Phosphonium salt incorporated hypercrosslinked porous polymer for CO₂ capture and conversion

Jinquan Wang, Jason Gan Wei Yang, Guangshun Yi and Yugen Zhang*

Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669 Email: ygzhang@ibn.a-star.edu.sg

Supporting information

1.	General information	S2
2.	Experiments	S3-4
3.	Characterization of cyclic carbonates	<i>S5</i>
4.	Supporting Figures	S6-S21
5.	Supporting Tables	S22-S23
6.	Cartesian coordinates for all the optimized geometries	S24-S39

1. General information

The phosphonium salts, benzene, 1, 2-dichloroethane, polystyrene resin and iron chloride were purchased from Sigma-Aldrich. The epoxides were purchased from the VWR international. GC-MS were measured on SHIMADZU-QP2010. GC analyses were performed on an Agilent GC-6890 using a flame ionization detector. NMR spectra were recorded on a Bruker 400. N₂ sorption analysis and CO₂ sorption analysis were performed on a Micromeritics Tristar 3000 (77 and 273 K, respectively). TEM experiments were conducted on a FEI Tecnai G² F20 electron microscope (200 kV). TGA was performed on a Perkin–Elmer Pyris-1 thermogravimetric analyzer. Elemental analysis (CHNS) was performed on an Elementarvario MICRO cube. FT-IR experiments were performed on a Perkin Elmer Spectrum 100. ¹³C CP-MAS NMR spectra were recorded on a Bruker 400 spectrometer equipped with an ultrashield widebore magnet and a 4 mm multinuclear double-bearing MAS probehead at room temperature at a frequency of 100.62 MHz, using 4 mm zirconia rotors and a sample spinning rate of 12 kHz. Adamantine (40.48 ppm for the downfield resonance) was used as external reference to obtain the chemical shift. ³¹P CP-MAS NMR spectra were recorded on the same Bruker 400 spectrometer at room temperature at a frequency of 161.97 MHz, using 4 mm zirconia rotors and a sample spinning rate of 12 kHz. 85% H₃PO₄ solution (0 ppm) was used as external reference to obtain the chemical shift.

The calculations were carried out by performing DFT by use of the B3PW91functional with the 6-31++G (d, p) basis set (iodide using DGDZVP) as implemented in Gaussian 09 program package. The solvent effect uses the Conductor Polarizable Continuum Model (CPCM) in each case. Vibrational frequency calculations, from which the zero-point energies were derived, have been performed for each optimized stucture at the same level to identify the natures of all the stationary points. All the bond lengths are in angstroms (Å). Structures were generated using CYLview.¹

1 CYLview, 1.0b; C. Y. Legault, Université de Sherbrooke, 2009 (<u>http://www.cylview.org</u>).

2. Experimental details

2.1 Synthesis of phosphonium salt incorporated hypercrosslinked porous polymers

Typically, iron (III) chloride (8 mmol) was added to a solution of methyl triphenyl phosphonium bromide (1 mmol), benzene (1 mmol) and FDA (8 mmol) in anhydrous dichloroethane (10 mL). The resulting mixture was heated at 80 °C for 20 h. After reaction, the solid product was centrifuged and washed with methanol (3×10 mL). The product was then further purified by Soxhlet extraction in methanol for 20 h and dried *in vacuo* at 60 °C for 12 h. The polymers were obtained as dark brown colored. The elemental results were presented in the Table S2.

2.2 Synthesis of phosphonium salt and triphenylphosphane incorporated hypercrosslinked porous polymers

Typically, iron (III) chloride (8 mmol) was added to a solution of methyl triphenyl phosphonium bromide (0.5 mmol), triphenylphosphane (0.5 mmol), benzene (1 mmol) and FDA (8 mmol) in anhydrous dichloroethane (10 mL). The resulting mixture was heated at 80 °C for 20 h. After reaction, the solid product was centrifuged and washed with methanol (3×10 mL). The product was then further purified by Soxhlet extraction in methanol for 20 h and dried *in vacuo* at 60 °C for 12 h. The polymers were obtained as dark brown colored.

2.3 Synthesis of polystyrene resin supported phosphonium salts

A mixture of chloromethyl polystyrene (1.0 g, 5.5 mmol Cl content), PPh₃ (16.5 mmol) and toluene (10 mL) was heated at 80 °C for 24 h in a 25 mL flask with vigorous stirring. After cooled down to room temperature, the solid residue was collected by filtration and washed with methanol(3×5 mL). Then, the solid was dried under vacuum at 60 °C for 12 h and polystyrene resin supported phosphonium salt was obtained. The loading of imidazolium salt attached on the PS was 4 mmol/g determined by nitrogen content from elementary analysis.

2.4 CO₂ capture

phosphonium salt incorporated hypercrosslinked porous polymers were subjected to the following gas capture and cycling experiment at 25 °C: CO_2 (99.8%) gas flow at 20 ml/min for 30 min, followed by N_2 (99.9995%) gas flow at 20 ml/min for 45 min. Changes in weight were recorded by TGA. Prior to the cyclic treatment, the sample was first purged under N_2 gas flow at

100 °C for 60 min, followed by cooling to room temperature. Change in buoyancy effects arising from the switching of gases was recorded by using an empty sample pan, and the buoyancy effects were corrected for in the TGA results.

2.5 CO₂ conversion

 CO_2 conversion reactions were conducted in a 25 ml stainless steel reactor equipped with a magnetic stirrer and automatic temperature control system. Typically, an appropriate volume of CO_2 (1.0 MPa) was added to a mixture of PO (0.1 ml), DMF (2 mL), phosphonium salt incorporated hypercrosslinked porous polymers (1 mmol% based on contents of the phosphonium salt) in the reactor at room temperature. The temperature was then raised to 130 °C. After the reaction was preceded for 4 h, the reactor was cooled to 0 °C in an ice water bath, and the remaining CO_2 was slowly removed. The product was then analyzed by GC and NMR. The phosphonium salt incorporated hypercrosslinked porous polymers could be easily separated by centrifugation, and used in the next run without further purification.

3. Characterization of cyclic carbonates

¹H NMR (CDCl₃, TMS, 400 MHz): δ 4.86-4.94 (m, 1H), 4.60 (t, *J*=8.0 Hz, 1H), 4.05 (t, *J*=8.8 Hz, 1H), 1.49 (d, *J*=6.0 Hz, 3H); ¹³C NMR (CDCl₃, TMS, 100.4 MHz): δ 154.95 (C=O), 73.51, 70.46, 18.95.

¹H NMR (CDCl₃, TMS, 400 MHz): δ 4.98 (m, 1H), 4.58 (t, 1H, *J*=8.4 Hz), 4.39 (dd, 1H, *J*=6.0 Hz), 3.80 (dd, 1H, *J*=5.2 Hz), 3.71 (dd, 1H, *J*=3.2 Hz); ¹³C NMR (CDCl₃, TMS, 100.4 MHz): δ 154.95 (C=O), 73.51, 70.46, 43.83.

¹H NMR (CDCl₃, TMS, 400 MHz): δ 7.35-7.44 (m, 5H), 5.68 (t, 1H, *J*=8.0 Hz), 4.80 (t, 1H, *J*=8.4 Hz), 4.34 (t, 1H, *J*=8.4 Hz); ¹³C NMR (CDCl₃, TMS, 100.4 MHz): δ 154.81 (C=O), 135.70, 129.63, 129.12, 125.81, 77.92, 71.10.

1H NMR (CDCl₃, 400 MHz): δ 7.31 (t, ³J = 8.0 Hz, 2H), 7.02 (t, ³J = 7.4 Hz, 1H), 6.91 [d, ³J = 8.0 Hz, 2H], 5.03 [m, 1H], 4.62 [t, ³J = 8.4 Hz, 1H], 4.55 (dd, ³J = 8.4 Hz), 4.24 (dd, ³J = 3.6 Hz, 1H), 4.15 (dd, ³J = 4.4 Hz, 1H), ¹³C NMR (CDCl₃, TMS, 100.4 MHz): δ 157.71. 154.65, 129.62, 121.92, 114.57, 74.11, 68.84, 66.17.

¹H NMR (CDCl₃, 400MHz): δ 5.8 - 6.0 (t, 1H), 5.0-5.2 (d, 2H), 4.4-4.7 (3H), 4.0-4.1 (m, 2H), 3.5-3.8 (d, 2H). ¹³C NMR (CDCl₃, TMS, 100.4 MHz): δ 155.90, 133.88, 117.47, 72.05, 72.30, 68.92, 66.24.

¹H NMR (CDCl₃, TMS, 400 MHz): $\delta \delta 5.8 - 6.0$ (t, 1H), 5.0-5.2 (d, 2H), 4.7 (m, 1H), 4.5 (dd, 1H), 4.04 (dd, 1H, *J*=8.4 Hz), 2.4-2.7 (m, 2H), 2.1 (m, 2H), 1.43-1.55 (m, 4H); ¹³C NMR (CDCl₃, TMS, 100.4 MHz): δ 155.2 (C=O), 139.2,115.6, 70.4, 66.3, 36.5, 33.8, 29.6, 25.3.

4. Supported Figures

Fig. S1 FT-IR spectra

Fig. S2 Solid-13C NMR spectra

Fig. S3 Solid-³¹P NMR spectra

Fig. S4 TGA results

Fig. S5 TEM and SEM images of Polymer 2

Fig. S6 N₂ adsorption-desorption isotherms

Fig. S7 Pore size distributions

Fig. S8 CO₂ capacities at 273K

Fig. S9 CO_2 and N_2 capacities at 298K

Fig. S10 The optimized structures for phosphonium salts, phenol, naphthols and CO₂

Fig. S12 Selectivity over N₂

Fig. S13 Recycling for CO₂ capture using Polymer 2

Fig. S15 Mechanistic hypothesis of the catalytic reaction

Fig. S16 Optimized geometries for the intermediates and transition states. H: white, C: gray, N: blue, O: red, CI: green. Bond lengths and distances are in Å.

Fig. S17 Relative energies for fixation of CO₂ with PO catalyzed by methyl triphenyl phosphonium bromide in DMF, relative energies at the B3PW91/6-311++G (d, p) level.

5. Supporting Tables

Material	BET (m ²	CO ₂ uptake (wt	CO ₂ uptake	Selectivity (CO_2/N_2) at	References
	g⁻¹)	%) at 273 K	(wt %) at 298 K	298 К	
Polymer 1	1168	9.6	4.8	56	This work
Polymer 2	1015	12.3	7.1	45	This work
Polymer	823	11.3	6.5	46	This work
Azo-COP-2	739	11.2	6.73	130	1
Om-ph-MR	256	11.0	7.78	100	2
DBT	493	9.7	6.06	80	3
BILP-1	1172	18.8	21.4	36	4
PECONF-2	637	12.5	8.73	44	5
PECONF-3	851	15.4	12.03	41	5
PECONF-4	-	0.6	7.93	51	5
MPI-2	814	13.8	8.9	-	6
TBI-1	609	14.0	-	-	7
BPOP-2	632	15.0	-	-	8
CTF	2011	15.7	-	-	9
HCP-E	1470	12.9	7.8	9.2	10
HCP 1	1646	-	7.5	-	11
HCP–BDM	847	12.6	7.1	-	12
Benzene	1391	13.5	-	-	13
FCBCz	1067	15.8	9.9	28.9 (273K)	14
TSP-2	913	18.0	11.4	38(273K)	15

References

(1) H. A. Patel, S. H. Je, J. Park, D. P. Chen, Y. S. Jung, C. T. Yavuz and A. Coskun, Unprecedented high-temperature CO_2 selectivity in N₂-phobic nanoporous covalent organic polymers, *Nat. Commun.*, 2013, **4**, 1357.

(2) J. H. Lee, H. J. Lee, S. Y. Lim, B. G. Kim and J. W. Choi, Combined CO₂-philicity and Ordered Mesoporosity for Highly Selective CO₂ Capture at High Temperatures, *J. Am. Chem. Soc.*, 2015, **137**, 7210

(3) M. Saleh, H. M. Lee, K. C. Kemp and K. S. Kim, Highly Stable CO₂/N₂ and CO₂/CH₄ Selectivity in Hyper-Cross-Linked Heterocyclic Porous Polymers, *ACS Appl. Mater., Interfaces* 2014, **6**, 7325.

(4) M. G. Rabbani and H. M. El-Kaderi, Synthesis and Characterization of Porous Benzimidazole-Linked Polymers and Their Performance in Small Gas Storage and Selective Uptake. *Chem. Mater.*, 2012, **24**, 1511.

(5) P. Mohanty, L. D. Kull and K. Landskron, Porous Covalent Electron-Rich OrganonitridicFrameworks as Highly Selective Sorbents for Methane and Carbon Dioxide. *Nat. Commun.*, 2011, 2, 401.

(6) G. Li and Z. Wang, Microporous Polyimides with Uniform Pores for Adsorption and Separation of CO₂ Gas and Organic Vapors. *Macromolecules* 2013, **46**, 3058.

(7) Y. Zhao, Q. Cheng, D. Zhou, T. Wang and B. Han, Preparation and Characterization of Triptycene-Based Microporous Poly(benzimidazole) Networks. *J. Mater. Chem.*, 2012, **22**, 11509.

(8) Y. Zhao, T. Wang, L. Zhang, Y. Cui and B. Han, Facile Approach to Preparing Microporous

Organic Polymers through Benzoin Condensation. *ACS Appl. Mater. Interfaces* 2012, **4**, 6975.

(9) P. Katekol, J. Roes, M. Bojdys, J. Weber and A. Thomas. Covalent Triazine Frameworks Prepared from 1,3,5-Tricyanobenzene. *Chem. Mater.*, 2013, **25**, 1542.

(10) Dawson, R.; Stockel, E.; Holst, J. R.; Adams, D. J.; Cooper, A. I. Microporous Organic Polymers for Carbon Dioxide Capture. *Energy Environ. Sci.*, 2011, **4**, 4239.

(11) C. F. Martin, E. Stockel, R. Clowes, D. J. Adams, A. I. Cooper, J. J. Pis and C. Rubiera, F. Pevida, Hypercrosslinked Organic Polymer Networks as Potential Adsorbents for Pre-combustion CO₂ Capture. *J. Mater. Chem.*, 2011, **21**, 5475.

(12) Y. Luo, S. Zhang, Y. Ma, W. Wang, B. Tan, Microporous Organic Polymers Synthesized by Selfcondensation of Aromatic Hydroxymethyl Monomers. *Polym. Chem.*, 2013, **4**, 1126.

(13) B. Li, R. Gong, W. Wang, X. Huang, W. Zhang, H. Li, C. Hu and B. Tan, A New Strategy to Microporous Polymers: Knitting Rigid Aromatic Building Blocks by External Cross-Linker. *Macromolecules* 2011, **44**, 2410.

(14) X. Yang, M. Yu, Y. Zhao, C. Zhang, X. Y. Wang and J. X. Jiang, Hypercrosslinked microporous polymers based on carbazole for gas storage and separation, *RSC. Adv.*, 2014, **4**, 61051.

(15) X. Zhu, S. M. Mahurin, S. H. An, C. L. Do-Thanh, C. C. Tian, Y. K. Li, L. W. Gill, E. W. Hagaman, Z. J. Bian, J. H. Zhou, H. L. Liu and S. Dai, Efficient CO₂ capture by a task-specific porous organic polymer bifunctionalized with carbazole and triazine groups, *Chem. Commun.*, 2014, **50**, 7933.

Polymers	C% ^a	H% ª	P% ^a	Zn%
1	76.20 (78.78)	5.76 (8.01)	1.4 (6.16)	
2	78.55 (72.39)	5.06 (7.36)	1.1 (5.66)	
3	76.19 (66.66)	4.96 (6.78)	1.5 (5.21)	
4	78.11 (76.60)	5.15 (7.94)	1.1 (6.16)	
5	78.78 (73.03)	5.19 (7.71)	1.4 (5.38)	
2+6	76.15 (78.26)	4.89 (7.94)	1.1 (6.02)	
2+6+Zn	71.68	5.16	1.0	0.9

Table S2 Elemental analysis results

^aThe theoretical values list in the parentheses

6. Cartesian coordinates for all the optimized geometries

0.52280600 -0.11817300

-0.60999000

(A)

С

Н	-0.88501700	1.07199700	-1.01891500
Н	-1.04437700	-0.48061000	-0.14945100
С	-6.39323500	0.58409400	-0.06011400
С	-6.83856200	1.89759400	-0.53600700
Н	-6.44180500	-0.27852600	-0.71843400
Н	-6.42565500	0.36670100	1.00411900
Н	-7.18769800	1.95482300	-1.56528700
Br	-2.32496700	-3.06398900	0.01278300
0	-5.42845300	1.58802300	-0.44181800
С	1.92001000	2.06432000	-0.02707700
С	1.37288300	3.05728300	0.79941600
С	3.02711500	2.35563700	-0.83305300
С	1.93223500	4.33118300	0.81154600
Н	0.52099300	2.84809600	1.43513900
С	3.58079000	3.63436200	-0.81268600
Н	3.45617700	1.59622200	-1.47436800
С	3.03476700	4.62044300	0.00647700
Н	1.50613200	5.09656200	1.44897100
Н	4.43668100	3.85658300	-1.43863700
Н	3.46619000	5.61453700	0.01817900
С	1.65192400	-0.45371700	1.51682500
С	2.73965500	-0.00952200	2.27933500
С	0.91507200	-1.57600000	1.92388800
С	3.08725600	-0.68697400	3.44606500
Н	3.31003900	0.85828200	1.97253800
С	1.27189700	-2.24345800	3.09216700
Н	0.07133300	-1.93696600	1.34447300
С	2.35488600	-1.80124900	3.85237800
Н	3.92739400	-0.34077400	4.03604000
Н	0.70083400	-3.10840900	3.40804500
Н	2.62616100	-2.32412500	4.76216300

С	1.80790000	-0.53969100	-1.44837400
С	1.32480200	-0.24032900	-2.73105200
С	2.76090600	-1.55046500	-1.27631200
С	1.79538900	-0.95329200	-3.82926300
Н	0.59049300	0.54142000	-2.88370500
С	3.22644200	-2.25802900	-2.38279800
Н	3.13669300	-1.78918800	-0.28944300
С	2.74488900	-1.96122300	-3.65618000
Н	1.41893000	-0.72220000	-4.81847800
Н	3.96238600	-3.04122100	-2.24608000
Н	3.10672400	-2.51532400	-4.51440100
Н	-0.98344800	1.05428100	0.75760900
Р	1.19744600	0.39823400	-0.01852200
С	-7.36154600	2.96221800	0.38856100
Н	-7.07524000	3.95636100	0.03386800
Н	-8.45415300	2.92120200	0.42730000
н	-6.97290400	2.82624100	1.40029400

27 29 2	1.5 31 1.0		
28			
29 32 2	1.0		
30			
31			
32			
33 34 3	1.5 35 1.5 45 1.0		
34 36 3	1.5 37 1.0		
35 38 3	1.5 39 1.0		
36 40 3	1.5 41 1.0		
37			
38 40 2	1.5 42 1.0		
39			
40 43 3	1.0		
41			
42			
43			
44			
45			
46 47 2	1.0 48 1.0 49 1.0		
47			
48			
49			
	2.06Á		
2.	.01A		
2.42A	2.15Å		
	(TS1)		
С	0.78047500	0 -0.15140900	-1.88332600
Н	-0.27533100	0 -0.19964300	-1.57895200
н	0.9515110	0 0.71221500	-2.52680400
С	1.57302600	0 -1.47363500	0.63808600
С	0.27880800	0 -1.98537000	0.82210700
С	2.67294900	-2.08485400	1.25346600
С	0.10213100	-3.11026800	1.62488700
н	-0.58444900	-1.52062700	0.34933500
С	2.47925300	0 -3.20830300	2.05404500
н	3.6730660	0 -1.69528500	1.10954200
С	1.19604400	-3.72077400	2.23916500
н	-0.89465300	-3.51108500	1.76818600

Н	3.33074000	-3.68197100	2.52796400
н	1.04855800	-4.59672400	2.86042500
С	3.55176900	0.15600400	-0.85598100
С	4.06775000	-0.63520300	-1.89277700
С	4.39011400	1.04262700	-0.16918300
С	5.41280900	-0.53451400	-2.23571000
Н	3.43433700	-1.32830300	-2.43260900
С	5.73591700	1.13492300	-0.51812600
Н	3.99980700	1.65992400	0.63017900
С	6.24661500	0.34912900	-1.54960400
Н	5.80762700	-1.14504600	-3.03889700
Н	6.38107600	1.82295400	0.01493900
Н	7.29306700	0.42555200	-1.82097600
С	1.29266300	1.48280300	0.52269900
С	1.08423900	1.42790400	1.90552200
С	1.12087700	2.69307800	-0.16539900
С	0.70591800	2.57856500	2.59498900
Н	1.21155400	0.49726200	2.44405800
С	0.74211700	3.83630000	0.53138100
Н	1.28172500	2.75360400	-1.23519100
С	0.53459200	3.77993400	1.91035400
Н	0.54429000	2.53225400	3.66528400
Н	0.60821800	4.76924500	-0.00291400
Н	0.23817500	4.67244600	2.44898800
Н	1.05491900	-1.06191000	-2.41728300
Р	1.80090300	0.00044300	-0.39503200
С	-3.96916600	0.07676700	-0.08580200
С	-3.37594200	-0.53795800	-1.29795100
Н	-4.01787000	-0.54603300	0.79615600
Н	-3.78148500	1.12760700	0.07248300
Н	-3.48892500	0.11208300	-2.18227600
Br	-6.36614100	0.39165600	-0.21611100
0	-2.12480400	-0.44511700	-0.69733800
С	-3.82667300	-1.95273100	-1.64172300
Н	-4.84950400	-1.96354500	-2.02953800
Н	-3.16458100	-2.37274700	-2.40485000
н	-3.77978400	-2.59398900	-0.75589600

1 2 1.0 3 1.0 37 1.0 38 1.0 2 3 4 5 1.5 6 1.5 38 1.0 5 7 1.5 8 1.0 6 9 1.5 10 1.0

2.08Å					
	1.95Á				
		(B)			
с		0.28498	800	-0.02772400	-1.56616000
н		-0.65309	400	0.27762700	-1.05652600
н		0.54571	900	0.69146300	-2.34395300
С		-4.14652	700	-0.17648800	0.11364400
С		-3.34736	900	0.90615000	-0.62402400
н		-3.62317	000	-1.12781300	0.10495000
н		-4.39930	900	0.12259000	1.12937800
н		-3.25763	100	0.57752300	-1.68484200
Br		-5.965824	100	-0.65696700	-0.71647200
0		-2.13551	200	0.94434000	0.02331700
С		1.15996	600	-1.23336400	0.98613200
С		0.68742	800	-2.50897400	0.64451900
С		1.29651	900	-0.87649100	2.33258300
С		0.35395	500	-3.41470400	1.64704500
н		0.57931	.900	-2.80453900	-0.39201400
С		0.96148	000	-1.79051700	3.32997400
Н		1.65700	300	0.10732400	2.60545300
С		0.49066	500	-3.05678500	2.98890300
н		-0.01283	700	-4.39843100	1.37942800
н		1.06707	800	-1.50931900	4.37096600
Н		0.22854	700	-3.76475600	3.76650700
С		3.17518	700	-0.57059900	-1.07906200
С		4.01607	600	-1.48091800	-0.42780900
С		3.55447	800	-0.03027900	-2.31681600
С		5.22771	400	-1.84628600	-1.01165400
Н		3.73123	200	-1.90734200	0.52579000
С		4.76582	400	-0.40126000	-2.89260800
Н		2.91681	100	0.67670200	-2.83388300
С		5.60263	000	-1.30842500	-2.24125900
Н		5.87463	900	-2.55221500	-0.50464000
н		5.05412	100	0.01685700	-3.84964600
Н		6.54440	600	-1.59616700	-2.69381200
С		1.78154	300	1.60422300	0.37966900
С		3.05125	100	2.12938400	0.65188300
С		0.62496	800	2.34520000	0.66994300

С	3.16652100	3.39808500	1.21567400
н	3.94430800	1.56043000	0.42454500
С	0.75848200	3.61330200	1.23251400
н	-0.36794400	1.94587200	0.46008600
С	2.02159400	4.13943800	1.50516000
н	4.14879500	3.80518100	1.42419300
н	-0.13005800	4.19254800	1.45631800
н	2.11392200	5.12767000	1.94113500
С	-4.07612200	2.26133200	-0.62788000
н	-5.04088600	2.22022200	-1.14419000
н	-4.24497900	2.59698300	0.40193100
н	-3.45138300	3.00670800	-1.12862500
н	0.18243800	-1.01860300	-2.01048000
Р	1.60089300	-0.05688000	-0.32802100
1 2 1.0 3 1.0 48 1.0 49	9 1.0		
2			
3			
4 5 1.0 6 1.0 7 1.0			
5 8 1.0 10 1.0 44 1.0			
6			
7			
8			
9			
10			
11 12 1.5 13 1.5 49 1	.0		
12 14 1.5 15 1.0			
13 16 1.5 17 1.0			
14 18 1.5 19 1.0			
15			
16 18 1.5 20 1.0			
17			
18 21 1.0			
19			
20			
21			
22 23 1.5 24 1.5 49 1	.0		
23 25 1.5 26 1.0			
24 27 1.5 28 1.0			
25 29 1.5 30 1.0			
26			
27 29 1.5 31 1.0			
28			
29 32 1.0			

2.22Á

2.15Å

(C)

С	-1.46055600	0.00401400	-1.84235100
н	-1.78468400	0.76800100	-2.54966600
н	-0.45025100	0.23511000	-1.48427200
С	5.44944600	0.05435900	-0.89981200
С	4.73747900	0.42100200	0.40456800
н	5.14140400	-0.90206800	-1.30350300
н	5.33968300	0.84171500	-1.64067400
н	5.29388800	1.24052400	0.86564500
Br	7.42377100	-0.09963000	-0.62050600
0	3.46168000	1.03624600	0.12261700
С	2.44200300	0.31878300	-0.55354000
0	1.37557500	0.96704000	-0.61423900
0	2.71486400	-0.81073600	-0.99631000
С	-4.26388100	-0.46176200	-0.98551200
С	-4.76628500	0.08330600	-2.17612800
С	-5.05652900	-1.32946200	-0.22414300

С	-6.05182900	-0.24330600	-2.59747100
н	-4.16857200	0.75824900	-2.77646900
С	-6.34305400	-1.64898300	-0.65315900
н	-4.67591300	-1.75795100	0.69462900
С	-6.84003000	-1.10822800	-1.83757200
н	-6.43575400	0.17679000	-3.51937400
н	-6.95253400	-2.32217000	-0.06229600
н	-7.83987500	-1.36127100	-2.17049200
С	-2.62067500	1.62746900	0.33795800
С	-3.83220300	2.19748900	0.74847600
С	-1.41108200	2.31220200	0.53393800
С	-3.83458400	3.45129200	1.35586500
н	-4.76760400	1.67362500	0.59605600
С	-1.42921900	3.56535000	1.14156100
н	-0.46466900	1.88179100	0.22109700
С	-2.63536200	4.13418600	1.55209000
н	-4.77261500	3.89190600	1.67183300
н	-0.49775800	4.09826600	1.29247900
н	-2.64015300	5.11046800	2.02294700
С	-2.01722200	-1.24605500	0.77832300
С	-1.98460900	-0.93915000	2.14373500
С	-1.61862000	-2.51600100	0.33491600
С	-1.55493500	-1.89807100	3.05916000
н	-2.28794300	0.03921500	2.49459200
С	-1.18966500	-3.46607500	1.25657400
н	-1.64181600	-2.77317400	-0.71727300
С	-1.15756700	-3.15838000	2.61729200
н	-1.53000800	-1.65657100	4.11501600
н	-0.88004900	-4.44520300	0.91124700
н	-0.82132900	-3.90123000	3.33120200
С	4.62835900	-0.72402300	1.40697500
н	4.07717100	-1.56295200	0.98221900
н	5.62460800	-1.06529300	1.69807700
Н	4.11386700	-0.37866300	2.30679200
Н	-1.47566400	-0.97048400	-2.33109400
Р	-2.59257800	-0.01678100	-0.42920000

1 2 1.0 3 1.0 51 1.0 52 1.0 2 3 4 5 1.0 6 1.0 7 1.0 9 1.0 5 8 1.0 10 1.0 47 1.0 6 7

2.20Á	
2.28Á	
2.07Á	(TS2)

2.43Á

С	1.52005200	-0.02514700	-1.77303800
Н	1.65020700	-0.95627000	-2.32516000
н	0.49812800	0.03947800	-1.39112100
С	4.38029100	0.00241700	-0.98701600
С	4.73012500	-0.83762500	-2.05441100
С	5.35144900	0.81326500	-0.38668400
С	6.04308600	-0.85878000	-2.51525800
н	3.99337500	-1.47561000	-2.52734400
С	6.66361300	0.78367900	-0.85430500
н	5.09029900	1.46639900	0.43666700
С	7.00924300	-0.04933100	-1.91675300
Н	6.30963400	-1.50629900	-3.34193200
н	7.41186800	1.41375300	-0.38864300
н	8.03002200	-0.06778700	-2.28028300
С	2.38266800	1.51954000	0.59237800
С	2.24192800	2.74695100	-0.07230900
С	2.31127000	1.46711100	1.98935000
С	2.02951600	3.90945900	0.66209700
н	2.29871600	2.80683500	-1.15258600
С	2.09964300	2.63729100	2.71599100
н	2.41597800	0.52389300	2.51060800
С	1.95834400	3.85558500	2.05477000
н	1.91850300	4.85564300	0.14621000
н	2.04420600	2.59299100	3.79704500
н	1.79108400	4.76338400	2.62260400
С	2.39017200	-1.45159000	0.66559500
С	3.47346600	-2.19070000	1.15672500
С	1.07446100	-1.82591200	0.98063800
С	3.24109500	-3.30429000	1.96105900
н	4.48995200	-1.90674100	0.91467500
С	0.85736400	-2.94186100	1.78485600

Н	0.22541700	-1.25847500	0.61123900
С	1.93577800	-3.68002700	2.27383700
Н	4.07992100		2.33898100
Н	-0.15727000		2.02800100
Н	1.75814100	-4.54846500	2.89760700
Н	1.72715800	0.81857300	-2.43168000
Р	2.67148500	0.00918400	-0.37307800
С	-5.21817300	-0.34748300	0.15056300
С	-4.77087400	0.18990000	-1.19802300
Н	-5.50193500	-1.37614700	0.27655100
Н	-5.10003100	0.25949400	1.03120100
Н	-5.32577000	1.09832700	-1.42296600
Br	-7.58091700	0.23308800	0.07893900
0	-3.39487900	0.63356200	-1.10258500
С	-2.61385900	-0.14325300	-0.26287200
0	-1.39905600	0.07258800	-0.27522400
0	-3.26478700	-0.98092600	0.43479400
С	-4.92639400	-0.82196900	-2.32562400
Н	-5.97720200	-1.09580200	-2.44074600
Н	-4.57584500	-0.39042300	-3.26483700
Н	-4.35052600	-1.72658300	-2.11610100
1 2 1.0 3 1.0 37 1.0	38 1.0		
2			
3			
4 5 1.5 6 1.5 38 1.0			
5 7 1.5 8 1.0			
6 9 1.5 10 1.0			
7 11 1.5 12 1.0			
8			
9 11 1.5 13 1.0			
10			
11 14 1.0			
12			
13			
14			
15 16 1.5 17 1.5 38	1.0		
16 18 1.5 19 1.0			
17 20 1.5 21 1.0			
18 22 1.5 23 1.0			
19			
20 22 1.5 24 1.0			
21			
22 25 1.0			

2.38Á 2.33Á			
	(D)		
С	-1.84840000	-0.04175300	-2.03201900
н	-2.48915000	0.48904100	-2.73629100
н	-0.92102700	0.51542100	-1.88650400
С	4.00977400	0.50103800	-0.98254300
С	4.18989300	1.88059800	-0.32333200

Н	4.28278000	-0.32564600	-0.33028600
н	4.52669900	0.41481200	-1.93763000
н	4.97326400	2.45830300	-0.81047100
Br	8.17714000	-1.21973900	-0.14539100
0	2.92662700	2.54217400	-0.65643300
С	2.03563800	1.64556500	-1.09970700
0	0.88388500	1.89811000	-1.34663700
0	2.58318300	0.42722600	-1.23434600
С	-4.20552600	-1.19933900	-0.66165400
С	-4.56094000	-2.16343900	0.28974100
С	-5.02134700	-0.98530900	-1.78271800
С	-5.72651200	-2.90752200	0.11860100
Н	-3.93568700	-2.33804000	1.15632300
С	-6.18234600	-1.73488600	-1.94521800
Н	-4.76426600	-0.24146300	-2.52704900
С	-6.53549100	-2.69464300	-0.99593700
Н	-5.99798100	-3.65339500	0.85595000
Н	-6.80897900	-1.56920200	-2.81330100
Н	-7.44001600	-3.27696000	-1.12718600
С	-3.15376300	1.45110600	0.16292100
С	-4.41957900	1.68389100	0.71452700
С	-2.21239100	2.48937600	0.09075900
С	-4.74235400	2.95235300	1.19200100
Н	-5.15092200	0.88744800	0.77101200
С	-2.54750800	3.75252700	0.57031500
Н	-1.22730100	2.32419900	-0.32973600
С	-3.80887400	3.98470800	1.12003200
н	-5.72285500	3.13086500	1.61683900
н	-1.82201700	4.55526700	0.51319000
н	-4.06346300	4.97085600	1.49066400
Н	-1.62551300	-1.03464000	-2.42298700
Р	-2.70634600	-0.20027700	-0.44098600
С	4.37823100	1.85577100	1.18017200
Н	5.34008200	1.39269700	1.41381600
Н	4.37844800	2.87009300	1.58302000
Н	3.58835400	1.27888400	1.66794900
С	-1.60372200	-1.01228000	0.75068300
С	-0.88837600	-2.15459500	0.36172500
С	-1.47518400	-0.51403400	2.05266000
С	-0.05085500	-2.78834800	1.27424600
н	-0.97890900	-2.55566500	-0.64040700
С	-0.63496200	-1.15698600	2.95951900
н	-2.02130600	0.36885900	2.36018100
С	0.07610700	-2.29084800	2.57188100