21.624 28945297 560710 98.504

29384773

Total

574811

100.000

100.000

Det	tector A	Ch1 210nm				
F	Peak#	Ret. Time	Area	Height	Area %	Height %
	1	8.180	7620185	110650	100.000	100.000
	Total		7620185	110650	100.000	100.000

 Peak#
 Ret. Time
 Area
 Height
 Area %
 Height %

 1
 5.103
 9796815
 363718
 48.149
 63.479

 2
 6.167
 10549918
 209257
 51.851
 36.521

 Total
 20346733
 572975
 100.000
 100.000

			PeakTable		
Detecto	or A Ch1 210n	m			
Peak	# Ret. Ti	me Area	Height	Area %	Height %
	1	5.077 15494	487100	100.000	100.000
Т	otal	15494	487100	100.000	100.000

PeakTable

etector A C	Ch1 210nm				
Peak#	Ret. Time	Area	Height	Area %	Height %
1	6.911	6931941	360498	49.157	50.953
2	7.622	7169833	347014	50.843	49.047
Total		14101774	707512	100.000	100.000

Detector A	Ch1 210nm	I	PeakTable		
Peak#	Ret. Time	Area	Height	Area %	Height %
1	6.862	11442031	598841	97.556	97.468
2	7.599	286604	15559	2.444	2.532
Total		11728635	614400	100.000	100.000

PeakTable

		r	eak rable				
Detector A Ch1 210nm							
Peak#	Ret. Time	Area	Height	Area %	Height %		
1	7.238	435993	26248	3.307	7.097		
2	11.093	432243	15924	3.278	4.306		
3	16.284	6066313	171055	46.009	46.253		
4	17.647	6250538	156599	47.406	42.344		
Total		13185087	369826	100.000	100.000		

1 Det.A Ch1/210nm

PeakTable

		1,	conci acore		
Detector A	Ch1 210nm				
Peak#	Ret. Time	Area	Height	Area %	Height %
1	16.093	176893	7018	1.424	2.050
2	17.271	12249262	335375	98.576	97.950
Total		12426155	342394	100.000	100.000

1 Det.A Ch1/210nm

D-4

PeakTable

Detector A Ch1 210nm						
Peak#	Ret. Time	Area	Height	Area %	Height %	
1	7.694	6806827	369507	50.193	53.349	
2	9.561	6754446	323117	49.807	46.651	
Total		13561273	692623	100.000	100.000	

Pea	kΤ	a	bl	e

Peak#	Ret. Time	Area	Height	Area %	Height %
1	7.863	29589551	1486063	97.688	97.419
2	9.648	700157	39366	2.312	2.581
Total		30289708	1525429	100.000	100.000

PeakTable

Detector A Ch1 210nm								
Peak#	Ret. Time	Area	Height	Area %	Height %			
1	6.598	7770422	553819	49.829	55.054			
2	8.404	7823610	452133	50.171	44.946			
Total		15594032	1005952	100.000	100.000			

			PeakTable		
Detector A	Ch1 210nm				
Peak#	Ret. Time	Area	Height	Area %	Height %
1	6.783	15994906	1083159	97.180	97.537
2	8.714	464208	27353	2.820	2.463
Total		16459114	1110511	100.000	100.000

PeakTable

			I cak l'able						
Detector A Ch1 210nm									
Peak#	Ret. Time	Area	Height	Area %	Height %				
1	18.062	4971744	153559	35.820	54.218				
2	31.862	5003519	85976	36.049	30.356				
3	47.208	1856957	22631	13.379	7.990				
4	55.911	2047716	21060	14.753	7.436				
Total		13879935	283226	100.000	100.000				

1 Det.A Ch1/210nm

 PeakTable

 Detector A Ch1 210nm
 Area
 Height
 Area %
 Height %

 1
 19.094
 24893729
 722394
 95.301
 96.927

 2
 32.565
 1227382
 22905
 4.699
 3.073

 Total
 26121111
 745298
 100.000
 100.000

....

PeakTable

Detector A (Ch1 210nm				
Peak#	Ret. Time	Area	Height	Area %	Height %
1	7.574	6227556	307633	46.488	49.964
2	9.358	6162144	274610	46.000	44.601
3	12.621	485535	21882	3.624	3.554
4	22.183	520787	11581	3.888	1.881
Total		13396021	615706	100.000	100.000

Detector A (Ch1 210nm		PeakTable		
Peak#	Ret. Time	Area	Height	Area %	Height %
1	7.681	19032818	871538	97.634	97.556
2	9.451	461249	21836	2.366	2.444
Total		19494068	893374	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	9.356	9530093	297173	47.892	56.362
2	11.581	10369080	230085	52.108	43.638
Total		19899173	527257	100.000	100.000

Detector A (Ch1 210nm				
Peak#	Ret. Time	Area	Height	Area %	Height %
1	8.914	27391790	937829	94.121	94.873
2	10.706	1711007	50685	5.879	5.127
Total		29102797	988514	100.000	100.000

PeakTable

PeakTable

Feak rable										
Detector A G	Detector A Ch1 210nm									
Peak#	Ret. Time	Area	Height	Area %	Height %					
1	7.042	10519576	529804	41.388	43.855					
2	7.693	10338682	514557	40.676	42.593					
3	13.797	2306563	86484	9.075	7.159					
4	16.129	2252292	77239	8.861	6.394					
Total		25417112	1208084	100.000	100.000					

PeakTable Detector A Ch1 210nm										
Peak#	Ret. Time	Area	Height	Area %	Height %					
1	7.020	6922112	362042	95.640	95.876					
2	8.000	315576	15573	4.360	4.124					
Total		7237688	377615	100.000	100.000					

PeakTable

			r can r ac	//0					
Detector A Ch1 210nm									
Peak#	Ret. Time	Area	Height	Area %	Height %				
1	16.166	7557934	255072	50.072	48.322				
2	27.783	7536052	272782	49.928	51.678				
Total		15093985	527855	100.000	100.000				

1 Det.A Ch1/210nm

PeakTable

				I Cak I able	2					
Γ	Detector A Ch1 210nm									
	Peak#	Ret. Time	Area	Height	Area %	Height %				
	1	16.077	14075324	466774	94.285	96.029				
	2	28.215	853172	19301	5.715	3.971				
	Total		14928496	486075	100.000	100.000				

1 Det.A Ch1/210nm

PeakTable Petector A Ch1 210nm								
Peak#	Ret. Time	Area	Height	Area %	Height %			
1	5.930	13491322	674632	49.499	50.992			
2	7.091	13764401	648383	50.501	49.008			
Total		27255723	1323014	100.000	100.000			

1 Det.A Ch1/210nm

	PeakTable							
etector A (Ch1 210nm							
Peak#	Ret. Time	Area	Height	Area %	Height %			
1	6.064	621920	30785	3.085	3.352			
2	7.155	19539102	887532	96.915	96.648			
Total		20161022	918317	100.000	100.000			

Detector A C	Ch1 210nm		PeakTa	ble	
Peak#	Ret. Time	Area	Height	Area %	Height %
1	9.822	6066815	157558	49.159	54.263
2	11.893	6274329	132802	50.841	45.737
Total		12341144	290360	100.000	100.000

Detector A (ble				
Peak#	Ret. Time	Area	Height	Area %	Height %
1	9.823	23385158	634284	94.950	96.038
2	11.477	1243653	26169	5.050	3.962
Total		24628811	660452	100.000	100.000

PeakTable

Detector A	Chi 210nm				
Peak#	Ret. Time	Area	Height	Area %	Height %
1	5.851	7951542	609672	44.503	50.352
2	7.371	7982670	496751	44.677	41.026
3	8.919	984299	57179	5.509	4.722
4	11.301	948855	47208	5.311	3.899
Total		17867366	1210809	100.000	100.000

	PeakTable							
Detector A Ch1 210nm								
Peak#	Ret. Time	Area	Height	Area %	Height %			
1	6.015	6267218	463102	96.292	96.771			
2	7.665	241310	15455	3.708	3.229			
Total		6508528	478557	100.000	100.000			

 PeakTable

 PeakTable

 Peak#
 Ret. Time
 Area
 Height
 Area %
 Height %

 1
 10.046
 13678526
 378467
 50.175
 64.141

 2
 14.818
 13582922
 211586
 49.825
 35.859

 Total
 27261448
 590054
 100.000
 100.000

Detector A	Detector A Ch1 210nm PeakTable								
Peak#	Ret. Time	Area	Height	Area %	Height %				
1	11.541	952011	21966	6.729	9.061				
2	14.893	13196155	220465	93.271	90.939				
Total		14148166	242432	100.000	100.000				

1 Det.A Ch1/210nm

PeakTable

Detector A G	Ch1 210nm				
Peak#	Ret. Time	Area	Height	Area %	Height %
1	10.229	26119580	666677	51.549	62.243
2	14.202	24549843	404415	48.451	37.757
Total		50669422	1071092	100.000	100.000

1 Det.A Ch1/210nm

PeakTable

			Peak lable		
Detector A C	Ch1 210nm				
Peak#	Ret. Time	Area	Height	Area %	Height %
1	12.311	584173	11705	5.857	8.415
2	15.948	9389861	127392	94.143	91.585
Total		9974034	139097	100.000	100.000

 PeakTable
 PeakTable

 Peak#
 Ret. Time
 Area
 Height
 Area %
 Height %

 1
 7.460
 11024759
 539070
 45.761
 51.500

 2
 10.148
 11067000
 442733
 45.936
 42.297

 3
 13.385
 990225
 39299
 4.110
 3.754

 4
 18.177
 1010045
 25626
 4.192
 2.448

 Total
 24092028
 1046728
 100.000
 100.000

Detector A (Ch1 210nm		PeakTable		
Peak#	Ret. Time	Area	Height	Area %	Height %
1	7.407	14208086	642209	97.105	97.874
2	9.689	423513	13951	2.895	2.126
Total		14631599	656160	100.000	100.000

1 Det.A Ch1/210nm

PeakTable

etector A (etector A Ch1 210nm								
Peak#	Ret. Time	Area	Height	Area %	Height %				
1	6.826	623038	48511	3.113	3.551				
2	7.385	9380798	654988	46.871	47.945				
3	8.154	9380089	623966	46.868	45.674				
4	8.869	630092	38657	3.148	2.830				
Total		20014017	1366121	100.000	100.000				

1 Det.A Ch1/210nm

		Peal	Table						
Detector A C	Detector A Ch1 210nm								
Peak#	Ret. Time	Area	Height	Area %	Height %				
1	7.378	229158	15775	2.981	3.100				
2	8.130	7457421	493100	97.019	96.900				
Total		7686579	508875	100.000	100.000				

PeakTable

etector A (tector A Ch1 210nm						
Peak#	Ret. Time	Area	Height	Area %	Height %		
1	4.653	7688442	614390	36.304	55.721		
2	5.285	3034077	198317	14.327	17.986		
3	6.776	2816944	140034	13.301	12.700		
4	12.544	7638508	149884	36.068	13.593		
Total		21177972	1102625	100.000	100.000		

1 Det.A Ch1/210nm

 PeakTable

 Peak#
 Ret. Time
 Area
 Height
 Area %
 Height %

 1
 4.609
 10362528
 832227
 94.741
 97.438

 2
 11.164
 575211
 21885
 5.259
 2.562

 Total
 10937738
 854112
 100.000
 100.000

PeakTable Detector A Ch1 210nm Peak# Ret. Time 1 19.937 2 21.429 3 25.487 Height % 20.074 37.713 12.702 Height 60161 113027 Area % 13.899 36.016 Area 2361322 6118592 2384480 38067 14.036 29.512 100.000 6124376 16988770 36.050 100.000 4 33.011 88449 299705 Total

1 Det.A Ch1/210nm

PeakTable

	CL1 210				
etector A C Peak#	Ret Time	Area	Height	Area %	Height %
1	19.072	1267453	33712	9.581	14.303
2	20.842	2838193	56791	21.454	24.095
3	23.515	2783518	49903	21.041	21.172
4	30.742	6339857	95294	47.924	40.430
Total		13229021	235700	100.000	100.000

1 Det.A Ch1/210nm

PeakTable

		1	cakiaole						
Detector A Ch1 210nm									
Peak#	Ret. Time	Area	Height	Area %	Height %				
1	10.700	841683	36049	5.414	6.893				
2	12.491	6969400	289753	44.830	55.406				
3	16.777	794997	23748	5.114	4.541				
4	18.243	6940352	173415	44.643	33.160				
Total		15546432	522965	100.000	100.000				

1 Det.A Ch1/210nm

PeakTable

	1 car l'able							
Detector A Ch1 210nm								
Peak#	Ret. Time	Area	Height	Area %	Height %			
1	13.081	6141509	240003	57.675	70.500			
2	19.106	4506884	100426	42.325	29.500			
Total		10648394	340429	100.000	100.000			