Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2015

Support Information

Contents

Table of Contents	S1
Experimental Section: General Considerations	S2
General Procedure for the Ru(II)-Catalyzed Amidation Reactions	S2
Characterization of Products 3	S3-S8
Mechanism Research	S9
NMR Spectra	S10-S39
References	S40

Experimental Section:

General Considerations: All the reactions were carried out under argon atmosphere using standard Schlenk technique. ¹H NMR (400 M Hz), ¹⁹F (376 M Hz), and ¹³C NMR (100 M Hz) were recorded on Bruker AV400 NMR spectrometer with CDCl₃ as solvent. Chemical shifts of ¹H, ¹⁹F, and ¹³C NMR spectra are reported in parts per million (ppm). The residual solvent signals were used as references and the chemical shifts converted to the TMS scale (CDCl₃: δ H = 7.26 ppm, δ C = 77.00 ppm), (DMSO: δ H = 2.50 ppm, δ C = 39.43 ppm). All coupling constants (J values) were reported in Hertz (Hz). Multiplicities are reported as follows: singlet (s), doublet (d), doublet of doublets (dd), doublet of doublet of doublets (ddd), doublet of triplets (dt), triplet (t), triplet of doublets (td), quartet (q), and multiplet (m). Column chromatography was performed on silica gel 200-300 mesh. Analytical thin-layer chromatography (TLC) was performed on pre-coated, glass-backed silica gel plates. Visualization of the developed chromatogram was performed by UV absorbance (254 nm). HRMS were done on Varian 7.0 T FTICR-mass spectrometer. [(p-Cymene)RuCl₂]₂ was prepared following a literature procedure.¹ Unless otherwise noted below, all other compounds have been reported in the literature or are commercially available from Alfa Aesar China (Beijing) Chemical Co. Ltd. without any further purification. The substrates **3b-3p**, $3a-D_3^{2-10}$ and $2a-2i^{11}$ were prepared according to the literatures.

General Procedure: Ru(II)-catalyzed C-H Amidation of 8-Methyl-quinolines

A mixture of the substituted 8-methylquinoline (1) (0.6 mmol, 2.0 equiv), the sulfonyl azide (2) (if solid) (0.30 mmol, 1.0 equiv), $[(p-cymene)RuCl_2]_2$ (9.2 mg, 0.015 mmol, 5.0 mol%), $Zn(OAc)_2$ 2H₂O (33.0 mg, 50 mol%) and AgSbF₆ (20.6 mg, 0.06 mmol, 20.0 mol%) were weighted in a Schlenk tube equipped with a stir bar. Dry DCE (2.0 mL) was added (followed immediately by the sulfonyl azide if it is a liquid), and the mixture was stirred at 80 °C for 12 h under Ar atmosphere. Afterward, it was transferred to a round-bottom flask. Silica was added to the flask, and volatiles were evaporated under reduced pressure. The purification was performed by flash column chromatography on silica gel (EtOAc / petroleum ether = 1:6 to 1:3).

*N-(quinolin-8-ylmethyl)-4-(trifluoromethyl)benzenesulfonami de (3aa)*¹⁰

¹H NMR (CDCl₃, 400 MHz) δ 8.82 (1H, d, *J* = 2.6 Hz), 8.05 (1H, m), 7.62 (1H, d, *J* = 8.0 Hz), 7.56 (2H, d, *J* = 8.1 Hz),

7.49-7.39 (2H, m), 7.36-7.30 (1H, m), 7.28 (1H, s), 6.89 (1H, br s), 4.75 (2H, d, J = 6.4 Hz); ¹³C NMR (CDCl₃, 101 MHz) δ 149.4, 145.9, 143.8, 136.7, 133.6, 133.3, 133.0, 132.8, 132.7, 129.6, 128.3, 127.0, 126.8, 126.2(q), 125.9, 124.9(q, CF₃), 124.4, 121.7, 121.3, 46.6; ¹⁹F NMR (CDCl₃, 376 MHz) δ –63.4 (s).

N-((5-Methylquinolin-8-yl)methyl)-4-(trifluoromethyl)benze nesulfonamide (**3ba**)¹⁰

¹H NMR (DMSO, 400 MHz) δ 8.84 (1H, dd, J = 4.1, 1.5

Hz), 8.41 (1H, t, J = 6.2 Hz), 8.37 (1H, d, J = 8.5 Hz), 7.83 (2H, d, J = 8.4 Hz), 7.75 (2H, d, J = 8.4 Hz), 7.58-7.51 (2H, m), 7.32 (1H, d, J = 7.2 Hz), 4.65 (2H, d, J = 6.2 Hz), 2.57 (3H, s); ¹³C NMR (DMSO, 101 MHz) δ 149.1, 145.2, 144.6, 134.1, 132.7, 132.4, 132.1, 131.7, 131.4, 131.1, 128.0, 127.1, 126.7, 126.1, 125.7(q), 124.7, 122.0, 121.0, 42.4, 17.9; ¹⁹F NMR (DMSO, 376 MHz) δ –61.6 (s).

 $-CF_{3} \frac{N-((5-Bromoquinolin-8-yl)methyl)-4-(trifluoromethyl)benzenesu}{lfonamide (3ca)^{10}}$

¹H NMR (CDCl₃, 400 MHz) δ 8.82 (1H, dd, J = 4.2, 1.4 Hz), 8.44 (1H, dd, J = 8.5, 0.9 Hz), 7.62 (1H, d, J = 7.6 Hz), 7.56 (2H, d, J = 8.2 Hz), 7.51 (1H, dd, J = 8.5, 4.2 Hz), 7.36-7.30 (3H, m), 6.65 (1H, t, J = 6.0 Hz), 4.70 (2H, d, J = 6.6 Hz); ¹³C NMR (CDCl₃, 101 MHz) δ 150.1, 146.5, 143.9, 136.3, 133.6, 133.4, 133.3, 130.0, 129.6, 127.6, 126.9, 125.1(q), 124.4, 122.4, 122.2, 121.7, 46.1; ¹⁹F NMR (CDCl₃, 376 MHz) δ -63.1 (s).

¹H NMR (CDCl₃, 400 MHz) δ 8.77 (1H, s), 8.26 (1H, d, J = 8.4 Hz), 7.91 (1H, d, J = 7.4 Hz), 7.56 (2H, d, J = 8.1 Hz), 7.50-7.44 (1H, m), 7.32 (2H, d, J = 8.2 Hz), 7.20 (1H, d, J = 7.5 Hz), 6.66 (1H, br s), 4.69 (2H, d, J = 6.5 Hz); ¹³C NMR (CDCl₃, 101 MHz) δ 150.2, 146.3, 143.8, 141.2, 137.0, 134.3, 133.6, 133.3, 130.7, 130.1, 126.9, 125.1(q), 124.4, 122.9, 121.7, 98.6, 46.1; ¹⁹F NMR (CDCl₃, 376 MHz) δ -62.9 (s).

 O_2N N-((5-Nitroquinolin-8-yl)methyl)-4-(trifluoromethyl)benz enesulfonamide (**3ea**)¹⁰

¹H NMR (DMSO, 400 MHz) δ 9.00 (1H, dd, J = 4.1, 1.5 Hz), 8.78 (1H, dd, J = 8.8, 1.4 Hz), 8.71 (1H, t, J = 6.3 Hz), 8.39 (1H, d, J = 8.0 Hz), 7.92-7.86 (3H, m), 7.83-7.77 (3H, m), 4.78 (2H, d, J = 6.2 Hz); ¹³C NMR (DMSO, 101 MHz) δ 150.9, 144.4, 144.4, 144.3, 142.6, 132.1, 131.7, 131.7, 127.2, 126.7, 126.0(q), 124.7, 124.2, 124.1, 122.0, 119.7, 42.4; ¹⁹F NMR (CDCl₃, 376 MHz): -63.3 (s).

N-((6-Methylquinolin-8-yl)methyl)-4-(trifluoromethyl)benzenes ulfonamide (**3***fa*)¹⁰ ¹H NMR (CDCl₃, 400 MHz) δ 8.75 (1H, s), 7.95 (1H, d, *J* =

7.3 Hz), 7.58 (1H, d, J = 7.0 Hz), 7.36-7.21 (5H, m), 6.93 (1H,

br s), 4.72 (2H, d, J = 6.5 Hz), 2.41 (3H, s); ¹³C NMR (CDCl₃, 101 MHz) δ 148.5, 144.6, 144.0, 136.0, 135.9, 133.7, 133.4, 133.0, 132.7, 132.4, 131.9, 128.4, 127.0, 126.8, 124.9(q), 124.4, 121.7, 121.3, 119.0, 46.5, 21.1; ¹⁹F NMR (CDCl₃, 376 MHz) δ –63.4 (s).

N-((6-methoxyquinolin-8-yl)methyl)-4-(trifluoromethyl)ben zenesulfonamide (**3ga**)

White solid, mp 97-99 °C. ¹H NMR (400 MHz, DMSO) δ 8.76 (d, J = 3.5 Hz, 1H), 8.20 (d, J = 8.0 Hz, 1H), 7.88 - 7.78 (m, 4H), 7.70 (d, J = 8.1 Hz, 2H), 7.39 (d, J = 9.2 Hz, 1H), 7.34 (dd, J = 8.0, 4.0 Hz, 1H), 4.69 (d, J = 5.2 Hz, 2H), 3.82 (s, 3H); ¹³C NMR (101 MHz, DMSO) δ 157.6, 150.4, 146.4, 144.7, 136.1, 129.4, 127.3, 125.5, 122.6, 119.0, 117.7, 113.7, 56.1, 40.2, 39.9, 39.7, 39.5, 39.3, 39.1, 38.9, 36.0; ¹⁹F NMR (376 MHz, CDCl₃) δ -63.4; HRMS (ESI) calcd for C₁₈H₁₅F₃N₂O₃S [M+H]⁺ 397.0828, found 397.0833.

N-((6-fluoroquinolin-8-yl)methyl)-4-(trifluoromethyl)benzenes ulfonamide (**3ha**)¹⁰

¹H NMR (CDCl₃, 400 MHz) δ 8.78 (1H, dd, J = 4.2, 1.5 Hz), 8.00 (1H, dd, *J* = 8.3, 1.0 Hz), 7.61 (2H, d, *J* = 8.2 Hz), 7.42

(1H, dd, J = 8.3, 4.2 Hz), 7.34 (2H, d, J = 8.3 Hz), 7.28-7.24 (1H, m), 7.22 (1H, dd, J = 8.5, T)2.7 Hz), 6.75 (1H, t, J = 5.6 Hz), 4.72 (2H, d, J = 6.6 Hz); ¹³C NMR (CDCl₃, 101 MHz) δ

160.6, 158.1, 148.7, 143.9, 143.1, 136.2, 136.2, 136.1, 134.0, 133.7, 133.3, 133.0, 129.2, 129.1, 127.0, 125.2(g), 124.4, 122.1, 121.7, 120.1, 119.8, 119.0, 110.8, 110.6, 46.0; ¹⁹F NMR (CDCl₃, 376 MHz) δ -63.40 (s), -112.9 (s).

8.04 (1H, dd, J = 8.2, 1.2 Hz), 7.59 (2H, d, J = 8.2 Hz), 7.51 (1H, d, J = 8.8 Hz), 7.43 (1H, dd, J = 8.3, 4.3 Hz), 7.32 (1H, d, J = 8.8 Hz), 7.25 (2H, d, J = 8.0 Hz), 7.02 (1H, t, J = 5.7 Hz), 5.0 (2H, d, J = 6.5 Hz); ¹³C NMR (CDCl₃, 101 MHz) δ 149.6, 144.2, 143.8, 135.8, 134.9, 133.9, 133.6, 133.3, 132.9, 131.7, 130.4, 128.9, 127.0, 126.5, 125.1(q), 124.3, 122.2, 121.6, 45.8; ¹⁹F NMR (CDCl₃, 376 MHz) δ –63.4 (s).

N-((6-nitroquinolin-8-yl)methyl)-4-(trifluoromethyl)benzene sulfonamide $(3ja)^{10}$

¹H NMR (CDCl₃, 400 MHz) δ 9.05 (1H, dd, J = 4.2, 1.6 Hz), 8.63 (1H, d, J = 2.4 Hz), 8.35 (1H, dd, J = 8.3, 1.2 Hz),

8.28 (1H, d, J = 2.4 Hz), 7.73 (2H, d, J = 8.2 Hz), 7.5 (1H, dd, J = 8.3, 4.2 Hz), 7.44 (2H, d, J = 8.3 Hz), 6.60 (1H, br s), 4.81 (2H, d, J = 3.8 Hz); ¹³C NMR (DMSO, 101 MHz) δ 153.3, 146.8, 144.5, 144.3, 138.7, 137.6, 132.1, 131.8, 127.2, 126.7, 126.1, 126.0, 124.6, 124.1, 123.3, 121.9, 120.6, 41.7; ¹⁹F NMR (CDCl₃, 376 MHz) δ –63.35 (s).

*N-((7-chloroquinolin-8-yl)methyl)-4-(trifluoromethyl)benzenes ulfonamide (3ka)*¹⁰ ¹H NMR (CDCl₃, 400 MHz) δ 8.85 (1H, dd, *J* = 4.3, 1.7 Hz),

8.04 (1H, dd, J = 8.3, 1.5 Hz), 7.60 (2H, d, J = 8.2 Hz), 7.51

(1H, d, J = 8.0 Hz), 7.43 (1H, dd, J = 8.3, 4.3 Hz), 7.32 (1H, d, J = 8.8 Hz), 7.26 (2H, d, J = 8.8 Hz), 7.28.2 Hz), 6.99 (1H, t, J = 6.3 Hz), 4.99 (2H, d, J = 6.6 Hz); ¹³C NMR (CDCl₃, 101 MHz) δ 150.1, 146.4, 143.7, 136.9, 134.8, 133.8, 133.5, 133.1, 132.8, 130.3, 128.7, 128.0, 126.8, 126.8, 125.0(q), 124.4, 121.6, 121.4, 42.1; ¹⁹F NMR (CDCl₃, 376 MHz) δ -63.4 (s).

N-((7-methoxyquinolin-8-yl)methyl)-4-(trifluoromethyl)benze nesulfonamide (*3la*)

White solid, mp 105-107 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.81 (d, J = 3.2 Hz, 1H), 8.03 (d, J = 6.4 Hz, 1H), 7.63 (d, J =

7.7 Hz, 3H), 7.29 (d, J = 7.9 Hz, 3H), 7.12 (d, J = 9.0 Hz, 1H), 7.05 (s, 1H), 4.87 (d, J = 4.6 Hz, 2H), 3.92 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 149.9, 144.0, 133.5, 133.0, 129.2, 127.1, 124.9, 124.9, 124.8, 124.8, 124.4, 123.3, 121.7, 119.0, 118.0, 113.5, 56.3, 37.9; ¹⁹F NMR (376 MHz, CDCl₃) δ -63.3; HRMS (ESI) calcd for C₁₈H₁₅F₃N₂O₃S [M+H] ⁺ 397.0828, found 397.0834.

*N-((7-bromoquinolin-8-yl)methyl)-4-(trifluoromethyl)benzenes ulfonamide (3ma)*¹⁰ ¹H NMR (CDCl₃, 400 MHz) δ 8.82 (1H, dd, *J* = 4.2, 1.7 Hz),

¹H NMR (CDCl₃, 400 MHz) δ 8.82 (1H, dd, *J* = 4.2, 1.7 Hz), 7.95 (1H, dd, *J* = 8.3, 1.6 Hz), 7.75 (1H, d, *J* = 2.1 Hz), 7.57

(2H, d, J = 8.2 Hz), 7.51 (1H, d, J = 2.0 Hz), 7.43 (1H, dd, J = 8.3, 4.3 Hz), 7.33 (2H, d, J = 8.3 Hz), 6.65 (1H, t, J = 6.5 Hz), 4.71 (2H, d, J = 6.7 Hz); ¹³C NMR (CDCl₃, 101 MHz) δ 150.1, 146.4, 143.7, 136.9, 133.8, 133.5, 133.1, 132.8, 132.4, 130.9, 128.8, 127.3, 127.0, 126.8, 126.2(q), 125.5, 124.9(q, CF₃), 124.4, 121.6, 121.6, 45.1; ¹⁹F NMR (CDCl₃, 376 MHz) δ –63.4 (s).

4-(Trifluoromethyl)-N-((7-(trifluoromethyl)quinolin-8-yl)methyl) *benzenesulfonamide* (*3na*)¹⁰

¹H NMR (CDCl₃, 400 MHz) δ 8.94 (1H, dd, *J* = 4.2, 1.7 Hz), 8.17 (1H, dd, *J* = 8.4, 1.5 Hz), 7.77 (1H, d, *J* = 8.8 Hz), 7.68 (3H, d, *J* = 8.6 Hz), 7.57 (1H, dd, *J* = 8.3, 4.2 Hz), 7.38 (2H, d,

J = 8.3 Hz), 7.14 (1H, br s), 4.97 (2H, br s); ¹³C NMR (CDCl₃, 101 MHz) δ 150.6, 146.1, 143.7, 137.0, 129.6, 128.7, 127.1, 125.2(q), 125.0, 124.4, 123.0, 122.5, 122.5, 122.4, 122.4, 77.3, 77.0, 76.7, 41.5, 41.5; ¹⁹F NMR (CDCl₃, 376 MHz) δ –57.2 (s), –63.3 (s).

4-Methyl-N-((5-nitroquinolin-8-yl)methyl)benzenesulfonami de (3eb) 10

¹H NMR (CDCl₃, 400 MHz) δ 8.97-8.92 (2H, m), 8.17 (1H, d, *J* = 7.8 Hz), 7.69-7.61 (2H, m), 7.44 (2H, d, *J* = 8.2 Hz),

6.98 (2H, d, J = 8.1 Hz), 6.33 (1H, br s), 4.76 (2H, s), 2.28 (3H, s); ¹³C NMR (CDCl₃, 101 MHz) δ 150.5, 145.7, 145.1, 143.2, 141.6, 137.1, 132.6, 129.0, 127.6, 126.6, 124.0, 123.9,

4-Methoxy-N-((5-nitroquinolin-8-yl)methyl)benzenesulf onamide $(3ec)^{10}$

¹H NMR (DMSO, 400 MHz) δ 9.02 (1H, d, J = 4.0 Hz), 8.84 (1H, d, J = 8.8 Hz), 8.44 (1H, d, J = 8.0 Hz), 8.27

(1H, t, J = 6.4 Hz), 7.94 (1H, d, J = 8.0 Hz), 7.82 (1H, dd, J = 8.1, 4.1 Hz), 7.69 (2H, d, J = 8.8 Hz), 7.02 (1H, d, J = 8.8 Hz), 4.67 (2H, d, J = 6.3 Hz), 3.81 (3H, s); ¹³C NMR (DMSO, 101 MHz) δ 149.2, 149.0, 146.2, 145.2, 134.3, 132.8, 132.4, 128.1, 127.8, 126.7, 126.2, 123.9, 121.1, 42.4, 18.0.

4-Chloro-N-((5-nitroquinolin-8-yl)methyl)benzenesulfona *mide* $(3ed)^{10}$ ¹H NMR (CDCl₃, 400 MHz) δ 9.01-8.94 (2H, m), 8.23

(1H, d, *J* = 7.9 Hz), 7.71-7.65 (2H, m), 7.57-7.53 (2H, m),

7.22-7.18 (2H, m), 6.38 (1H, br s), 4.76 (2H, s); 13 C NMR (CDCl₃, 101 MHz) δ 150.6, 145.8, 145.3, 141.3, 138.8, 138.6, 132.7, 128.7, 128.1, 127.6, 124.0, 121.1, 45.7.

-Fluoro-N-((5-nitroquinolin-8-yl)methyl)benzenesulfonam *ide (3ee)* White solid, mp 113-115 °C; ¹H NMR (400 MHz, DMSO)

 δ 8.99 (s, 1H), 8.80 (d, J = 8.7 Hz, 1H), 8.41 (d, J = 7.7 Hz,

2H), 7.92 (d, J = 7.5 Hz, 1H), 7.88 – 7.70 (m, 3H), 7.40 (s, 1H), 7.32 (m, 1H), 4.73 (d, J = 4.8 Hz, 2H); ¹³C NMR (101 MHz, DMSO) δ 165.3, 162.8, 150.9, 144.5, 144.3, 143.0, 136.9, 131.7, 129.5, 129.4, 128.5, 128.5, 126.3, 124.2, 119.8, 116.2, 116.0, 42.4, 40.1, 39.9, 39.7, 39.5, 39.3, 39.1, 38.9; ¹⁹F NMR (376 MHz, DMSO) δ -106.8; HRMS (ESI) calcd for C₁₆H₁₂FN₃O₄S [M+H]⁺ 362.0605, found 362.0609.

2-Nitro-N-((5-nitroquinolin-8-yl)methyl)benzenesulfonamide (**3ef**)

White solid, mp 138-140 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.96 (d, J = 3.8 Hz, 1H), 8.87 (d, J = 8.8 Hz, 1H), 8.20 (d, J =

7.8 Hz, 1H), 7.88 (d, J = 7.3 Hz, 1H), 7.76 (d, J = 7.8 Hz, 1H), 7.65 - 7.58 (m, 2H), 7.56 -7.45 (m, 2H), 7.19 (s, 1H), 4.94 (d, J = 4.7 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 150.9, 145.9, 145.5, 141.4, 134.3, 133.2, 132.5, 132.4, 130.5, 127.8, 125.0, 124.1, 123.8, 120.9, 77.3, 77.0, 76.7, 46.1; HRMS (ESI) calcd for $C_{16}H_{12}N_4O_6S [M+H]^+$ 389.0550, found 389.0550.

e (3eg)

White solid, mp 166-168 °C; ¹H NMR (400 MHz, DMSO) δ 8.98 (s, 1H), 8.75 (s, 2H), 8.33 (d, J = 17.6 Hz, 3H), 8.07 (d, J = 6.6 Hz, 1H), 7.89 (d, J = 7.4 Hz, 1H), 7.83 – 7.63 (m, 2H), 4.81 (d, J = 4.3 Hz, 2H); ¹³C NMR (101 MHz, DMSO) δ 151.0, 147.4, 144.5, 142.4, 142.2, 132.3, 131.6, 130.8, 127.0, 126.7, 124.2, 124.0, 121.1, 119.7, 42.4, 40.1, 39.9, 39.7, 39.5, 39.3, 39.1, 38.9; HRMS (ESI) calcd for C₁₆H₁₂N₄O₆S [M+H]⁺ 389.0550, found 389.0544.

 $O_2N \longrightarrow O_1 O_2N \longrightarrow O_2$

7.71-7.65 (2H, m), 7.35-7.21 (5H, m), 5.91 (1H, br s), 4.69 (2H, s), 4.24 (2H, s); ¹³C NMR (CDCl₃, 101 MHz) δ 150.7, 146.1, 145.2, 142.6, 132.6, 130.7, 130.5, 129.0, 128.8, 128.6, 128.6, 127.1, 124.5, 124.0, 121.2, 59.4, 45.5.

*N-((5-nitroquinolin-8-yl)methyl)butane-1-sulfonamide (3ei)*¹⁰

 $\stackrel{O}{HN} \stackrel{H}{=} \stackrel{H}{=} \stackrel{O}{=} \stackrel{H}{=} \stackrel{H$

s), 4.87 (2H, s), 2.97-2.92 (2H, m), 1.71-1.63 (2H, m), 1.36-1.27 (2H, m), 0.83 (3H, t, J = 7.3 Hz); ¹³C NMR (CDCl₃, 101 MHz) δ 150.8, 146.1, 145.2, 142.8, 132.8, 127.2, 124.5, 124.1, 121.2, 53.0, 45.1, 25.5, 21.4, 13.5.

Mechanism Research:

KIE experiments:

¹H NMR of the KIE reaction products.

General procedure for the KIE experiments:

A mixture of 4-(trifluoromethyl)benzenesulfonyl azide (0.3 mmol, 1.0 equiv), $[(p-cymene)RuCl_2]_2$ (9.2 mg, 0.015 mmol, 5.0 mol %), $Zn(OAc)_2 ^2H_2O$ (33.0 mg, 50 mol%) and AgSbF₆ (20.6 mg, 20.0 mol %) were weighed in a Schlenk tube equipped with a stir bar. Dry DCE (2.0 mL) was added followed immediately by 8-methylquinoline (0.6 mmol, 2 equiv), or 8-methylquinoline- d_3 (0.6 mmol, 2 equiv), and the mixture was stirred at 80 °C for 30 min under Ar atmosphere. Afterward, the two independent reactions were poured into the same round flask, the solvent was evaporated under reduced pressure, and the residue was absorbed to small amounts of silica. The purification was performed by flash column chromatography on silica gel (EtOAc/petroleum ether = 1:6).

¹H NMR Spectra of **3aa**

¹³C NMR Spectra of **3ba**

¹H NMR Spectra of **3ca**

¹³C NMR Spectra of **3ca**

¹⁹F NMR Spectra of **3ca**

¹H NMR Spectra of **3da**

¹³C NMR Spectra of **3da**

¹⁹F NMR Spectra of **3da**

S15

¹H NMR Spectra of **3ea**

ppm (t1)

¹⁹F NMR Spectra of **3ea**

¹H NMR Spectra of **3fa**

¹³C NMR Spectra of **3fa**

¹⁹F NMR Spectra of **3fa**

¹H NMR Spectra of **3ga**

¹³C NMR Spectra of **3ga**

¹⁹F NMR Spectra of **3ga**

¹H NMR Spectra of **3ha**

¹³C NMR Spectra of **3ha**

¹⁹F NMR Spectra of **3ha**

¹H NMR Spectra of **3ia**

La contraction de la contracti

¹⁹F NMR Spectra of **3ia**

¹H NMR Spectra of **3ja**

¹³C NMR Spectra of **3ja**

¹⁹F NMR Spectra of **3ja**

¹H NMR Spectra of **3ka**

¹⁹F NMR Spectra of **3ka**

¹H NMR Spectra of **3la**

¹³C NMR Spectra of **3la**

¹⁹F NMR Spectra of **3la**

S27

¹H NMR Spectra of **3ma**

S28

(t1) maa

¹⁹F NMR Spectra of **3ma**

¹H NMR Spectra of **3na**

¹³C NMR Spectra of **3na**

¹⁹F NMR Spectra of **3na**

¹H NMR Spectra of **3eb**

¹H NMR Spectra of **3ec**

¹³C NMR Spectra of **3ec**

¹H NMR Spectra of **3ed**

ppm (t1)

¹³C NMR Spectra of **3ed**

S33

¹H NMR Spectra of **3ee**

¹³C NMR Spectra of **3ee**

¹⁹F NMR Spectra of **3ee**

¹³C NMR Spectra of **3ef**

¹³C NMR Spectra of **3eg**

¹H NMR Spectra of **3eh**

¹³C NMR Spectra of **3eh**

¹³C NMR Spectra of **3ei**

References:

- [1] Bennett, M. A.; Huang, T. N.; Matheson, T. W.; Smith, A. K. Inorg. Synth. 1982, 21, 74.
- [2] PBoyer, . M.; Roy, C. P.; Bielski, J. M.; Merola, J. S. Inorg. Chim. Acta 1996, 245, 7.
- [3] Murchu, C. O. Synthesis 1989, 880.
- [4] Evans, P.; Hogg, P.; Grigg, R.; Nurnabi, M.; Hinsley, J.; Sridharan, V.; Suganthan, S.;Korn, S.; Collard, S.; Muir, J. E. *Tetrahedron* 2005, *61*, 9696.
- [5] Lu, B.; Li, C.-Q.; Zhang, L.-M. J. Am. Chem. Soc. 2010, 132, 14070.
- [6] Zhang, Y. C.; Wang, M.; Li, P. H.; Wang, L. Org. Lett. 2012, 14, 2206.
- [7] Suggs, J. W.; Pearson, G. D. N. J. Org. Chem. 1980,45, 1514.
- [8] Liu, B.; Zhou, T.; Li, B.; Xu, S.; Song, H.; Wang, B. Angew. Chem., Int. Ed. 2014, 53, 4191.
- [9] Dick, A. R.; Hull, K. L.; Sanford, M. S. J. Am. Chem. Soc. 2004, 126, 2300.
- [10] Wang, N.; Li, R.; Li, L.; Xu, S.; Song, H.; Wang, B. J. Org. Chem. 2014, 79, 5379.
- [11] Waser, J.; Gaspar, B.; Nambu, H.; Carreira, E. M. J. Am. Chem. Soc. 2006, 128, 11693.