Accessing Conjugated Polymers with Precisely Controlled Heterobisfunctional Chain
 Ends via Post Polymerization Modification of OTf Group and Controlled $\operatorname{Pd}(0) / t-\mathrm{Bu}_{3} \mathrm{P}$-Catalyzed Suzuki Cross-Coupling Polymerization

Hong-Hai Zhang, ${ }^{1}$ Qiao-Sheng $\mathrm{Hu}^{{ }^{1 *}}$ and Kunlun Hong ${ }^{2 *}$

1. Department of Chemistry, College of Staten Island and Graduate Center of the City University of New York, Staten Island, New York, 10314, United States
2.Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, United States

Qiaosheng.hu@csi.cuny.edu or hongkq@ornl.gov

Supporting Information

General: ${ }^{1} \mathrm{H}$ \& ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Varian 600 MHz NMR spectrometer. Chemical shifts were determined relative to internal $\left(\mathrm{CH}_{3}\right)_{4} \mathrm{Si}$ (TMS). All yields reported refer to isolated yields unless otherwise indicated. Mn and $\mathrm{Mw} / \mathrm{Mn}$ (PDI) value of polymers were measured with gel permeation chromatography (TOSOH HLC-8320GPC) using THF as eluent ($1 \mathrm{~mL} / \mathrm{min}$) at $40{ }^{\circ} \mathrm{C}$, which were calibrated with polystyrene standards. MALDI-TOF mass spectra were recorded on a Bruker Reflex III in the reflection mode with a laser ($\lambda=337 \mathrm{~nm}$) using 1,1,4,4-tetraphenyl-1,3-butadiene as a matrix. Unless otherwise mentioned, solvents and reagents were purchased from commercial sources and used as received.

2-(7-Bromo-9,9-dihexyl-9H-fluoren-2-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolan e was prepared in the way similar to the literature. ${ }^{1}$ 4-Bromo-2,5dihexyloxyphenylboronic acid was prepared according to the reported procedure but purified by recrystallization from Methanol. ${ }^{2}$ 2-(5-bromo-4-hexylthiophen-2-yl) -4,4,5,5-tetramethyl-1,3,2-dioxaborolane was prepared according to the reported procedure. ${ }^{3}$ The preparation of Sphos-coordinated 2-Phenylaniline-based Palladacycle complex 1 was previously reported. ${ }^{4}$ THF was freshly distilled from sodium/benzophenone. t - $\mathrm{Bu}_{3} \mathrm{P}$ was purchased from Sigma-Aldrich and $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$ was purchase from Stem Chemicals and used as received.

General Procedure for the polymerization of 2-(7-bromo-9,9-dihexyl-9H-fluoren -2-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane with $\mathbf{P d}_{2}(\mathbf{d b a})_{3} / t-\mathrm{Bu}_{3} \mathbf{P} / \mathbf{A r X}$ as initiator and quenched by arylboronic acid: In a drybox under N_{2} atmosphere, to $5-\mathrm{mL}$ vial containing $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(5.5 \mathrm{mg}, 0.006 \mathrm{mmol})$, THF $(0.4 \mathrm{~mL})$ and $t-\mathrm{Bu}_{3} \mathrm{P}(48$ $\mu \mathrm{L}, 0.5 \mathrm{M}$ solution in THF) was added aryl halogen ($80 \mu \mathrm{~L}, 0.25 \mathrm{M}$ solution in THF). The mixture was stirred for 1 hour at room temperature to generate the initiator. To another vial containing 2-(7-bromo-9,9-dihexyl-9H-fluoren-2-yl)-4,4,5,5-
tetramethyl-1,3,2- dioxaborolane (0.1 mmol) and THF (5.4 mL) was added 0.5 mL of $\mathrm{K}_{3} \mathrm{PO}_{4}$ solution ($0.5 \mathrm{~mL}, 2 \mathrm{M}$ solution in water) and the mixture was cooled to $0{ }^{\circ} \mathrm{C}$. The solution of the in situ generated initiator was quickly injected into the solution of monomer and the resulting mixture was stirred for 25 min at $0{ }^{\circ} \mathrm{C}$. The reaction was quenched by injecting arylboronic acid ($0.4 \mathrm{~mL}, 0.25 \mathrm{M}$ soluntion in THF) and stirred for 1 hour. The product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The organic layer was combined, washed by brine and dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The mixture was filtered and the filtrate was evaporated under reduced pressure. The residue was dissolved in a minimum amount of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the solution was added dropwise to methanol with stirring. The precipitate was collected by filtration, washed with methanol and water and dried under vacuum.

(h)

(i)

Figure S1: MALDI-TOF mass spectrum of poly(9,9-dihexylfluorene)s obtained with $\mathrm{Pd}_{2}(\mathrm{dba})_{3} / t-\mathrm{Bu}_{3} \mathrm{P} / \mathrm{ArX}$ as initiator and quenched by different aryl boronic acid. (a) $\mathrm{Pd}_{2}(\mathrm{dba})_{3} / t-\mathrm{Bu}_{3} \mathrm{P} / p-\mathrm{TfOC}_{6} \mathrm{H}_{4} \mathrm{Br}$ as initiator, 4-methoxyphenyl boronic acid as
quenching reagent. (b) $\mathrm{Pd}_{2}(\mathrm{dba})_{3} / t-\mathrm{Bu}_{3} \mathrm{P} / p-\mathrm{TfOC}_{6} \mathrm{H}_{4} \mathrm{I}$ as initiator, 4-methoxyphenyl boronic acid as quenching reagent. (c) $\mathrm{Pd}_{2}(\mathrm{dba})_{3} / t-\mathrm{Bu}_{3} \mathrm{P} / p-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{Br}$ as initiator, 4-methoxyphenyl boronic acid as quenching reagent. (d) $\mathrm{Pd}_{2}(\mathrm{dba})_{3} / t-\mathrm{Bu}_{3} \mathrm{P} / p-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{I}$ as initiator, 4-methoxyphenyl boronic acid as quenching reagent. (e) $\mathrm{Pd}_{2}(\mathrm{dba})_{3} / t-\mathrm{Bu}_{3} \mathrm{P} / p-\mathrm{TsOC}_{6} \mathrm{H}_{4} \mathrm{Br}$ as initiator, 4-methoxyphenyl boronic acid as quenching reagent. (f) $\mathrm{Pd}_{2}(\mathrm{dba})_{3} / t-\mathrm{Bu}_{3} \mathrm{P} / p-\mathrm{TsOC}_{6} \mathrm{H}_{4} \mathrm{I}$ as initiator, 4-methoxyphenyl boronic acid as quenching reagent. (g) $\mathrm{Pd}_{2}(\mathrm{dba})_{3} / t-\mathrm{Bu}_{3} \mathrm{P} / p-\mathrm{TfOC} 6_{6} \mathrm{H}_{4} \mathrm{Br}$ as initiator, 4-methylphenyl boronic acid as quenching reagent. (h) $\mathrm{Pd}_{2}(\mathrm{dba})_{3} / t-\mathrm{Bu}_{3} \mathrm{P} / p-\mathrm{TfOC}_{6} \mathrm{H}_{4} \mathrm{Br}$ as initiator, 4-fluorophenyl boronic acid as quenching reagent. (i) $\mathrm{Pd}_{2}(\mathrm{dba})_{3} / t-\mathrm{Bu}_{3} \mathrm{P} / p-\mathrm{TfOC} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Br}$ as initiator, 4-acetylphenyl boronic acid as quenching reagent. (j) $\mathrm{Pd}_{2}(\mathrm{dba})_{3} / t-\mathrm{Bu}_{3} \mathrm{P} / p-\mathrm{TfOC}_{6} \mathrm{H}_{4} \mathrm{Br}$ as initiator, 2-hydroxyphenyl boronic acid as quenching reagent.

General procedure for Suzuki cross-coupling reaction between polyfluorene and arylboronic acid: In a drybox under N_{2} atmosphere, to $5-\mathrm{mL}$ vial containing polymer $(20 \mathrm{mg})$, precatalyst $\mathbf{1}(3.2 \mathrm{mg})$ and aryl boronic acid (0.08 mmol) in THF (4 mL) was added $\mathrm{K}_{3} \mathrm{PO}_{4}$ solution ($0.1 \mathrm{~mL}, 2 \mathrm{M}$ solution in water). The mixture was stirred at $50^{\circ} \mathrm{C}$ for 12 hour. The product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The organic layer was combined, washed by brine and dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The mixture was filtered and the filtrate was evaporated under reduced pressure. The residue was dissolved in a minimum amount of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the solution was added dropwise to methanol with stirring. The precipitate was collected by filtration, washed with methanol and water and dried under vacuum.

80% yield. Yellow solid. GPC: $\mathrm{Mn}=9600$ (PDI = 1.16). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, ppm): $\delta 7.83 \sim 7.85(\mathrm{~m}, 2 \mathrm{H}), 7.67 \sim 7.70(\mathrm{~m}, 4 \mathrm{H}), 2.12(\mathrm{br}, 4 \mathrm{H}), 1.14 \sim 1.17(\mathrm{~m}, 12$ H), $0.79 \sim 0.84(\mathrm{~m}, 10 \mathrm{H})$; small peaks which were observed at $7.77(\mathrm{~s}, 0.21 \mathrm{H})$ and $3.88(\mathrm{~s}, 0.13 \mathrm{H})$ are attributed to characteristic protons of the end groups.

80% yield. Yellow solid. GPC: $\mathrm{Mn}=9700(\mathrm{PDI}=1.15) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, ppm): $\delta 7.83 \sim 7.85(\mathrm{~m}, 2 \mathrm{H}), 7.67 \sim 7.70(\mathrm{~m}, 4 \mathrm{H}), 2.12(\mathrm{br}, 4 \mathrm{H}), 1.14 \sim 1.17(\mathrm{~m}, 12$ H), $0.79 \sim 0.84(\mathrm{~m}, 10 \mathrm{H})$; small peaks which were observed at $8.07(\mathrm{~d}, 0.11 \mathrm{H}), 3.88$ $(\mathrm{s}, 0.14 \mathrm{H})$ and $2.67(\mathrm{~s}, 0.16 \mathrm{H})$ are attributed to characteristic protons of the end groups.

80% yield. Yellow solid. GPC: $\mathrm{Mn}=11700$ (PDI = 1.14). ${ }^{1} \mathrm{H}$ NMR (600 MHz , $\mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 7.84 \sim 7.85(\mathrm{~m}, 2 \mathrm{H}), 7.67 \sim 7.71(\mathrm{~m}, 4 \mathrm{H}), 2.12(\mathrm{br}, 4 \mathrm{H}), 1.14 \sim 1.17$ $(\mathrm{m}, 12 \mathrm{H}), 0.79 \sim 0.84(\mathrm{~m}, 10 \mathrm{H})$; small peaks which were observed at $6.96(\mathrm{~m}, 0.10 \mathrm{H})$ and $3.88(\mathrm{~s}, 0.14 \mathrm{H})$ are attributed to characteristic protons of the end groups.

80% yield. Yellow solid. GPC: $\mathrm{Mn}=11100$ (PDI $=1.15$). ${ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}$, CDCl_{3}, ppm): $\delta 7.84 \sim 7.85(\mathrm{~m}, 2 \mathrm{H}), 7.67 \sim 7.71$ (m, 4 H), 2.12 (br, 4 H), $1.14 \sim 1.18$ $(\mathrm{m}, 12 \mathrm{H}), 0.77 \sim 0.84(\mathrm{~m}, 10 \mathrm{H})$; small peaks which were observed at $5.26(\mathrm{~s}, 0.05 \mathrm{H})$ and $3.88(\mathrm{~s}, 0.13 \mathrm{H})$ are attributed to characteristic protons of the end groups.

80\% yield. Yellow solid. GPC: $\mathrm{Mn}=11200$ (PDI = 1.16). ${ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right): \delta 7.84 \sim 7.85(\mathrm{~m}, 2 \mathrm{H}), 7.67 \sim 7.71(\mathrm{~m}, 4 \mathrm{H}), 2.12(\mathrm{br}, 4 \mathrm{H}), 1.14 \sim 1.18$ $(\mathrm{m}, 12 \mathrm{H}), 0.77 \sim 0.84(\mathrm{~m}, 10 \mathrm{H})$; small peaks which were observed at $3.88(\mathrm{~s}, 0.13 \mathrm{H})$ and $2.42(\mathrm{~s}, 0.14 \mathrm{H})$ are attributed to characteristic protons of the end groups.

80% yield. Yellow solid. GPC: $\mathrm{Mn}=11700$ (PDI $=1.14$). ${ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right): \delta 7.84 \sim 7.85(\mathrm{~m}, 2 \mathrm{H}), 7.67 \sim 7.71(\mathrm{~m}, 4 \mathrm{H}), 2.12(\mathrm{br}, 4 \mathrm{H}), 1.14 \sim 1.18$ $(\mathrm{m}, 12 \mathrm{H}), 0.77 \sim 0.84(\mathrm{~m}, 10 \mathrm{H})$; small peaks which were observed at $6.78(\mathrm{dd}, J=$ $14.4 \mathrm{~Hz}, ~, ~ J=18.0 \mathrm{~Hz}, 0.05 \mathrm{H}$), $5.82(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 0.05 \mathrm{H}), 5.30(\mathrm{~d}, J=10.8 \mathrm{~Hz}$, $0.05 \mathrm{H})$ and $3.88(\mathrm{~s}, 0.13 \mathrm{H})$ are attributed to characteristic protons of the end groups.

80% yield. Yellow solid. GPC: $\mathrm{Mn}=9700$ (PDI = 1.17). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$, ppm): $\delta 7.84 \sim 7.85(\mathrm{~m}, 2 \mathrm{H}), 7.67 \sim 7.71(\mathrm{~m}, 4 \mathrm{H}), 2.12$ (br, 4 H), $1.14 \sim 1.18$ (m, 12 H), $0.77 \sim 0.84(\mathrm{~m}, 10 \mathrm{H})$; small peaks which were observed at $8.70(\mathrm{~d}, J=6.0 \mathrm{~Hz}$, $0.09 \mathrm{H})$ and $3.88(\mathrm{~s}, 0.15 \mathrm{H})$ are attributed to characteristic protons of the end groups.

90% yield. Yellow solid. GPC: $\mathrm{Mn}=12500$ (PDI $=1.17$). ${ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right): \delta 7.84 \sim 7.85(\mathrm{~m}, 2 \mathrm{H}), 7.67 \sim 7.71(\mathrm{~m}, 4 \mathrm{H}), 2.12(\mathrm{br}, 4 \mathrm{H}), 1.14 \sim 1.18$ ($\mathrm{m}, 12 \mathrm{H}$), $0.77 \sim 0.84(\mathrm{~m}, 10 \mathrm{H})$; small peaks which were observed at $3.88(\mathrm{~s}, 0.10 \mathrm{H})$ and $2.43(\mathrm{~s}, 0.10 \mathrm{H})$ are attributed to characteristic protons of the end groups.

95% yield. Yellow solid. GPC: $\mathrm{Mn}=12500$ (PDI = 1.17). ${ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right): \delta 7.83 \sim 7.84(\mathrm{~m}, 2 \mathrm{H}), 7.67 \sim 7.71(\mathrm{~m}, 4 \mathrm{H}), 2.12(\mathrm{br}, 4 \mathrm{H}), 1.14 \sim 1.18$ $(\mathrm{m}, 12 \mathrm{H}), 0.77 \sim 0.84(\mathrm{~m}, 10 \mathrm{H})$; small peaks which were observed at $8.08(\mathrm{~s}, 0.07 \mathrm{H})$ and $2.43(\mathrm{~s}, 0.11 \mathrm{H})$ are attributed to characteristic protons of the end groups.

95% yield. Yellow solid. GPC: $\mathrm{Mn}=9000$ (PDI = 1.16). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$, ppm): $\delta 7.83 \sim 7.84(\mathrm{~m}, 2 \mathrm{H}), 7.67 \sim 7.71(\mathrm{~m}, 4 \mathrm{H}), 2.12(\mathrm{br}, 4 \mathrm{H}), 1.14 \sim 1.18(\mathrm{~m}, 12$ H), $0.77 \sim 0.84(\mathrm{~m}, 10 \mathrm{H})$; small peaks which were observed at $7.26 \sim 7.37(\mathrm{~m}, 0.09 \mathrm{H})$ and $3.90(\mathrm{~s}, 0.14 \mathrm{H})$ are attributed to characteristic protons of the end groups.

95% yield. Yellow solid. GPC: $\mathrm{Mn}=10400$ (PDI = 1.18). ${ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right): \delta 7.83 \sim 7.84(\mathrm{~m}, 2 \mathrm{H}), 7.67 \sim 7.71(\mathrm{~m}, 4 \mathrm{H}), 2.12(\mathrm{br}, 4 \mathrm{H}), 1.14 \sim 1.18$ $(\mathrm{m}, 12 \mathrm{H}), 0.77 \sim 0.84(\mathrm{~m}, 10 \mathrm{H})$; small peaks which were observed at $7.26 \sim 7.37(\mathrm{~m}$, $0.10 \mathrm{H})$ and $3.90(\mathrm{~s}, 0.16 \mathrm{H})$ are attributed to characteristic protons of the end groups.

95% yield. Yellow solid. GPC: $\mathrm{Mn}=10700$ (PDI = 1.16). ${ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right): 87.83 \sim 7.84(\mathrm{~m}, 2 \mathrm{H}), 7.67 \sim 7.71(\mathrm{~m}, 4 \mathrm{H}), 2.12(\mathrm{br}, 4 \mathrm{H}), 1.14 \sim 1.18$ $(\mathrm{m}, 12 \mathrm{H}), 0.77 \sim 0.84(\mathrm{~m}, 10 \mathrm{H})$; small peaks which were observed at $7.26 \sim 7.37(\mathrm{~m}$, $0.10 \mathrm{H})$ and $3.86(\mathrm{~s}, 0.17 \mathrm{H})$ are attributed to characteristic protons of the end groups.

95% yield. Yellow solid. GPC: $\mathrm{Mn}=9000$ (PDI = 1.17). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$, ppm): $\delta 7.83 \sim 7.84(\mathrm{~m}, 2 \mathrm{H}), 7.67 \sim 7.71(\mathrm{~m}, 4 \mathrm{H}), 2.12(\mathrm{br}, 4 \mathrm{H}), 1.14 \sim 1.18(\mathrm{~m}, 12$ H), $0.77 \sim 0.84(\mathrm{~m}, 10 \mathrm{H})$; small peaks which were observed at $7.25 \sim 7.30(\mathrm{~m}, 0.12 \mathrm{H})$ and $2.42(\mathrm{~s}, 0.19 \mathrm{H})$ are attributed to characteristic protons of the end groups.

80% yield. Yellow solid. GPC: $\mathrm{Mn}=9700$ (PDI = 1.15). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$, ppm): $\delta 7.83 \sim 7.85$ (m, 2 H), $7.67 \sim 7.70(\mathrm{~m}, 4 \mathrm{H}), 2.12$ (br, 4 H), $1.14 \sim 1.17$ (m, 12 $\mathrm{H}), 0.79 \sim 0.84(\mathrm{~m}, 10 \mathrm{H})$; small peaks which were observed at $3.88(\mathrm{~s}, 0.12 \mathrm{H})$ and $2.67(\mathrm{~s}, 0.12 \mathrm{H})$ are attributed to characteristic protons of the end groups.

90\% yield. Yellow solid. GPC: $\mathrm{Mn}=13200$ (PDI = 1.18). ${ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right): \delta 7.83 \sim 7.85(\mathrm{~m}, 2 \mathrm{H}), 7.67 \sim 7.70(\mathrm{~m}, 4 \mathrm{H}), 2.12(\mathrm{br}, 4 \mathrm{H}), 1.14 \sim 1.17$ $(\mathrm{m}, 12 \mathrm{H}), 0.79 \sim 0.84(\mathrm{~m}, 10 \mathrm{H})$; small peaks which were observed at $7.77(\mathrm{~s}, 0.19 \mathrm{H})$, $7.04 \sim 7.06(\mathrm{~m}, 0.10 \mathrm{H})$ and $5.33(\mathrm{~s}, 0.04 \mathrm{H})$ are attributed to characteristic protons of the end groups.

90% yield. Yellow solid. GPC: $\mathrm{Mn}=13200$ (PDI = 1.17). ${ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right): \delta 7.83 \sim 7.85(\mathrm{~m}, 2 \mathrm{H}), 7.67 \sim 7.70(\mathrm{~m}, 4 \mathrm{H}), 2.12(\mathrm{br}, 4 \mathrm{H}), 1.14 \sim 1.17$ $(\mathrm{m}, 12 \mathrm{H}), 0.79 \sim 0.84(\mathrm{~m}, 10 \mathrm{H})$; small peaks which were observed at $9.28(\mathrm{~s}, 0.04 \mathrm{H})$, $8.39(\mathrm{~s}, 0.04 \mathrm{H}), 8.17(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 0.03 \mathrm{H}), 7.04 \sim 7.06(\mathrm{~m}, 0.09 \mathrm{H})$ and $5.33(\mathrm{~s}$, 0.04 H) are attributed to characteristic protons of the end groups.

General procedure for Suzuki cross-coupling reaction between polyfluorene and alkenyl (alkyl) boronic acid: In a drybox under N_{2} atmosphere, to $5-\mathrm{mL}$ vial containing polymer (20 mg), $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}(0.004 \mathrm{mmol})$ and alkenyl boronic acid $(0.08 \mathrm{mmol})$ in THF $(4 \mathrm{~mL})$ was added $\mathrm{K}_{3} \mathrm{PO}_{4}$ solution $(0.1 \mathrm{~mL}, 2 \mathrm{M}$ solution in water). The mixture was stirred at $80^{\circ} \mathrm{C}$ for 16 hour. The product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The organic layer was combined, washed by brine and dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The mixture was filtered and the filtrate was evaporated under reduced pressure. The residue was dissolved in a minimum amount of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the solution was added dropwise to methanol with stirring. The precipitate was collected by filtration, washed with methanol and water and dried under vaccum.

88% yield. Yellow solid. GPC: $\mathrm{Mn}=12800$ (PDI = 1.18). ${ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right): \delta 7.83 \sim 7.85(\mathrm{~m}, 2 \mathrm{H}), 7.67 \sim 7.70(\mathrm{~m}, 4 \mathrm{H}), 2.12(\mathrm{br}, 4 \mathrm{H}), 1.14 \sim 1.17$ $(\mathrm{m}, 12 \mathrm{H}), 0.79 \sim 0.84(\mathrm{~m}, 10 \mathrm{H})$; small peaks which were observed at $6.20(\mathrm{~d}, J=$ $17.4 \mathrm{~Hz}, 0.04 \mathrm{H}), 5.24(\mathrm{~d}, J=24.0 \mathrm{~Hz}, 0.03 \mathrm{H})$ and $3.90(\mathrm{~s}, 0.21 \mathrm{H})$ are attributed to characteristic protons of the end groups.

94% yield. Yellow solid. GPC: $\mathrm{Mn}=12800$ (PDI = 1.17). ${ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right): \delta 7.83 \sim 7.85(\mathrm{~m}, 2 \mathrm{H}), 7.67 \sim 7.70(\mathrm{~m}, 4 \mathrm{H}), 2.12(\mathrm{br}, 4 \mathrm{H}), 1.14 \sim 1.17$ $(\mathrm{m}, 12 \mathrm{H}), 0.79 \sim 0.84(\mathrm{~m}, 10 \mathrm{H})$; small peaks which were observed at $7.04(\mathrm{~d}, J=9.0$ $\mathrm{Hz}, 0.13 \mathrm{H}), 6.20(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 0.04 \mathrm{H}), 5.24(\mathrm{~d}, J=24.0 \mathrm{~Hz}, 0.04 \mathrm{H})$ and $3.90(\mathrm{~s}$, 0.17 H) are attributed to characteristic protons of the end groups. See Figure S2 for further details.

90% yield. Yellow solid. GPC: $\mathrm{Mn}=12800$ (PDI $=1.17$). ${ }^{1} \mathrm{H}$ NMR (600 MHz ,
$\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right): \delta 7.83 \sim 7.85(\mathrm{~m}, 2 \mathrm{H}), 7.67 \sim 7.70(\mathrm{~m}, 4 \mathrm{H}), 2.12(\mathrm{br}, 4 \mathrm{H}), 1.14 \sim 1.17$ $(\mathrm{m}, 12 \mathrm{H}), 0.79 \sim 0.84(\mathrm{~m}, 10 \mathrm{H})$; small peaks which were observed at $3.90(\mathrm{~s}, 0.19 \mathrm{H})$ and $2.70(\mathrm{t}, J=9.0 \mathrm{~Hz}, 0.11 \mathrm{H})$ are attributed to characteristic protons of the end groups. See Figure S2 for further details.

General procedure for Sonogashira cross-coupling reaction between polyfluorene and terminal alkyne: In a drybox under N_{2} atmosphere, to $5-\mathrm{mL}$ vial containing polymer (20 mg), $\mathrm{Pd}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2} \mathrm{Cl}_{2}(0.004 \mathrm{mmol})$ and terminal alkyne $(0.08 \mathrm{mmol})$ in THF (4 mL) was added $\mathrm{Cs}_{2} \mathrm{CO}_{3}(0.08 \mathrm{mmol})$. The mixture was stirred at $80^{\circ} \mathrm{C}$ for 16 hour. The product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The organic layer was combined, washed by brine and dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The mixture was filtered and the filtrate was evaporated under reduced pressure. The residue was dissolved in a minimum amount of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the solution was added dropwise to methanol with stirring. The precipitate was collected by filtration, washed with methanol and water and dried under vaccum.

90% yield. Yellow solid. GPC: $\mathrm{Mn}=12700$ (PDI $=1.18$). ${ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}$, $\mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 7.83 \sim 7.85(\mathrm{~m}, 2 \mathrm{H}), 7.67 \sim 7.70(\mathrm{~m}, 4 \mathrm{H}), 2.12(\mathrm{br}, 4 \mathrm{H}), 1.14 \sim 1.17$ (m, 12 H), $0.79 \sim 0.84(\mathrm{~m}, 10 \mathrm{H})$; small peaks which were observed at $7.24 \sim 7.38(\mathrm{~m}$, $0.14 \mathrm{H})$ and $3.90(\mathrm{~s}, 0.17 \mathrm{H})$ are attributed to characteristic protons of the end groups. See Figure S 2 for further details.

92% yield. Yellow solid. GPC: $\mathrm{Mn}=12900$ (PDI = 1.17). ${ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right): \delta 7.83 \sim 7.85(\mathrm{~m}, 2 \mathrm{H}), 7.67 \sim 7.70(\mathrm{~m}, 4 \mathrm{H}), 2.12(\mathrm{br}, 4 \mathrm{H}), 1.14 \sim 1.17$ $(\mathrm{m}, 12 \mathrm{H}), 0.79 \sim 0.84(\mathrm{~m}, 10 \mathrm{H})$; small peaks which were observed at $3.90(\mathrm{~s}, 0.18 \mathrm{H})$ and $0.52(\mathrm{~s}, 0.48 \mathrm{H})$ are attributed to characteristic protons of the end groups. See Figure S 2 for further details.

Maldi-tof Profiles:

$A=-2$

$\triangle=$

$\Delta=\mathrm{Ph}=$

Figure S2: MALDI-TOF mass spectrum of poly(9,9-dihexylfluorene)s obtained by cross-coupling between OTf functionalized poly(9,9-dihexylfluorene)s and different boronic acid or terminal alkyne

General procedure for Suzuki cross-coupling reaction between different polymers and aryl boronic acid: In a drybox under N_{2} atmosphere, to $5-\mathrm{mL}$ vial containing polymer (20 mg), precatalyst $\mathbf{1}(3.2 \mathrm{mg})$ and aryl boronic acid (0.08 mmol) in THF (4 mL) was added $\mathrm{K}_{3} \mathrm{PO}_{4}$ solution ($0.1 \mathrm{~mL}, 2 \mathrm{M}$ solution in water). The mixture was stirred at $50^{\circ} \mathrm{C}$ for 12 hour. The product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{x}$ 20 mL). The organic layer was combined, washed by brine and dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The mixture was filtered and the filtrate was evaporated under reduced pressure. The residue was dissolved in a minimum amount of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the solution was added dropwise to methanol with stirring. The precipitate was collected by filtration, washed with methanol and water and dried under vacuum.

66% yield. Yellow solid. GPC: $\mathrm{Mn}=4400$ (PDI = 1.18). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, ppm): $\delta 7.10$ (s, 2 H), 3.92 (s, 4 H), $1.67 \sim 1.68$ (m, 4 H), $1.27 \sim 1.36$ (m, 12 H), 0.87 (s, 6 H); small peaks which were observed at $7.43(\mathrm{t}, J=8.4 \mathrm{~Hz}, 0.27 \mathrm{H}), 7.34(\mathrm{t}, J=$ $9.0 \mathrm{~Hz}, 0.14 \mathrm{H}), 7.01(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 0.29 \mathrm{H})$ and $3.90(\mathrm{~s}, 0.41 \mathrm{H})$ are attributed to characteristic protons of the end groups.

63% yield. Yellow solid. GPC: $\mathrm{Mn}=8700(\mathrm{PDI}=1.26) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$,
ppm): $\delta 6.99(\mathrm{~s}, 1 \mathrm{H}), 2.81(\mathrm{t}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.26 \sim 1.45(\mathrm{~m}, 8 \mathrm{H}), 0.91 \sim 0.93(\mathrm{~m}, 3$ H); small peaks which were observed at $7.37 \sim 7.41(\mathrm{~m}, 0.10 \mathrm{H})$ and $3.90(\mathrm{~s}, 0.10 \mathrm{H})$ are attributed to characteristic protons of the end groups.

Maldi-tof Profiles:

Figure S3: MALDI-TOF mass spectrum of different polymers obtained by cross-coupling between corresponding OTf functionalized polymer and different boronic acid or terminal alkyne.

Molecular Weight-Conversion Relationship Study for Polymerization with $\mathbf{P d}_{\mathbf{2}}(\mathbf{d b a})_{3} / \boldsymbol{t}$ - $\mathrm{Bu}_{3} \mathbf{P} / \boldsymbol{p}-\mathrm{BrC}_{6} \mathbf{H}_{\mathbf{4}} \mathrm{OTf}$ as the Initiator: In a glovebox under N_{2} atmosphere, to a $5-\mathrm{mL}$ vial containing $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(5.5 \mathrm{mg}, 0.006 \mathrm{mmol})$, THF $(0.4 \mathrm{~mL})$, t - $\mathrm{Bu}_{3} \mathrm{P} \quad(48 \quad \mu \mathrm{~L}, \quad 0.5 \quad \mathrm{M}$ solution in THF) was added 4-bromophenyl trifluoromethanesulfonate ($80 \mu \mathrm{~L}, 0.25 \mathrm{M}$ solution in THF). The mixture was stirred for 1 hour at room temperature to in situ generate the initiator. In another vial containing $\quad 2$-(7-Bromo-9,9-dihexyl-9H-fluoren-2-yl)-4,4,5,5-tetramethyl-1,3,2dioxaborolane ($53.9 \mathrm{mg}, 0.1 \mathrm{mmol}$) and THF (5.4 mL) was added 0.5 mL of $\mathrm{K}_{3} \mathrm{PO}_{4}$ solution (2 M solution in water). The mixture was cooled to $0{ }^{\circ} \mathrm{C}$. The solution of initiator was quickly injected into the solution of monomer and the resulting mixture was stirred at $0{ }^{\circ} \mathrm{C}$. A small aliquot $(0.3 \mathrm{~mL})$ of the organic phase of the reaction mixture was sampled at $5,10,15,20,30 \mathrm{~min}$. Each aliquot was quenched with 6 N HCl solution and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The separated organic layer was evaporated under reduced pressure to get a residue. Half of the residue was dissolved in CDCl_{3} to determine the conversion of monomer by ${ }^{1} \mathrm{H}$ NMR (conversions of $27 \%, 54 \%, 77 \%$, 90% and 98% were observed for $5,10,15,20$ and 30 min , respectively). The other half of the residue was dissolved in THF and the solution was filtered. The filtrate was analyzed by GPC to determine the $M n$ and $M w / M n$ values of the polymers. The $M n$ $(\mathrm{Mw} / \mathrm{Mn})$ values of each polymer initiated by $\mathrm{Pd}_{2}(\mathrm{dba})_{3} / t-\mathrm{Bu}_{3} \mathrm{P} / p-\mathrm{BrC}_{6} \mathrm{H}_{4} \mathrm{OTf}$ for 5 , $10,15,20$ and 30 min were 3000 (1.16), 7400 (1.14), 9500 (1.16), 11300 (1.19) and

12500 (1.18) respectively.

Figure S4 molecular weight-conversion relationship with $\mathrm{Pd}_{2}(\mathrm{dba})_{3} / t-\mathrm{Bu}_{3} \mathrm{P}$ $/ p-\mathrm{BrC}_{6} \mathrm{H}_{4} \mathrm{OTf}$ as the initiator.

The polymerization of 2-(7-Bromo-9,9-dihexyl-9H-fluoren-2-yl)-4,4,5,5-tetramethyl -1,3,2-dioxaborolane with different amounts of initiator $\left(\mathrm{Pd}_{2}(\mathrm{dba})_{3} / t-\mathrm{Bu}_{3} \mathrm{P} / p-\mathrm{BrC}_{6} \mathrm{H}_{4} \mathrm{OTf}, 6,3\right.$ and $2 \mathrm{~mol} \%$ loading for $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$, with the ratio of $\mathrm{Pd}_{2}(\mathrm{dba})_{3}: t-\mathrm{Bu}_{3} \mathrm{P}: p-\mathrm{BrC}_{6} \mathrm{H}_{4} \mathrm{I}$ to be $1: 4: 1.67$) was performed in a manner similar to the general procedure described in the [General Procedure for the polymerization of different monomers initiated by $\left.\mathbf{P d}_{\mathbf{2}}(\mathbf{d b a})_{3} / t-\mathrm{Bu}_{3} \mathbf{P} / \boldsymbol{p}-\mathrm{BrC}_{6} \mathbf{H}_{4} \mathbf{O T f}\right]$ except different initiator loadings. The polymer yields were $85 \%, 65 \%$ and 63% respectively and $M n$ (PDI) were found to be 9600 (1.16), 19400 (1.17) and 30000 (1.19), respectively. A linear relationship was observed for the molecular weight of polymer with the initiator loading.

Figure S5 Mn and PDI values of polyfluorene produced by different amount of initiator $\mathrm{Pd}_{2}(\mathrm{dba})_{3} / t-\mathrm{Bu}_{3} \mathrm{P} / p-\mathrm{BrC}_{6} \mathrm{H}_{4} \mathrm{OTf}$.

Figure S6: MALDI-TOF mass spectrum of poly(9,9-dihexylfluorene)s with different molecular weight (a) $6 \% \mathrm{Pd}_{2}(\mathrm{dba})_{3} / 24 \% t-\mathrm{Bu}_{3} \mathrm{P} / 20 \% \mathrm{OTfC}_{6} \mathrm{H}_{4} \mathrm{Br}$ as initiator, 4-methoxyphenyl boronic acid as quenching reagent, then modified OTf group with (4-cyanophenyl)boronic acid. (b) $3 \% \mathrm{Pd}_{2}(\mathrm{dba})_{3} / 12 \% t-\mathrm{Bu}_{3} \mathrm{P} / 10 \% \mathrm{OTfC}_{6} \mathrm{H}_{4} \mathrm{Br}$ as initiator, 4-methoxyphenyl boronic acid as quenching reagent, then modified OTf group with (4-cyanophenyl)boronic acid. (c) $2 \% \mathrm{Pd}_{2}(\mathrm{dba})_{3} / 8 \% \mathrm{t}-\mathrm{Bu}_{3} \mathrm{P} / 7 \% \mathrm{OTfC}_{6} \mathrm{H}_{4} \mathrm{Br}$ as initiator, 4-methoxyphenylboronic acid as quenching reagent, then modified OTf group with (4-cyanophenyl)boronic acid.

Reference:

1. (a) Manickam, G.; Schluter, A. D., Synthesis 2000, 442-446; (b) Zhang, X.; Tian, H.; Qin, L.; Wang, L.; Geng, Y.; Wang, F., J. Org. Chem. 2006, 71, 4332-4335.
2. Moy, C. L.; Kaliappan, R.; McNeil, A. J., J. Org. Chem. 2011, 76 (20), 8501-8507.
3. Lee, J.; Ko, S.; Bao, Z. Macromol. Rapid Commun. 2012, 33, 938-942.
4. Zhang, H. H.; Xing, C. H.; Tsemo, G. B.; Hu, Q. S. ACS Macro. Lett. 2013, 2, 10-13.

