Stereoselective Chlorination of Acyclic Aliphatic 1,3-Anti vs. 1,3-Syn Diols with

Triphosgene-Pyridine Activation

Andrés Villalpando, Mirza A. Saputra, Thomas H. Tugwell, and Rendy Kartika*

Department of Chemistry

232 Choppin Hall

Louisiana State University

Baton Rouge, LA 70803

SUPPORTING INFORMATION

1.	General Information		. S-2
2.	Experimental Section		
	2.1.	Dichlorination Procedure for 1,3-Anti Diols	S-3
	2.2.	Dichlorination Procedure for 1,3-Syn Diols	S-6
	2.3.	Synthesis of 1,3-Anti Diols	. S- 11
	2.4.	Synthesis of 1,3-Syn Diols	. S-23
	2.5.	Synthesis of 1,3,5-Triols	. S-34
3.	GC-MS Data for Table 2		.S-41
4.	¹ H and ¹³ C NMR Spectra		

1. GENERAL INFORMATION

All materials, unless otherwise stated, were purchased from commercial sources and utilized without further purification. Anhydrous reactions were conducted in oven-dried glassware, which was then cooled under vacuum and purged with nitrogen gas. Anhydrous solvents (dichloromethane, toluene, acetonitrile, diethyl ether, and tetrahydrofuran) were filtered through activated 4 Å molecular sieves under nitrogen in a solvent purification system. Reactions were monitored either by analytical thin-layer chromatography (TLC silica gel 60 F₂₅₄, glass plates) and analyzed using 254 nm UV light and anisaldehyde-sulfuric acid or potassium permanganate stains or via gas chromatography-mass spectrometry (GC-MS). The column for the GC-MS system was 5% phenyl methyl siloxane, measuring 30 m in length with an internal diameter of 250 µm and film thickness of 0.25 µm. Low and high mass readings were set to 40 to 800 m/z, respectively. Oven, inlet, and detector temperatures were set to 250°C, and helium was used as the inert carrier gas. Column chromatography was completed using silica gel. Unless otherwise noted, all ¹H and ¹³C NMR spectra were recorded in CDCl₃ using a spectrometer operating at 400 MHz for ¹H and 100 MHz for ¹³C. Chemical shifts (δ) are reported in ppm relative to residual CHCl₃ as an internal reference (¹H, 7.26 ppm; ¹³C, 77.00 ppm). Coupling constants (J) are reported in hertz (Hz). Peak multiplicity is indicated as follows: s (singlet), d (doublet), t (triplet), q (quartet), p (pentet), x (septet), h (heptet), b (broad), and m (multiplet). FT-IR spectra were recorded using thin films, and absorption frequencies are reported in reciprocal centimeters (cm⁻¹). High-resolution mass spectrometry (HRMS) analyses were performed using electron spray ionization-time of flight (ESI-TOF) methods.

2. EXPERIMENTAL SECTION

2.1. Dichlorination Procedure for 1,3-Anti Diols

Unless otherwise noted, 1,3-*anti* diol starting material was dissolved in anhydrous dichloromethane (~60-100 mM concentration). The solution was then cooled to 0°C. Triphosgene was added in one portion, followed by pyridine *via* syringe. The solution was stirred for 5 min and then warmed to gentle reflux for 3-6 hours. After cooling to room temperature, the reaction mixture was then poured into a separatory funnel containing aqueous HCl solution (1M, 10 mL), and the biphasic mixture was shaken vigorously. Upon separation of layers, the aqueous layer was re-extracted with dichloromethane (2×15 mL). Organic extracts were collected, dried over Na₂SO₄, filtered, and concentrated under vacuum. The resulting crude material was purified using flash column chromatography with silica gel as the stationary phase and a mixture of hexanes/ethyl acetate, pentane/diethyl ether, or pentane/dichloromethane as the mobile phase.

(±)-((2*S*,4*S*)-2,4-dichlorohept-6-en-1-yl)benzene (13a). 1,3-*anti* diol 12a (50 mg, 0.24 mmol) was dissolved in CH₂Cl₂ (4.0 mL) and treated with triphosgene (71 mg, 0.24 mmol) and pyridine (78 μ L, 0.96 mmol) to produce 1,3-*anti* dichloride 13a in 90% yield as colorless oil (52 mg, 0.21 mmol). The purified product was eluted with 100% hexanes. ¹H NMR (400 MHz, CDCl₃); δ (ppm) = 7.41-7.23 (5H, m), 5.86 (1H, m), 5.19-5.14 (2H, m), 4.50 (1H, p, *J* = 6.6 Hz), 3.15 (1H, dd, *J* = 14.1, 7.4 Hz), 3.07 (1H, dd, *J* = 14.1, 6.4 Hz), 2.54 (2H, t, *J* = 6.6 Hz), 2.05-2.02 (2H, m). ¹³C NMR (100 MHz, CDCl₃); δ (ppm) = 137.16, 133.53,

129.34, 128.47, 126.93, 118.39, 60.50, 59.24, 45.57, 44.98, 42.84. IR (cm⁻¹): f = 3081, 3065, 3029, 2961, 2926, 2854, 1698, 1643, 1604, 1496, 1454, 1277, 1239, 922, 700. HRMS-ESI: (M-H₂Cl)⁺ = 205.0779 calculated for C₁₃H₁₄Cl, experimental = 205.0789. GC-MS: Rt = 18.72 min; M⁺ = 242.1 calculated for C₁₃H₁₆Cl₂, experimental = 242.1.

(±)-((2*S*,4*S*)-2,4-dichlorotridecyl)benzene (13b). 1,3-*anti* diol 12b (97 mg, 0.37 mmol) was dissolved in CH₂Cl₂ (6.0 mL) and treated with triphosgene (110 mg, 0.37 mmol) and pyridine (119 μ L, 1.47 mmol) to produce 1,3-*anti* dichloride 13b in 65% yield as a colorless oil (72 mg, 0.24 mmol). The purified product was eluted with 100% hexanes. ¹H NMR (400 MHz, CDCl₃); δ (ppm) = 7.37-7.24 (5H, m), 4.52 (1H, m), 4.26 (1H, m), 3.14 (1H, dd, J = 13.8, 7.5 Hz), 3.06 (1H, dd, J = 14.0, 6.3 Hz), 2.08-1.94 (2H, m), 1.74 (1H, m), 1.54-1.42 (3H, m) 1.31 (3H, s), 0.91 (3H, t, J = 6.3 Hz). ¹³C NMR (100 MHz, CDCl₃); δ (ppm) = 137.21, 129.35, 128.44, 126.89, 60.82, 60.66, 46.33, 45.01, 38.74, 31.73, 29.10, 29.01, 26.38, 22.61, 14.07. IR (cm⁻¹): *f* = 2958, 2929, 2854, 1496, 1455, 750, 699, 612. HRMS-ESI: (M-HCl₂)⁺ = 229.1951 calculated for C₁₇H₂₅, experimental = 229.1948. GC-MS: Rt = 21.92 min; M⁺ = 300.1 calculated for C₁₇H₂₆Cl₂, experimental = 300.1.

(±)-*tert*-butyl(((5*S*,7*S*,*E*)-5,7-dichloro-2-methyl-8-phenyloct-2-en-1

yl)oxy)dimethylsilane (13c). 1,3-*anti* diol 12c (55 mg, 0.15 mmol) was dissolved in CH₂Cl₂ (1.5 mL) and treated with triphosgene (45 mg, 0.15 mmol) and pyridine (49 μ L, 0.60 mmol) to produce 1,3-*anti* dichloride 13c in 80% yield as a colorless oil (48 mg, 0.12 mmol). The purified product was eluted with 100% hexanes. ¹H NMR (400 MHz, CDCl₃); δ (ppm) = 7.36-7.21 (5H, m), 5.47 (1H, t, *J* = 8.0 Hz), 4.47 (1H, p, *J* = 8.0 Hz), 4.27 (1H, p, *J* = 8.0 Hz), 4.03 (2H, s), 3.12 (1H, dd, *J* = 16.0, 8.0 Hz), 3.03 (1H, dd, *J* = 16.0, 8.0 Hz), 2.55-2.46 (2H, m), 2.02-1.98 (2H, m), 1.60 (3H, s), 0.92 (9H, s), 0.06 (6H, s). ¹³C NMR (100 MHz, CDCl₃); δ (ppm) = 137.87, 137.20, 129.36, 128.47, 126.93, 118.85, 68.04, 60.55, 60.04, 45.59, 45.04, 36.73, 25.94, 18.41, 13.78, -5.27. IR (cm⁻¹): *f* = 2954, 2928, 2855, 1252, 1109, 1072, 835, 775, 699. HRMS-ESI: (M-2Cl+H)⁺ = 329.2295 calculated for C₂₁H₃₃OSi, experimental = 329.2289. GC-MS: Rt = 23.58 min; (M-C₄H₉)⁺ = 343.1 calculated for C₁₇H₂₅Cl₂OSi, experimental = 343.1.

(±)-(3*S*,5*S*)-*tert*-butyl 3,5-dichloro-6-phenylhexanoate (13d). 1,3-*anti* diol 12d (150 mg, 0.54 mmol) was dissolved in CH₂Cl₂ (8.0 mL) and treated with triphosgene (160 mg, 0.54 mmol) and pyridine (175 μ L, 2.16 mmol) to produce 1,3-*anti* dichloride 13d in 73% yield as a colorless oil (125 mg, 0.40 mmol). The purified product was eluted with 90:10 hexanes:EtOAc. ¹H NMR (400 MHz, CDCl₃); δ (ppm) = 7.37-7.24 (5H, m), 4.62 (1H, m), 4.48 (1H, dtd, *J* =

10.0, 6.9, 2.9 Hz), 3.16 (1H, dd, J = 14.2, 7.2 Hz), 3.07 (1H, dd, J = 14.1, 6.5 Hz), 2.74 (1H, dd, J = 15.5, 7.7 Hz), 2.65 (1H, dd, J = 15.6, 6.2 Hz), 2.13-2.01 (2H, m), 1.49, (9H, s). ¹³C NMR (100 MHz, CDCl₃); δ (ppm) = 168.58, 136.95, 129.30, 128.43, 126.91, 81.44, 59.93, 55.32, 45.41, 44.81, 44.78, 27.95. IR (cm⁻¹): f = 2978, 2931, 1728, 1367, 1145, 751, 699. HRMS-ESI: (M-H₂Cl₂)⁺ = 244.1463 calculated for C₁₆H₂₀O₂, experimental = 244.1957.

(±)-((2*S*,4*S*)-2,4,6-trichlorohexyl)benzene (22). 1,3,5-*anti* triol 21 (37 mg, 0.175 mmol) was dissolved in CH₂Cl₂ (2.5 mL) and treated with triphosgene (78 mg, 0.27 mmol) and pyridine (85 μL, 1.05 mmol) to produce 1,3,5-*anti* trichloride 22 in 75% yield as a colorless oil (35 mg, 0.13 mmol). The purified product was eluted with 100% hexanes. ¹H NMR (400 MHz, CDCl₃); δ (ppm) = 7.38-7.24 (5H, m), 4.49 (2H, p, J = 8.0 Hz), 3.79-3.70 (2H, m), 3.18 (1H, dd, J = 12.0, 8.0 Hz), 3.07 (1H, dd, J = 12.0, 8.0 Hz), 2.18-1.96 (4H, m). ¹³C NMR (100 MHz, CDCl₃); δ (ppm) = 136.99, 129.36, 128.53, 127.01, 60.02, 57.27, 46.02, 44.93, 41.26, 41.11. IR (cm⁻¹): *f* = 2964, 2925, 1454, 906, 701. HRMS-ESI: (M-Cl+H)⁺ = 229.0545 calculated for C₁₂H₁₅Cl₂, experimental = 229.0527. GC-MS: Rt = 20.29 min; M⁺ = 264.0 calculated for C₁₂H₁₅Cl₃, experimental = 264.0.

2.2. Dichlorination Procedure for 1,3-Syn Diols

Unless otherwise noted, 1,3-*syn* diol monosilylether starting material was dissolved in anhydrous dichloromethane (~500 mM concentration). The solution was then cooled to 0°C. Triphosgene was added in one portion, followed by pyridine *via* syringe. The solution was stirred

for 5 min and then warmed to gentle reflux for 3-6 hours. After cooling to room temperature, the reaction mixture was then poured into a separatory funnel containing aqueous HCl solution (1M, 10 mL), and the biphasic mixture was shaken vigorously. Upon separation of layers, the aqueous layer was re-extracted with dichloromethane (2×15 mL). Organic extracts were collected, dried over Na₂SO₄, filtered, and concentrated under vacuum. The resulting crude material was purified using flash column chromatography with silica gel as the stationary phase and a mixture of hexanes/ethyl acetate, pentane/diethyl ether, or pentane/dichloromethane as the mobile phase.

(±)-((2*S*,4*R*)-2,4-dichlorohept-6-en-1-yl)benzene (20a). 1,3-*syn* diol monosilylether 19a (114 mg, 0.34 mmol) was dissolved in CH₂Cl₂ (0.68 mL) and treated with triphosgene (101 mg, 0.34 mmol) and pyridine (108 μ L, 1.34 mmol) to produce 1,3-*syn* dichloride **20a** in 76% yield as a colorless oil (62 mg, 0.26 mmol). The purified product was eluted with 100% hexanes. ¹H NMR (400 MHz, CDCl₃); δ (ppm) = 7.38-7.24 (5H, m), 5.85 (1H, m), 5.17-5.13 (2H, m), 4.31-4.18 (2H, m), 3.14 (1H, dd, *J* = 14.1, 5.5 Hz), 3.02 (1H, dd, *J* = 14.1, 7.9 Hz), 2.61 (1H, dt, *J* = 14.9, 5.7 Hz), 2.47 (1H, dt, *J* = 14.6, 7.3 Hz), 2.33-2.20 (2H, m). ¹³C NMR (100 MHz, CDCl₃); δ (ppm) = 137.14, 133.04, 129.37, 128.47, 126.98, 118.65, 59.82, 58.30, 45.37, 44.10, 41.13. IR (cm⁻¹): *f* = 3065, 3029, 2963, 2918, 1434, 923, 749, 699. HRMS-ESI: (M-HCl₂)⁺ = 171.1168 calculated for C₁₃H₁₅, experimental = 171.1172. GC-MS: Rt = 18.70 min; M⁺ = 242.1 calculated for C₁₃H₁₆Cl₂, experimental = 242.0.

(±)-((2*S*,4*R*)-2,4-dichlorotridecyl)benzene (20b). 1,3-*syn* diol monosilylether 19b (110 mg, 0.28 mmol) was dissolved in CH₂Cl₂ (0.56 mL) and treated with triphosgene (83 mg, 0.28 mmol) and pyridine (89 μ L, 1.10 mmol) to produce 1,3-*syn* dichloride 20b in 82% yield as a colorless oil (68.5 mg, 0.23 mmol). The purified product was eluted with 100% hexanes. ¹H NMR (400 MHz, CDCl₃); δ (ppm) = 7.41-7.26 (5H, m), 4.29 (1H, tdd, *J* = 8.0, 5.8, 5.8 Hz), 4.26 (1H, m), 3.16 (1H, dd, *J* = 14.0, 5.4 Hz), 3.02 (1H, dd, *J* = 14.1, 8.1 Hz), 2.32 (1H, dt, *J* = 14.7, 7.5 Hz), 2.20 (1H, dt, *J* = 13.7, 6.4 Hz), 1.79 (1H, m), 1.66 (1H, ddt, *J* = 14.0, 14.0, 4.7 Hz), 1.56-1.40 (2H, m), 1.37-1.28 (8H, m), 0.93 (3H, t, *J* = 6.5 Hz). ¹³C NMR (100 MHz, CDCl₃); δ (ppm) = 137.24, 129.38, 128.45, 126.95, 59.96, 59.94, 46.28, 44.06, 37.08, 31.73, 29.10, 28.96, 25.94, 22.61, 14.08. IR (cm⁻¹): *f* = 3028, 2956, 2926, 2855, 1497, 1455, 1254, 1119, 1059, 831, 791, 699. HRMS-ESI: (M-HCl₂)⁺ = 229.1951 calculated for C₁₇H₂₅, experimental = 229.1955. GC-MS: Rt = 21.88 min; M⁺ = 300.1 calculated for C₁₇H₂₆Cl₂, experimental = 300.1.

(±)-tert-butyl(((5R,7S,E)-5,7-dichloro-2-methyl-8-phenyloct-2-en-1-

yl)oxy)dimethylsilane (20c). 1,3-syn diol monosilylether 19c (38 mg, 0.076 mmol) was dissolved in CH₂Cl₂ (0.15 mL) and treated with triphosgene (23 mg, 0.076 mmol) and pyridine (25 μ L, 0.31 mmol). The crude was eluted with 100% hexanes \rightarrow 98:2 hexanes:EtOAc to produce 1,3-syn dichloride 20c in 93% yield as a colorless oil (29 mg, 0.071 mmol). ¹H NMR

(400 MHz, CDCl₃); δ (ppm) = 7.39-7.24 (5H, m), 5.50 (1H, t, J = 8.0 Hz), 4.28 (1H, p, J = 8.0 Hz), 4.20 (1H, p, J = 8.0 Hz), 4.04 (2H, s), 3.15 (1H, dd, J = 16.0, 8.0 Hz), 2.99 (1H, dd, J = 16.0, 8.0 Hz), 2.62-2.47 (2H, m), 2.32-2.22 (2H, m), 1.63 (3H, s), 0.95 (9H, s), 0.10 (6H, s). ¹³C NMR (100 MHz, CDCl₃); δ (ppm) = 138.00, 137.24, 129.40, 128.46, 126.96, 118.47, 68.06, 60.02, 59.20, 45.67, 44.05, 35.19, 25.94, 18.41, 13.79, -5.28. IR (cm⁻¹): f = 2954, 2928, 2856, 1253, 1111, 1072, 836, 776, 699. HRMS-ESI: (M+Na)⁺ = 423.1648 calculated for C₂₁H₃₄Cl₂NaOSi, experimental = 423.1676. GC-MS: Rt = 23.58 min; (M-C₄H₉)⁺ = 343.1 calculated for C₁₇H₂₅Cl₂OSi, experimental = 343.1.

(±)-(3*R*,5*S*)-*tert*-butyl 3,5-dichloro-6-phenylhexanoate (20d). 1,3-*syn* diol monosilylether **19d** (29 mg, 0.070 mmol) was dissolved in CH₂Cl₂ (0.14 mL) and treated with triphosgene (21 mg, 0.070 mmol) and pyridine (23 μ L, 0.28 mmol) to produce 1,3-*syn* dichloride **20d** in 92% yield as a colorless oil (20 mg, 0.065 mmol). The purified product was eluted with 100% hexanes, buffered with 1% Et₃N. ¹H NMR (500 MHz, CDCl₃); δ (ppm) = 7.38-7.20 (5H, m), 4.47 (1H, m), 4.29-4.23 (1H, m), 3.16 (1H, dd, *J* = 14.2, 5.2 Hz), 2.98 (1H, dd, *J* = 14.2, 8.3 Hz), 2.72 (1H, dd, *J* = 15.8, 5.1 Hz), 2.63 (1H, dd, *J* = 15.8, 8.4 Hz), 2.34-2.24 (2H, m), 1.46 (9H, s). ¹³C NMR (125 MHz, CDCl₃); δ (ppm) = 168.86, 137.08, 129.40, 128.48, 127.00, 81.60, 59.46, 54.65, 45.58, 43.87, 43.61, 28.05. IR (cm⁻¹): *f* = 2977, 2927, 2854, 1715, 1368, 1296, 1255, 1148, 700. HRMS-ESI: (M+Na)⁺ = 339.0889 calculated for C₁₆H₂₂Cl₂NaO₂, experimental = 339.0891.

(±)-((2*S*,4*R*)-2,4,6-trichlorohexyl)benzene (24). 1,3,5-*syn* triol monosilylether 23 (60 mg, 0.17 mmol) was dissolved in CH₂Cl₂ (0.34 mL) and treated with triphosgene (77 mg, 0.26 mmol) and pyridine (82 μ L, 1.02 mmol) to produce 1,3,5-*syn* trichloride 24 in 55% yield as a colorless oil (25 mg, 0.09 mmol). The purified product was eluted with 100% hexanes, buffered with 1% Et₃N. ¹H NMR (400 MHz, CDCl₃); δ (ppm) = 7.37-7.24 (5H, m), 4.37 (1H, dtd, *J* = 10.0, 7.0, 3.0 Hz), 4.30 (1H, ddd, *J* = 13.8, 7.8, 6.0 Hz), 3.78-3.68 (2H, m), 3.15 (1H, dd, *J* = 14.1, 5.5 Hz), 3.03 (1H, dd, *J* = 14.2, 7.9 Hz), 2.34 (1H, dt, *J* = 14.5, 7.6 Hz), 2.26-2.18 (2H, m), 2.07 (1H, ddt, *J* = 10.7, 9.8, 5.0 Hz). ¹³C NMR (100 MHz, CDCl₃); δ (ppm) = 136.94, 129.40, 128.52, 127.06, 59.29, 56.38, 45.95, 43.98, 41.26, 39.77. IR (cm⁻¹): *f* = 3029, 2964, 2923, 2852, 1497, 1454, 1438, 1311, 1247, 749, 700. HRMS-ESI: (M-Cl)⁺ = 229.0545 calculated for C₁₂H₁₅Cl₂, experimental = 229.0543. GC-MS: Rt = 20.25 min; M⁺ = 264.0 calculated for C₁₂H₁₅Cl₃, experimental = 264.0.

2.3. Synthesis of 1,3-Anti Diols

Preparation of 1,3-Anti Diol 12a

(±)-4-phenylbutane-1,3-diol (A-1). A solution of LDA in THF (300 mL) was prepared by dissolving diisopropylamine (37.6 mL, 266.00 mmol) in THF while cooling to -78° C. *n*-BuLi (106.5 mL, 266.00 mmol) was slowly added. The mixture was allowed to stir for 15 minutes before ethyl acetate (26 mL, 266.00 mmol) was added dropwise. After stirring the resulting mixture for 20 minutes, phenylacetaldehyde (18.6 mL, 166.40 mmol) was added. The mixture was allowed to stir until complete consumption of aldehyde and then quenched with a halfsaturated NH₄Cl (150 mL) solution. Upon separation of layers, the aqueous layer was extracted with EtOAc (3 x 50 mL). Organic layers were combined and dried over MgSO₄ and concentrated in vacuo.

The resulting crude material was then dissolved in Et_2O (20 mL). The solution was then added dropwise *via* cannula to a cooled (0°C) suspension of lithium aluminum hydride (7.0 g, 183.00 mmol) in Et_2O (500 mL). After stirring for one hour, the reaction was quenched by the slow addition of deionized water (7.0 mL), which was followed by addition of a 15% aqueous sodium hydroxide solution (7.0 mL), and then deionized water (21.0 mL). This workup sequence resulted in the formation of white precipitates. After further stirring for one hour, the filtrate was collected using vacuum filtration and concentrated in vacuo. The crude material was then purified in $30:70 \rightarrow 20:80$ hexanes:EtOAc to give 1,3-diol **A-1** with a yield of 56% (15.49 g, 93.26 mmol) as a colorless oil. ¹H NMR (400 MHz, CDCl₃); δ (ppm) = 7.36-7.23 (5H, m), 3.91-3.84 (2H, m), 2.87-2.76 (2H, m), 2.42-2.37 (2H, bs), 1.82-1.75 (2H, m). ¹³C NMR (100 MHz, CDCl₃); δ (ppm) =138.08, 129.36, 128.51, 126.47, 72.77, 61.43, 44.26, 37.70. Compound **A-1** is known (CAS #74578-77-1).

(±)-4-benzyl-2-(4-methoxyphenyl)-1,3-dioxane (A-2). 1,3-Diol A-1 (15.49 g, 93.26 mmol) was dissolved in toluene (300 mL) and *p*-anisaldehyde (17.0 mL, 136.20 mmol) and TsOH (177 mg, 0.93 mmol) were added. The resulting mixture was heated to reflux using a dean stark apparatus. After stirring overnight, the reaction was quenched by the addition of solid NaHCO₃ (300 mg), and the mixture was then concentrated in vacuo. In order to create better chromatographic separation between the product and residual *p*-anisaldehyde, the crude material was dissolved in MeOH (200 mL) and carefully treated with NaBH₄ (5.29 g, 139.90 mmol). The mixture was stirred until *p*-anisaldehyde was fully consumed. After removing the organic solvent under vacuum, the crude material was then quenched with a half-saturated NH₄Cl solution (100 mL) and then extracted with EtOAc (3 x 100 mL). The organic layer was dried over MgSO₄ and concentrated in vacuo. The crude material was purified with 80:20 hexanes:EtOAc to give acetal A-2 with a yield of 97% (25.59 g, 90.10 mmol) as a colorless oil. ¹H NMR (400 MHz, CDCl₃); δ (ppm) = 7.43 (2H, d, *J* = 8.2 Hz), 7.35-7.24 (5H, m), 6.90 (2H, d, *J* = 8.4 Hz), 5.48 (1H, s),

4.24 (1H, m), 3.95 (1H, m), 3.81 (3H, s), 3.09 (1H, dd, J = 13.5, 6.3 Hz), 2.80 (1H, dd, J = 13.6, 6.9 Hz), 1.84 (1H, m), 1.49 (1H, m). ¹³C NMR (100 MHz, CDCl₃); δ (ppm) = 159.85, 137.74, 131.35, 129.54, 128.29, 127.32, 126.35, 113.58, 101.06, 77.99, 66.95, 55.28, 42.60, 30.77. IR (cm⁻¹): f = 2953, 2840, 1614, 1516, 1247, 1171, 1103, 1031, 907, 825, 726, 699, 532. HRMS-ESI: (M+)⁺ = 285.1485 calculated for C₁₈H₂₁O₃, experimental = 285.1484.

 (\pm) -3-((4-methoxybenzyl)oxy)-4-phenylbutan-1-ol (A-3). Acetal A-2 (9.46 g, 33.30 mmol) was dissolved in CH₂Cl₂ (200 mL) and cooled to -78°C. DIBAL (48.3 mL, 48.30 mmol, 1M solution in toluene) was added dropwise. The reaction was allowed to stir at -78°C for two hours before being allowed to slowly warm to room temperature overnight. After cooling back to 0°C, the reaction mixture was slowly guenched with a saturated aqueous solution of Rochelle's salt (150 mL) and vigorously stirred for two hours. Upon separation of layers, the aqueous layer was then extracted with CH₂Cl₂ (3 x 100 mL). The organic layers were collected, dried over Na₂SO₄, and concentrated in vacuo. The crude mixture was purified in 70:30 \rightarrow 60:40 hexanes: EtOAc to give alcohol A-3 with a yield of 80% (7.29 g, 25.48 mmol) as a yellow oil. 1 H NMR (400 MHz, CDCl₃); δ (ppm) = 7.35-7.20 (7H, m), 6.89 (2H, d, J = 8.6 Hz), 4.54 (1H, d, J = 11.0 Hz), 4.43 (1H, d, J = 11.0 Hz), 3.89-3.68 (3H, m), 3.83 (3H, s), 3.05 (1H, dd, J = 13.5, 5.8 Hz), 2.80 (1H, d, J = 13.6, 7.0 Hz), 2.43 (1H, bs), 1.83-1.67 (2H, m). ¹³C NMR (100 MHz, $CDCl_3$; δ (ppm) = 159.25, 138.38, 130.13, 129.52, 129.45, 128.34, 126.23, 113.84, 79.23, 71.15, 60.62, 55.22, 40.46, 36.02. IR (cm⁻¹): f = 3409, 3029, 2936, 2866, 1612, 1513, 1247, 1173, 1033, 906, 822, 725, 700, 647, 513. HRMS-ESI: $(M+Na)^+ = 309.1461$ calculated for $C_{18}H_{22}NaO_3$, experimental = 309.1471.

(±)-3-((4-methoxybenzyl)oxy)-4-phenylbutanal (A-4). Alcohol A-3 (7.29 g, 25.48 mmol) was dissolved in CH₂Cl₂ (250 mL) and cooled to 0°C. TEMPO (399 mg, 2.55 mmol) and KBr (1.3 mL, 2.55 mmol, 2M solution) were then added to the solution. A bleach solution containing NaOCl (35 mL, 28.03 mmol, Clorox brand) and NaHCO₃ (519 mg, 15 mg per 1 mL of bleach) was added slowly to maintain the internal reaction temperature near 0°C. Upon completion, the biphasic layers were separated. The aqueous layer reaction was then extracted with CH_2Cl_2 (3 x 100 mL). The combined organic layers were then washed with $Na_2S_2O_3$, followed by a saturated NaHCO₃ solution, and then dried over Na_2SO_4 and concentrated in vacuo. The crude mixture was purified in $80:20 \rightarrow 70:30$ hexane:EtOAc to give aldehyde A-4 with a yield of 69% (5.00 g, 17.60 mmol) as a colorless solid. ¹H NMR (400 MHz, CDCl₃); δ (ppm) = 9.71 (1H, t, J = 2.1 Hz), 7.33-7.17 (7H, m), 6.86 (2H, d, J = 8.6 Hz), 4.47 (2H, q, J = 11.1, 4.4 Hz), 4.19-4.13 (1H, m), 3.81 (3H, s), 3.03 (1H, dd, J = 13.6, 6.0 Hz), 2.81 (1H, dd, J = 13.6, 6.0 (1H, dd, J = 13.6, 6.8 Hz), 2.63 (1H, ddd, J = 16.6, 7.7, 2.5 Hz), 2.51 (1H, ddd, J = 16.5, 4.4, 1.7 Hz). ¹³C NMR (100 MHz, CDCl₃); δ (ppm) = 201.31, 159.27, 137.60, 130.01, 129.53, 129.46, 128.48, 126.56, 113.81, 75.07, 71.33, 55.26, 48.04, 40.59. IR (cm⁻¹): f = 2975, 2850, 1719, 1612, 1513, 1248, 1087, 1033, 702. HRMS-ESI: $(M+Na)^+$ = 307.1310 calculated for $C_{18}H_{20}O_3Na$, experimental = 307.1308.

(\pm)-(4*R*,6*R*)-6-((4-methoxybenzyl)oxy)-7-phenylhept-1-en-4-ol (A-5). PMB aldehyde A-4 (1.50 g, 5.28 mmol) was dissolved in CH₂Cl₂ (25 mL) in a round bottom flask containing 4Å molecular sieves. After cooling the mixture to -78°C, freshly prepared TiCl₂(OiPr)₂ (10.3 mL, 7.92 mmol, 0.77M in CH₂Cl₂) was then added and allowed to stir for 10 minutes. Tributylallylstannane (2.50 mL, 7.92 mmol) was added dropwise. The reaction was stirred until completion and then quenched with a saturated NaHCO₃ solution (25 mL) and allowed to warm to room temperature. The aqueous layer was extracted with CH₂Cl₂ (3 x 20 mL). The combined organic layers were then dried over Na₂SO₄ and concentrated in vacuo. The crude mixture was purified in 80:20 \rightarrow 70:30 hexanes:EtOAc to give alcohol **A-5** in 95% yield (1.63 g, 5.00 mmol) as a colorless oil. ¹H NMR (400 MHz, CDCl₃); δ (ppm) = 7.35-7.20 (7H, m), 6.88 (2H, d, *J* = 8.2 Hz), 5.81 (1H, m), 5.09 (2H, d, *J* = 13.2 Hz), 4.45 (2H, dd, *J* = 15.8, 10.8 Hz), 4.03-3.93 (2H, m), 3.81 (3H, s), 3.03 (1H, dd, *J* = 13.8, 6.4 Hz), 2.80 (1H, dd, *J* = 13.7, 6.7 Hz), 2.66 (1H, d, *J* = 3.3 Hz), 2.20 (2H, t, *J* = 6.7 Hz), 1.68-1.59 (2H, m). ¹³C NMR (100 MHz, CDCl₃); δ (ppm) = 159.16, 138.50, 134.80, 130.15, 129.49, 129.39, 128.25, 126.13, 117.43, 113.73, 77.53, 71.38, 67.51, 55.14, 42.08, 40.41, 39.73. IR (cm⁻¹): *f* = 3359, 3064, 3027, 2917, 2859, 1496, 1434, 1247, 1081, 1032, 909, 730, 699. HRMS-ESI: (M+Na)⁺ = 349.1774 calculated for C₂₁H₂₆NaO₃, experimental = 349.1768.

(\pm)-(2*R*,4*R*)-1-phenylhept-6-ene-2,4-diol (12a). Alcohol A-5 (150 mg, 0.46 mmol) was dissolved in CH₂Cl₂ (10 mL). DMAP (56 mg, 0.46 mmol) was added to the reaction mixture, followed by addition of acetic anhydride (0.22 mL, 2.30 mmol) and pyridine (0.40 mL, 4.60 mmol). Upon completion, the reaction was quenched with a 2M HCl solution (15 mL) and extracted with CH₂Cl₂ (3 x 15 mL). The combined organic layers were dried over Na₂SO₄ and concentrated under vacuum to give the crude acetate protected alcohol.

The resulting crude product was then dissolved in a mixture of $CH_2Cl_2:H_2O$ (8 mL:few drops) and treated with DDQ (157 mg, 0.69 mmol). Upon completion, the reaction was quenched with a saturated NaHCO₃ solution (15 mL) and extracted with CH_2Cl_2 (3 x 15 mL). The combined organic layers were dried over Na₂SO₄ and concentrated under vacuum.

The crude monoprotected alcohol was then dissolved in MeOH (5 mL) and treated with K₂CO₃ (127 mg, 0.92 mmol). Upon completion, the reaction was quenched with a half saturated NH₄Cl solution (15 mL) and extracted with CH₂Cl₂ (3 x 15 mL). The combined organic layers were dried over Na₂SO₄ and concentrated under vacuum. The crude mixture was purified in 70:30 \rightarrow 60:40 hexanes:EtOAc to give 1,3-*anti* diol **12a** in 62% yield (59 mg, 0.28 mmol) over three steps, as a clear oil. ¹H NMR (400 MHz, CDCl₃); δ (ppm) = 7.35-7.21 (5H, m), 5.81 (1H, m), 5.16-5.10 (2H, m), 4.19 (1H, p, *J* = 6.1 Hz), 4.03 (1H, p, *J* = 5.9 Hz), 2.84-2.75 (2H, m), 2.35 (1H, bs), 2.29-2.24 (3H, m), 1.69 (2H, dd, *J* = 6.0, 5.5 Hz). ¹³C NMR (100 MHz, CDCl₃); δ (ppm) = 138.26, 134.60, 129.35, 128.59, 126.54, 70.04, 68.08, 44.04, 41.99, 41.52. IR (cm⁻¹): *f* = 3335, 3076, 3028, 2914, 1496, 1433, 1327, 1080, 995, 914, 743, 698, 489. HRMS-ESI: (M+H)⁺ = 207.1380 calculated for C₁₃H₁₉O₂, experimental = 207.1381.

Preparation of 1,3-Anti Diol 12b

(\pm)-(2*R*,4*R*)-1-phenylundecane-2,4-diol (12b). Grubb's II catalyst (24 mg, 0.028mmol) was dissolved in CH₂Cl₂ (8 mL). Allylic alcohol A-5 (178 mg, 0.55 mmol) and 1-hexene (0.70 mL, 5.50 mmol) were then added, and the reaction mixture was heated to reflux. Upon completion, the reaction mixture was cooled to room temperature and concentrated in vacuo to afford alkene A-6. The crude mixture was then introduced into a round bottom flask under

vacuum. 10% Pd/C (300 mg, 0.28 mmol) was added carefully, followed by the addition of MeOH (5 mL). The black suspension was then purged and bubbled with a balloon of H₂ gas overnight. Upon completion, the reaction mixture was filtered through a pad of celite via vacuum filtration. The solid residue was rinsed with EtOAc (3 x 10 mL), and the filtrate was concentrated in vacuo. The crude mixture was purified in 60:40 hexanes:EtOAc to give aliphatic chain **12b** in 67% yield (97 mg, 0.37mmol) over two steps, as a colorless oil. ¹H NMR (400 MHz, CDCl₃); δ (ppm) = 7.37-7.24 (5H, m), 4.20 (1H, t, *J* = 5.8 Hz), 3.97 (1H, t, *J* = 5.5 Hz), 2.82 (2H, d, *J* = 6.6 Hz), 2.67 (2H, s), 1.67 (2H, t, *J* = 5.7 Hz), 1.59-1.43 (2H, m), 1.32 (10H, bs), 0.93 (3H, t, *J* = 6.2 Hz). ¹³C NMR (100 MHz, CDCl₃); δ (ppm) = 138.43, 129.40, 128.57, 126.50, 70.13, 69.22, 44.06, 41.91, 37.46, 31.83, 29.61, 29.28, 25.78, 22.67, 14.11. IR (cm⁻¹): *f* = 3434, 3325, 2925, 2854, 1496, 1454, 1130, 1081, 836, 746, 699, 606, 504. HRMS-ESI: (M+H)⁺ = 265.2162 calculated for C₁₇H₂₉O₂, experimental = 265.2162.

Preparation of 1,3-Anti Diol 12c

(±)-ethyl(5R,7R,E)-5-hydroxy-7-((4-methoxybenzyl)oxy)-2-methyl-8-phenyloct-2-

enoate (A-7). Aldehyde A-4 (1.46 g, 5.12 mmol) was dissolved in CH₂Cl₂ (40 mL) and cooled to -78°C. A freshly prepared solution of TiCl₂(OiPr)₂ (2.5 mL, 7.69 mmol, 3M in CH₂Cl₂) was added dropwise, and the mixture was stirred for 20 minutes. A solution of (Z)-((1-ethoxy-2methylbuta-1,3-dien-1-yl)oxy)trimethylsilane (1.54 g, 7.69 mmol) in CH₂Cl₂ (3 x 3 mL) was then added slowly via cannula. After reaching completion, the reaction was quenched with pH 7 phosphate buffer (50 mL) and a saturated Rochelle's salt solution (50 mL). The biphasic layers were allowed to warm to room temperature while stirring vigorously. Upon separation of layers, the aqueous layer was extracted with CH₂Cl₂ (3 x 50 mL). The organic layers were then combined, dried over Na₂SO₄, and concentrated under vacuum. The crude mixture was purified in 80:20 \rightarrow 70:30 hexanes:EtOAc to give ester A-7 with a yield of 58% (1.22 g, 2.96 mmol) as a yellow oil. ¹H NMR (400 MHz, CDCl₃); δ (ppm) = 7.31-7.17 (7H, m), 6.86 (2H, d, J = 8.6 Hz), 6.76 (1H, t, J = 6.3 Hz), 4.47 (1H, d, J = 11.1 Hz), 4.40 (1H, d, J = 11.1 Hz), 4.18 (2H, q, J14.1, 7.0 Hz), 4.09 (1H, m), 3.92 (1H, m), 3.79 (3H, s), 3.03 (1H, dd, J = 13.6, 6.1 Hz), 2.87 (1H, bs), 2.77 (1H, dd, J = 13.5, 6.9 Hz), 2.37-2.21 (2H, m), 1.80 (3H, s), 1.69-1.56 (2H, m), 1.27 (3H, dt, J = 12.7, 7.1 Hz). ¹³C NMR (100 MHz, CDCl₃); δ (ppm) = 167.83, 159.26, 138.29, 137.79, 129.93, 129.58, 129.55, 129.35, 128.33, 126.23, 113.81, 77.47, 71.30, 67.67, 60.39, 55.17, 40.10, 39.57, 36.80, 14.21, 12.57. IR (cm⁻¹): f = 3479, 2936, 2871, 1706, 1496, 1249, 1081, 1034, 702. HRMS-ESI: $(M+Na)^+$ = 435.2142 calculated for C₂₅H₃₂NaO₅, experimental = 435.2140.

(±)-(5R,7R,E)-7-((4-methoxybenzyl)oxy)-2-methyl-8-phenyloct-2-ene-1,5-diol (A-8). Ester A-7 (1.10 g, 2.67 mmol) was dissolved in Et₂O (10 mL) and added slowly via cannula to a

cooled (0°C) suspension of lithium aluminum hydride (152 mg, 4.00 mmol) in Et₂O (90 mL). After complete consumption of the starting material, the reaction was guenched by the slow addition of deionized water (0.2 mL), followed by addition of a 15% aqueous sodium hydroxide solution (0.2 mL), and then deionized water (0.6 mL). This workup sequence resulted in the formation of white precipitates. After further stirring for one hour, the filtrate was collected using vacuum filtration and concentrated under vacuum. The crude material was then purified in 60:40 \rightarrow 50:50 hexanes: EtOAc \rightarrow 100% EtOAc to give diol A-8 with a yield of 67% (662 mg, 1.79 mmol) as a yellow oil. ¹H NMR (400 MHz, CDCl₃); δ (ppm) = 7.33-7.19 (7H, m), 6.88 (2H, d, J= 8.3 Hz, 5.41 (1H, t, J = 7.5 Hz), 4.46 (2H, q, J = 11.0 Hz), 3.99 (2H, s), 3.96-3.92 (2H, m), 3.82 (3H, s), 3.05 (1H, dd, J = 13.5, 6.2 Hz), 2.79 (1H, dd, J = 13.6, 7.0 Hz), 2.71 (1H, bs), 2.24(1H, dt, J = 14.4, 7.1 Hz), 2.14 (1H, dt, J = 14.2, 6.8 Hz), 1.65 (3H, s), 1.63-1.59 (2H, m). ¹³C NMR (100 MHz, CDCl₃); δ (ppm) = 159.08, 138.44, 137.13, 130.06, 129.44, 129.35, 128.19, 126.09, 121.49, 113.69, 77.56, 71.39, 68.25, 68.20, 55.08, 40.43, 40.36, 39.83, 35.78, 13.82. IR (cm^{-1}) : f = 3383, 2934, 2912, 2861, 1513, 1247, 1174, 1032, 821, 701. HRMS-ESI: $(M+H)^+ =$ 371.2217 calculated for C₂₃H₃₁O₄, experimental = 371.2205.

(±)-(2*R*,4*R*,*E*)-8-((*tert*-butyldimethylsilyl)oxy)-2-((4-methoxybenzyl)oxy)-7-methyl-1phenyloct-6-en-4-ol (A-9). Diol A-8 (728 mg, 1.97 mmol) was dissolved in CH₂Cl₂ (100 mL) and cooled to 0°C. Imidazole (268 mg, 3.94 mmol) was then added, followed by TBSCl (445 mg, 2.95 mmol). White precipitate was observed after the addition of TBSCl. The reaction mixture was then warmed to room temperature and stirred overnight. 2M aqueous HCl solution (50 mL) was added to quench the reaction, and the aqueous layer was then extracted with CH₂Cl₂ (3 x 25 mL). The organic layers were combined, dried over Na₂SO₄, and concentrated under vacuum. The crude mixture was purified in 80:20 hexane:EtOAc to give alcohol **A-9** with a yield of 97% (923 mg, 1.91 mmol) as a colorless oil. ¹H NMR (400 MHz, CDCl₃); δ (ppm) = 7.34-7.19 (7H, m), 6.87 (2H, d, J = 8.6 Hz), 5.41 (1H, t, J = 6.9 Hz), 4.44 (2H, q, J = 11.4 Hz), 4.02 (2H, s), 4.01-3.90 (2H, m), 3.83 (3H, s), 3.02 (1H, dd, J = 13.6, 6.6 Hz), 2.80 (1H, dd, J =13.5, 6.7 Hz), 2.56 (1H, bs), 2.27-2.12 (2H, m), 1.66-1.61 (2H, m), 1.59 (3H, s), 0.94 (9H, s), 0.09 (6H, s). ¹³C NMR (100 MHz, CDCl₃); δ (ppm) = 159.22, 138.57, 137.21, 130.26, 129.62, 129.47, 128.34, 126.19, 120.12, 113.91, 77.69, 71.47, 68.45, 68.35, 55.24, 40.52, 39.84, 35.83, 25.94, 18.39, 13.66, -5.28. IR (cm⁻¹): f = 3449, 2951, 2928, 2855, 1513, 1248, 1066, 835, 776, 668. HRMS-ESI: (M+Na)⁺ = 507.2901 calculated for C₂₉H₄₄NaO₄Si, experimental = 507.2897.

(±)-(2R,4R,E)-8-((tert-butyldimethylsilyl)oxy)-2-((4-methoxybenzyl)oxy)-7-methyl-1-

phenyloct-6-en-4-ol (12c). Alcohol **A-9** (128 mg, 0.26 mmol) was dissolved in CH_2Cl_2 (20 mL). DMAP (32 mg, 0.26 mmol) was then added, followed by acetic anhydride (125 μ L, 1.32 mmol), and pyridine (214 μ L, 2.64 mmol). The reaction was stirred at room temperature until all starting material was fully consumed, and then quenched with 2M HCl (20 mL). The aqueous layer was then extracted with CH_2Cl_2 (3 x 10 mL). The organic layers were then combined, dried over Na₂SO₄, and concentrated under vacuum.

The resulting crude material was dissolved in CH_2Cl_2 (50 mL). 10 drops of H_2O and DDQ (90 mg, 0.40 mmol) were sequentially added. After the disappearance of starting material, the reaction was quenched with a saturated NaHCO₃ solution (30 mL) and extracted with CH_2Cl_2 (4 x 20 mL). The combined organic layers were dried over Na₂SO₄ and concentrated under vacuum.

The resulting crude material was dissolved in MeOH (50 mL) and K₂CO₃ (183 mg, 1.32 mmol) was then added. Upon completion, the reaction mixture was quenched with a half saturated NH₄Cl solution (30 mL) and extracted with EtOAc (4 x 20 mL). The combined organic layers were dried over Na₂SO₄ and concentrated under vacuum. The crude mixture was purified in 85:15 \rightarrow 80:20 hexanes:EtOAc to give diol **12c** with a yield of 58% (55 mg, 0.15 mmol) as a colorless oil. ¹H NMR (400 MHz, CDCl₃); δ (ppm) = 7.35-7.23 (5H, m), 5.45 (1H, t, *J* = 6.8 Hz), 4.20 (1H, p, *J* = 6.1 Hz), 4.04 (2H, s), 4.02 (1H, m), 2.81 (2H, d, *J* = 6.4 Hz), 2.46 (1H, bs), 2.33 (1H, dt, *J* = 14.8, 7.7 Hz), 2.22 (1H, dt, *J* = 13.0, 5.8 Hz), 1.72 (2H, t, *J* = 5.8 Hz), 1.64 (3H, s), 0.94 (9H, s), 0.09 (6H, s). ¹³C NMR (100 MHz, CDCl₃); δ (ppm) = 138.36, 137.88, 129.35, 128.54, 126.46, 119.60, 70.08, 68.98, 68.29, 44.06, 41.49, 35.68, 25.93, 18.40, 13.71, -5.29. IR (cm⁻¹): *f* = 3375, 2928, 2856, 1327, 939, 775. HRMS-ESI: (M+H)⁺ = 365.2506 calculated for C₂₁H₃₇O₃Si, experimental = 365.2509.

Preparation of 1,3-Anti Diol 12d

(±)-(3*S*,5*R*)-tert-butyl 3-hydroxy-5-((4-methoxybenzyl)oxy)-6-phenylhexanoate. (A-10). Aldehyde A-4 (1.46 g, 5.12 mmol) was dissolved in CH_2Cl_2 (40 mL) and cooled to -78°C. $TiCl_2(O^iPr)_2$ was added dropwise and the reaction mixture was stirred for 20 minutes. A solution of ketene acetal (1.54 g, 7.69 mmol) was then added slowly in 3 portions with 3 mL of CH_2Cl_2 .

The reaction was quenched with a solution of pH 7 phosphate buffer (30 mL) and Rochelle's salt (25 mL). The mixture was allowed to stir to room temperature and extracted with CH₂Cl₂ (3 x 50 mL). The organic layers were then dried over Na₂SO₄ and concentrated under vacuum. The crude mixture was purified in 80:20 \rightarrow 70:30 hexane:EtOAc to give **A-10** with a yield of 58% (1.22 g, 2.96 mmol) as a yellow oil. ¹H NMR (400 MHz, CDCl₃); δ (ppm) = 7.30-7.18 (8H, m), 6.87-6.83 (2H, m), 4.41 (2H, d, *J* = 2.2 Hz), 4.24 (1H, m), 3.95 (1H, dtd, *J* = 9.0, 6.2, 3.1 Hz), 3.79 (3H, s), 3.25 (1H, d, *J* = 3.8 Hz), 2.96 (1H, dd, *J* = 13.6, 6.2 Hz), 2.78 (1H, dd, *J* = 13.6, 6.5 Hz), 2.34-2.31 (2H, m), 1.62 (1H, m), 1.52 (1H, ddd, *J* = 14.4, 8.9, 3.0 Hz), 1.43 (9H, s). ¹³C NMR (100 MHz, CDCl₃); δ (ppm) = 172.05, 159.21, 138.55, 130.44, 129.62, 129.54, 128.40, 128.32, 126.20, 113.80, 81.02, 71.79, 65.11, 55.26, 42.84, 40.84, 40.59, 28.08. IR (cm⁻¹): *f* = 3491, 2976, 2934, 1724, 1514, 1248, 1150, 822, 701. HRMS-ESI: (M+Na)⁺ = 423.2142 calculated for C₂₄H₃₂NaO₅, experimental = 423.2125.

(±)-(3*S*,5*R*)-tert-butyl 3,5-dihydroxy-6-phenylhexanoate (12d). PMB alcohol A-10 (300 mg, 0.75 mmol) was placed under vacuum and treated with Pd/C (80 mg, 0.075 mmol) then dissolved in MeOH (10 mL) while being bubbled with H₂ gas via balloon. Upon completion, the reaction mixture was filtered thru a celite cake and rinsed with EtOAc (3x10 mL). The crude mixture was purified in 80:20 \rightarrow 65:35 hexanes:EtOAc to give tert-butyl ester diol 12d in 88% yield (185 mg, 0.66 mmol) as a clear oil. ¹H NMR (400 MHz, CDCl₃); δ (ppm) = 7.33-7.22 (5H, m), 4.34 (1H, ddd, *J* = 15.8, 7.9, 4.0 Hz), 4.17 (1H, dd, *J* = 14.2, 7.4 Hz), 3.65 (1H, d, *J* = 3.8 Hz), 2.80 (2H, d, *J* = 6.7 Hz), 2.74 (1H, bs), 2.48-2.36 (2H, m), 1.65 (2H, dddd, *J* = 32.3, 14.4, 8.3, 2.8 Hz), 1.47 (9H, s). ¹³C NMR (100 MHz, CDCl₃); δ (ppm) = 172.24, 138.33, 129.32, 128.45, 126.36, 81.28, 69.52, 68.96, 65.61, 44.01, 42.23, 41.48, 28.03. IR (cm⁻¹): *f* = 3041, 2977,

2933, 1707, 1454, 1367, 1254, 1146, 1080, 954, 843, 747, 700. HRMS-ESI: $(M+Na)^+ =$ 303.1567 calculated for C₁₆H₂₄NaO₄, experimental = 303.1556.

2.4. Synthesis of 1,3-Syn Diol Monosilylethers

Preparation of 1,3-Syn Diol Monosilylether 19a

(±)-(4S,6R)-6-((4-methoxybenzyl)oxy)-7-phenylhept-1-en-4-ol (A-11). Alcohol A-5

(1.14 g, 3.49 mmol) was dissolved in toluene (125 mL). PPh₃ (2.56 g, 9.77 mmol) and *p*nitrobenzoic acid (1.63 g, 9.77 mmol) were added and the reaction was stirred for 5 minutes before the dropwise addition of diethylazodicarboxylate (1.53 mL, 9.77 mmol). The reaction mixture was stirred at room temperature overnight then concentrated in vacuo. The crude mixture was then dissolved in MeOH (100 mL) and K₂CO₃ (2.70 g, 19.54 mmol) was added and stirred for two hours. The reaction was quenched with deionized water (100 mL) and extracted with CH₂Cl₂ (3 x 50 mL). The organic layers were dried over Na₂SO₄ and concentrated in vacuo. The crude mixture was purified in 80:20 \rightarrow 70:30 hexanes:EtOAc to give alcohol **A-11** in 67% yield (767 mg, 2.35 mmol) as a colorless oil. ¹H NMR (400 MHz, CDCl₃); δ (ppm) = 7.35-7.20 (7H, m), 6.91-6.87 (2H, m), 4.29 (1H, m), 5.11-5.04 (2H, m), 4.58 (1H, d, *J* = 10.8 Hz), 4.43 (1H, d, *J* = 10.8 Hz), 3.88 (1H, ddt, *J* = 7.6, 7.5, 5.2 Hz), 3.82 (3H, s), 3.78 (1H, dd, *J* = 12.2, 6.5 Hz), 3.53 (1H, bs), 3.04 (1H, dd, J = 13.6, 5.1 Hz), 2.79 (1H, dd, J = 13.6, 7.2 Hz), 2.22-2.11 (2H, m), 1.64-1.61 (2H, m). ¹³C NMR (100 MHz, CDCl₃); δ (ppm) = 159.28, 138.02, 134.79, 129.68, 129.59, 129.44, 128.34, 126.27, 117.14, 113.87, 80.50, 70.90, 70.57, 55.17, 41.89, 40.55, 40.27. IR (cm⁻¹): f = 3464, 3027, 2935, 2912, 2865, 1709, 1612, 1513, 1247, 1079, 1033, 821, 746, 701. HRMS-ESI: (M+Na)⁺ = 349.1774 calculated for C₂₁H₂₆NaO₃, experimental = 349.1768.

(±)-(2*R*,4*S*)-4-((dimethyl(phenyl)silyl)oxy)-1-phenylhept-6-en-2-ol (**19a**). Allylic alcohol A-11 (1.12 g, 3.43 mmol) was dissolved in CH₂Cl₂ (40 mL). Et₃N (0.86 mL, 6.17 mmol) was added along with DMAP (18 mg, 0.27 mmol) and stirred for five minutes. Me₂PhSiCl (0.7 mL, 4.12 mmol) was then added and the reaction was stirred overnight. The reaction was quenched with a half saturated NH₄Cl solution (40 mL) and extracted with CH₂Cl₂ (3 x 30 mL). The organic layers were collected and concentrated in vacuo. The crude mixture was then dissolved in a mixture of CH₂Cl₂:H₂O (30 mL:few drops) and DDQ (1.2 g, 5.15 mmol) was added. Upon completion, the reaction was diluted with CH₂Cl₂ (40 mL) and vacuum filtered. The mixture was then washed with a saturated NaHCO₃ solution (50 mL), dried over Na₂SO₄ and concentrated in vacuo. The crude mixture was purified in 90:10 \rightarrow 80:20 hexanes:EtOAc to give monoprotected alcohol 19a in 80% yield over two steps (936 mg, 2.75 mmol) as a colorless oil. ¹H NMR (400 MHz, CDCl₃); δ (ppm) = 7.60-7.56 (2H, m), 7.39-7.10 (8H, m), 5.66 (1H, ddt, J = 17.2, 10.4, 6.8 Hz), 4.99-4.92 (2H, m), 4.05-3.89 (2H, m), 2.98 (1H, s), 2.75-2.62 (2H, m), 2.24-2.11 (2H, m), 1.65-1.53 (2H, m), 0.41 (6H, q, J = 4.2 Hz). ¹³C NMR (100 MHz, CDCl₃); δ (ppm) = 138.45, 137.33, 133.98, 133.51, 129.82, 129.44, 128.36, 127.92, 126.25, 117.55, 72.63, 71.69, 44.09, 42.17, 42.07, -1.00, -1.14. IR (cm⁻¹): f = 3443, 3069, 3026, 2941, 1428, 1251, 1116, 1065, 913, 823, 783, 738, 697. HRMS-ESI: $(M+H)^+ = 341.1931$ calculated for $C_{21}H_{29}O_2Si$, experimental = 341.1925.

Preparation of 1,3-Syn Diol Monosilylether 19b

(±)-(2R,4S)-4-((dimethyl(phenyl)silyl)oxy)-1-phenylundecan-2-ol (19b). Alcohol 19a (145 mg, 0.43 mmol) along with 1-hexene (0.53 mL, 4.30 mmol) were added simultaneously to a round bottom flask containing Grubb's 2nd generation catalyst (74 mg, 0.0086 mmol) dissolved in CH₂Cl₂ (6 mL). The reaction mixture was then heated to reflux overnight. Upon completion, the reaction was concentrated in vacuo to give crude intermediate A-12, which was then placed under vacuum and treated with Pd/C (46 mg, 0.043 mmol) and dissolved in EtOAc (5 mL). The reaction was then bubbled with H₂ gas until completion. It was then filtered through celite via vacuum filtration, rinsed with EtOAc (3 x 10 mL) and concentrated in vacuo. The crude mixture was purified with 90:10 \rightarrow 80:20 hexanes: EtOAc to give **19b** in 66% yield over two steps (113) mg, 0.28 mmol) as a colorless oil. ¹H NMR (400 MHz, CDCl₃); δ (ppm) = 7.66 (2H, d, J = 6.2 Hz), 7.47-7.24 (8H, m), 4.05-3.94 (2H, m), 3.18 (1H, s), 2.82 (1H, dd, J = 13.6, 6.6 Hz), 2.75 (1H, dd, J = 13.7, 5.8 Hz), 1.71-1.61 (2H, m), 1.48 (2H, q, J = 7.0 Hz), 1.37-1.22 (10H, m), 0.95 (3H, t, J = 6.9 Hz), 0.50 (6H, d, J = 2.6 Hz). ¹³C NMR (100 MHz, CDCl₃); δ (ppm) = 138.50, 137.54, 133.45, 129.68, 129.41, 128.30, 127.83, 126.18, 72.32, 71.85, 44.13, 42.21, 37.60, 31.71, 29.55, 29.12, 24.61, 22.58, 14.05, -1.00, -1.20. IR (cm⁻¹): f = 3383, 3068, 3027, 2927, 2856,

1455, 1428, 1252, 1118, 1084, 829, 785, 742, 700. HRMS-ESI: $(M+H)^+ = 399.2714$ calculated for C₂₅H₃₉O₂Si, experimental = 399.2709.

Preparation of 1,3-Syn Diol Monosilylether 19c

(±)-(2R,4S,E)-8-((tert-butyldimethylsilyl)oxy)-2-((4-methoxybenzyl)oxy)-7-methyl-1-

phenyloct-6-en-4-ol (A-13). Alcohol **A-9** (923 mg, 1.91 mmol) was dissolved in THF (100 mL). PPh₃ (1.50 g, 5.72 mmol) was then added, followed by *p*-nitrobenzoic acid (637 mg, 3.82 mmol), and then diethylazodicarboxylate (0.90 mL, 5.72 mmol). The reaction mixture was allowed to stir overnight at room temperature and then concentrated under vacuum. The resulting crude material was dissolved in MeOH (60 mL) and K₂CO₃ (1.37 g, 11.43 mmol) was then added. The reaction mixture was then concentrated under vacuum, quenched with deionized H₂O (20 mL), and extracted with EtOAc (4 x 20 mL). The combined organic layers were dried over Na₂SO₄ and concentrated under vacuum. The crude material was purified in 90:10 \rightarrow 80:20 hexanes:EtOAc to give alcohol **A-13** with a yield of 57% (527 mg, 1.09 mmol) as a colorless oil. ¹H NMR (400 MHz, CDCl₃); δ (ppm) = 7.35-7.28 (2H, m), 7.28-7.19 (5H, m), 6.89 (2H, d, *J* = 8.0 Hz), 5.39 (1H, t, *J* = 6.5 Hz), 4.57 (1H, d, *J* = 10.7 Hz), 4.43 (1H, d, *J* = 10.7 Hz), 4.00 (2H, s), 3.87 (1H, m), 3.82 (3H, s), 3.76 (1H, m), 3.49 (1H, bs), 3.02 (1H, dt, *J* = 13.7, 5.2 Hz), 2.80 (1H, dt, *J* = 13.7, 6.8 Hz), 2.20 (1H, dt, *J* = 14.1, 6.6 Hz), 2.11 (1H, dt, *J* = 14.8, 7.3 Hz), 0.92 (9H, s), 0.06 (6H, s). ¹³C NMR (100 MHz, CDCl₃); δ (ppm) = 159.34, 138.12, 136.90, 129.80, 129.64, 129.52, 128.39, 126.33, 120.09, 113.93, 80.71, 71.34, 71.01, 68.49, 55.26, 40.72, 40.40, 35.65, 25.95, 18.40, 13.63, -5.27. IR (cm⁻¹): *f* = 3470, 2951, 2928, 2855, 1514, 1249, 1068, 836, 700.

(±)-(2R,4S,E)-8-((tert-butyldimethylsilyl)oxy)-4-((dimethyl(phenyl)silyl)oxy)-7-

methyl-1-phenyloct-6-en-2-ol (19c). Alcohol **A-13** (508 mg, 1.05 mmol) was dissolved in CH_2Cl_2 (40 mL). Et₃N (263 µL, 1.89 mmol) was then added, followed by DMAP (10 mg, 0.08 mmol), and Me₂PhSiCl (211 µL, 1.26 mmol). Upon completion, the reaction was quenched with a half saturated NH₄Cl solution (25 mL) and extracted with CH_2Cl_2 (3 x 25 mL). The combined organic layers were dried over Na₂SO₄ and concentrated under vacuum.

The resulting crude material was then dissolved in CH_2Cl_2 (50 mL). Then, 5 drops of H_2O and DDQ (358 mg, 1.58 mmol) were sequentially added. After stirring for an hour, the reaction was poured into a separatory funnel containing a saturated NaHCO₃ solution (50 mL). The mixture was then extracted with CH_2Cl_2 (4 x 30 mL), the organic layers combined and dried over Na₂SO₄, and concentrated under vacuum.

In order to create better chromatographic separation between the product and residual panisaldehyde, the crude material was dissolved in CH₂Cl₂ (50 mL) and cooled to -78°C. DIBAL (2.1 mL, 2.10 mmol, 1M in toluene) was then added dropwise. The reaction mixture was stirred until p-anisaldehyde was fully consumed. The reaction was quenched with a saturated Rochelle's salt solution (40 mL) and the mixture was allowed to stir vigorously for 2 hours. Upon separation of layers, the aqueous layer was then extracted with CH₂Cl₂ (3 x 30 mL). The organic layers were combined, dried over Na₂SO₄, and concentrated under vacuum. The crude material was purified in 100% hexanes and 99:1 \rightarrow 90:10 hexanes:EtOAc to give 1,3-*syn* diol monosilylether **19c** with a yield of 18% (96 mg, 0.19 mmol) as a yellow oil. ¹H NMR (400 MHz, CDCl₃); δ (ppm) = 7.59 (2H, d, *J*= 8.0 Hz), 7.42-7.35 (3H, m), 7.29 (2H, d, *J* = 8.0 Hz), 7.22-7.15 (3H, m), 5.30 (1H, t, *J* = 7.2 Hz), 3.94 (3H, s), 3.91 (1H, m), 3.12 (1H, bs), 2.70 (2H, qd, *J* = 13.6, 6.4 Hz), 2.23-2.10 (2H, m), 1.64-1.54 (2H, m), 1.47 (3H, s), 0.90 (9H, s), 0.43 (6H, d, *J* = 3.6 Hz), 0.04 (6H, d, *J* = 1.2 Hz). ¹³C NMR (100 MHz, CDCl₃); δ (ppm) = 138.52, 137.39, 136.75, 133.53, 129.78, 129.45, 128.33, 127.92, 126.22, 119.29, 73.34, 71.91, 68.28, 44.11, 42.23, 36.06, 25.94, 18.40, 13.58, -0.97, -1.14, -5.28. IR (cm⁻¹): *f* = 3452, 2953, 2855, 1251, 1063, 777, 740, 699. HRMS-ESI: (M+Na)⁺ = 521.2878 calculated for C₂₉H₄₆NaO₃Si₂, experimental = 521.2868.

Preparation of 1,3-Syn Diol Monosilylether 19d

1-phenylpent-4-en-2-ol (A-14). Phenylacetaldehyde (5.6 mL, 49.92 mmol) was dissolved in THF (200 mL) and cooled to -78° C. Allyl magnesium bromide (55 mL, 54.91 mmol, 1M in diethyl ether) was added to the reaction mixture dropwise using an addition funnel. Upon completion, the reaction mixture was quenched with a half saturated NH₄Cl solution (100 mL), extracted with ethyl acetate (3 x 50 mL). The organic layers were combined and dried over Na₂SO₄, and concentrated under vacuum. The crude mixture was purified in 100% CH₂Cl₂ \rightarrow 90:10 CH₂Cl₂:EtOAc to give allylic alcohol **A-14** in 62% yield (5.03 g, 31.03 mmol) as a clear oil. ¹H NMR (400 MHz, CDCl₃); δ (ppm) = 7.37-7.24 (5H, m), 5.90 (1H, m), 5.20 (1H, m), 5.17 (1H t, *J* = 1.2 Hz), 3.92 (1H, dddd, *J* = 12.6, 7.9, 4.7, 3.1 Hz), 2.86 (1H, dd, *J* = 13.6, 4.9 Hz), 2.76 (1H, dd, *J* = 13.6, 8.0 Hz), 2.37 (1H, dddt, *J* = 14.0, 6.4, 4.9, 1.1 Hz), 2.26 (1H, m), 1.73 (1H, t, *J* = 3.1 Hz). ¹³C NMR (100 MHz, CDCl₃); δ (ppm) = 138.36, 134.66, 129.40, 128.52, 126.47, 118.13, 71.66, 43.28, 41.18. IR (cm⁻¹): *f* = 3395, 3076, 3028, 2918, 1640, 1495, 1454, 1078, 1031, 997, 914, 744, 699. Compound **A-14** is known (CAS #61077-65-4).

(±)-(*E*)-methyl 5-hydroxy-6-phenylhex-2-enoate (A-15). Grubb's 2nd generation catalyst (263 mg, 0.31 mmol) was dissolved in CH₂Cl₂ (60 mL). Allylic alcohol A-14 (4.96 g, 30.60 mmol) and methyl acrylate (14.0 mL, 153.00 mmol) were added simultaneously to the reaction mixture and brought to reflux overnight. Upon completion, the reaction was cooled then concentrated under vacuum. The crude mixture was purified in 80:20 \rightarrow 70:30 hexanes:EtOAc to give methyl ester alcohol A-15 in 43% yield (2.90 g, 13.16 mmol) as a dark oil. ¹H NMR (400 MHz, CDCl₃); δ (ppm) = 7.34-7.20 (5H, m), 7.03 (1H, dt, *J* = 15.7, 7.3 Hz), 5.93 (1H, dt, *J* = 15.6, 1.4 Hz), 3.98 (1H, tq, *J* = 8.0, 4.1 Hz), 3.73 (3H, s), 2.84 (1H, dd, *J* = 13.6, 4.7 Hz), 2.72 (1H, dd, *J* = 13.6, 8.2 Hz), 2.50-2.35 (2H, m), 1.74 (1H, d, *J* = 2.4 Hz). ¹³C NMR (100 MHz, CDCl₃); δ (ppm) = 166.70, 145.25, 137.69, 129.36, 128.67, 126.72, 123.52, 71.29, 51.48, 43.59, 39.33. IR (cm⁻¹): f = 3436, 3027, 2949, 2848, 1704, 1656, 1436, 1321, 1271, 1212, 1160, 1033, 746, 699. HRMS-ESI: (M+H)⁺ = 221.1172 calculated for C₁₃H₁₇O₃, experimental = 221.1178.

(±)-methyl 2-((2S,4R,6R)-6-benzyl-2-phenyl-1,3-dioxane-4-yl)acetate (A-16). Methyl ester alcohol A-15 (1.7 g, 7.72 mmol) was dissolved in THF (40 mL) and cooled to 0°C. Freshly distilled benzaldehyde (0.9 mL, 8.50 mmol) followed by t-BuOK (86 mg, 0.77 mmol) was added to the reaction mixture and the resulting yellow solution was stirred for 15 minutes at 0°C. This sequence of addition and stirring was repeated three times and the reaction mixture was quenched with a solution of pH 7 phosphate buffer (40 mL) and extracted with EtOAc (3 x 30 mL). The combined organic layers were washed with brine, dried over Na₂SO₄ and concentrated in vacuo. The crude mixture was purified in 80:20 hexanes:EtOAc to afford methyl ester benzylidene acetal A-16 in 67% yield (1.68 g, 5.15 mmol) as a clear oil. ¹H NMR (400 MHz, CDCl₃); δ (ppm) = 7.51-7.49 (2H, m), 7.36-7.20 (8H, m), 5.53 (1H, s), 4.24 (1H, m), 4.02 (1H, dtd, J = 11.0, 6.4, 2.3 Hz), 3.63 (3H, s), 3.05 (1H, dd, J = 13.7, 6.6 Hz), 2.77 (1H, dd, J = 13.7, 6.4 Hz), 2.69 (1H, dd, J = 15.7, 7.3 Hz), 2.45 (1H, dd, J = 15.7, 5.7 Hz), 1.62 (1H, dt, J = 13.0, 2.5 Hz), 1.45 (1H, dt, J = 13.1, 11.2 Hz). ¹³C NMR (100 MHz, CDCl₃); δ (ppm) = 170.68, 138.20, 137.28, 129.25, 128.30, 128.04, 127.81, 126.15, 125.80, 100.17, 77.02, 72.82, 51.33, 42.04, 40.36, 35.60. IR (cm⁻¹): f = 3063, 3030, 2950, 2915, 2850, 1735, 1437, 1403, 1346, 1200, 1109, 1056, 1043, 1009, 751, 698. HRMS-ESI: $(M+H)^+$ = 327.1591 calculated for $C_{20}H_{23}O_4$, experimental = 327.1585.

(\pm) -tert-butyl 2-((2S,4R,6R)-6-benzyl-2-phenyl-1,3-dioxan-4-yl)acetate (A-17).

Methyl ester benzylidene acetal **A-16** (1.5 g, 4.60 mmol) was dissolved in a 1:1 mixture THF:H₂O (20 mL) and LiOH (965 mg, 23.00 mmol) was subsequently added and stirred. Upon completion the reaction mixture was quenched with 1M HCl (20 mL) and extracted with EtOAc (3 x 15 mL). The combined organic layers were washed with brine, dried over Na_2SO_4 , and concentrated under vacuum to give the carboxylic acid.

The crude carboxylic acid was then dissolved in tert-butanol (20 mL). Di-*tert*-butyl dicarbonate (2.0 g, 9.20 mmol) and DMAP (169 mg, 1.38 mmol) were then added to the reaction mixture. Through TLC monitoring, the completed reaction was concentrated under vacuum and the crude reaction mixture was purified in 95:5 \rightarrow 90:10 hexanes:EtOAc to give the *tert*-butyl ester benzylidene acetal **A-17** in 69% yield (1.17 g, 3.17 mmol) as a clear oil over two steps. ¹H NMR (400 MHz, CDCl₃); δ (ppm) = 7.49-7.47 (2H, m), 7.36-7.19 (8H, m), 5.54 (1H, s), 4.20 (1H, dddd, *J* = 11.3, 7.4, 6.0, 2.5 Hz), 4.04 (1H, dtd, *J* = 11.1, 6.5, 2.4 Hz), 3.07 (1H, dd, *J* = 13.7, 6.5 Hz), 2.78 (1H, dd, *J* = 13.7, 6.5 Hz), 2.60 (1H, dd, *J* = 15.2, 7.2 Hz), 2.39 (1H, dd, *J* = 15.2, 6.0 Hz), 1.64 (1H, dt, *J* = 13.0, 2.3 Hz), 1.42 (9H, s). ¹³C NMR (100 MHz, CDCl₃); δ (ppm) = 169.89, 138.42, 137.53, 129.44, 128.43, 128.21, 127.99, 126.32, 125.91, 100.30, 80.63, 77.34, 73.49, 42.27, 42.12, 35.83, 27.98. IR (cm⁻¹): *f* = 3064, 3031, 2977, 2927, 2868, 1727, 1454, 1367, 1345, 1145, 1110, 1018, 750, 698. HRMS-ESI: (M+H)⁺ = 369.2060 calculated for C₂₃H₂₉O₄, experimental = 369.2062.

(\pm)-(3*R*,5*R*)-tert-butyl 3,5-dihydroxy-6-phenylhexanoate (A-18). *Tert*-butyl ester benzylidene acetal A-17 (180 mg, 0.49 mmol) was dissolved in a 1:1 mixture of AcOH:H₂O (5 mL) and heated to 40°C on a sand bath for 48 hours. Upon completion, the reaction was cooled

and concentrated under vacuum and purified in 90:10 \rightarrow 80:20 hexanes:EtOAc to afford *tert*butyl ester diol **A-18** in 61% yield (84 mg, 0.30 mmol) as a colorless oil. ¹H NMR (400 MHz, CDCl₃); δ (ppm) = 7.30-7.18 (5H, m), 4.17 (1H, tt, J = 8.2, 4.4 Hz), 4.08 (1H, m), 2.82 (1H, dd, J = 13.5, 6.8 Hz), 2.70 (1H, dd. J = 13.5, 6.3 Hz), 2.41-2.30 (2H, m) 1.61-1.53 (2H, m), 1.42 (9H, s). ¹³C NMR (100 MHz, CDCl₃); δ (ppm) = 171.67, 138.06, 129.30, 128.29, 126.22, 81.12, 72.91, 68.82, 44.05, 42.63, 41.17, 27.91. IR (cm⁻¹): f = 3403, 3028, 2878, 2934, 1720, 1367, 1257, 1146, 1087, 843, 733, 700. HRMS-ESI: (M+Na)⁺ = 303.1567 calculated for C₁₆H₂₄NaO₄, experimental = 303.1575.

(±)-(3*R*,5*R*)-tert-butyl 5-hydroxy-3-((4-methoxybenzyl)oxy)-6-phenylhexanoate (A-19). *Tert*-butyl ester diol A-18 (118 mg, 0.42 mmol) was dissolved in CH₂Cl₂ (2.5 mL) and cooled to 0°C. PMB acetimidate (95 µL, 0.46 mmol) and PTSA (10 mg, 0.053 mmol) were added to the reaction mixture and stirred to completion. The reaction was quenched with H₂O (5 mL) and extracted with CH₂Cl₂ (3 x 10 mL). The combined organic layers were dried over Na₂SO₄ and concentrated in vacuo. The crude mixture was purified 90:10 \rightarrow 86:14 \rightarrow 82:18 hexanes:diethyl ether to give monobenzyl ether protected *tert*-butyl ester diol A-19 in 45% yield (75 mg, 0.19 mmol) as a colorless oil. ¹H NMR (400 MHz, CDCl₃); δ (ppm) = 7.34-7.21 (7H, m), 6.90-6.87 (2H, m), 4.55 (1H, d, *J* = 11.0 Hz), 4.44 (1H, d, *J* = 11.0 Hz), 4.13 (1H, m), 3.88 (1H, m), 3.82 (3H, s), 3.72 (1H, d, *J* = 2.2 Hz), 3.02 (1H, dd, *J* = 13.6, 5.6 Hz), 2.81 (1H, dd, *J* = 13.6, 6.8 Hz), 2.35 (1H, dd, *J* = 15.7, 7.6 Hz), 2.27 (1H, dd, *J* = 15.7, 5.1 Hz), 1.77-1.58 (2H, m), 1.42 (9H, s). ¹³C NMR (100 MHz, CDCl₃); δ (ppm) = 171.46, 159.27, 138.14, 129.92, 129.56, 129.49, 128.39, 126.30, 113.87, 80.82, 79.40, 70.86, 67.43, 55.24, 42.83, 40.46, 40.26, 28.02. IR (cm⁻¹): *f* = 3467, 3029, 2978, 2934, 1721, 1612, 1513, 1367, 1247, 1079, 1032, 909, 729, 700. HRMS-ESI: (M+Na)⁺ = 423.2142 calculated for C₂₄H₃₂NaO₅, experimental = 423.2153.

(±)-(3R,5R)-tert-butyl 5-((dimethyl(phenyl)silyl)oxy)-3-((4-methoxybenzyl)oxy)-6phenylhexanoate (A-20). Monobenzyl ether protected *tert*-butyl ester diol A-19 (162 mg, 0.40 mmol) was dissolved in CH₂Cl₂ (4 mL). Et₃N (0.1 mL, 0.72 mmol) and DMAP (2 mg, 0.032 mmol) were added, followed by addition of dimethylphenylsilyl chloride (0.1 mL, 0.60 mmol). Upon completion, the reaction was quenched with a half saturated NH₄Cl solution (5 mL), and extracted with CH₂Cl₂ (3 x 10 mL). The organic layers were combined and washed with a saturated NaHCO₃ solution, dried over Na₂SO₄, and concentrated under vacuum to afford diprotected tert-butyl ester diol A-20 in 83% yield (178 mg, 0.33 mmol) as a colorless oil. HRMS-ESI: (M+H)⁺ = 535.2874 calculated for C₃₂H₄₃O₅Si, experimental = 535.2895.

(±)-(3*R*,5*R*)-tert-butyl 5-((dimethyl(phenyl)silyl)oxy)-3-hydroxy-6-phenylhexanoate (19d). Diprotected *tert*-butyl diol A-20 (40 mg, 0.070 mmol) was dissolved in a mixture of CH₂Cl (2 mL) and a few droplets of H₂O. To this solution was added DDQ (25 mg, 0.11 mmol) and the reaction was stirred vigorously. Upon completion, the reaction was quenched with a saturated NaHCO₃ solution (5 mL) and extracted with CH₂Cl₂ (3 x 5 mL). The combined organic layers were dried over Na₂SO₄ and concentrated under vacuum. The crude mixture was purified in 100% CH₂Cl₂ to afford the monosilylated *tert*-butyl ester diol **19d** in 66% yield (19 mg, 0.046 mmol) as a colorless oil. ¹H NMR (400 MHz, CDCl₃); δ (ppm) = 7.60-7.57 (10H, m), 4.29 (1H, p, *J* = 6.4 Hz), 3.94 (1H, dt, *J* = 11.2, 7.1 Hz), 2.78 (1H, s), 2.73 (1H, dd, *J* = 13.0, 6.6 Hz), 2.66 (1H, dd, *J* = 13.5, 5.9 Hz), 2.42 (1H, dd, *J* = 14.9, 5.4 Hz), 2.35 (1H, dd, *J* = 15.1, 7.0 Hz), 1.681.64 (2H, m), 1.36 (9H, s), 0.43 (6H, d, J = 3.1 Hz). ¹³C NMR (100 MHz, CDCl₃); δ (ppm) = 170.40, 138.28, 137.37, 133.46, 129.81, 129.41, 128.40, 127.92, 126.31, 80.66, 71.03, 69.51, 44.04, 44.00, 42.87, 28.00, -1.21, -1.31. IR (cm⁻¹): f = 3437, 3069, 3027, 2932, 1724, 1368, 1254, 1152, 905, 730, 702. HRMS-ESI: (M+Na)⁺ = 437.2119 calculated for C₂₄H₃₄NaO₄Si, experimental = 437.2129.

2.5. Synthesis of 1,3,5-Triols

Preparation of 1,3,5-Anti Triol 21

(±)-(3R,5R)-3-((tert-butyldimethylsilyl)oxy)-5-((4-methoxybenzyl)oxy)-6-

phenylhexan-1-ol (A-21). Alcohol **A-10** (397 mg, 0.99 mmol) was dissolved in CH₂Cl₂ (12 mL) and cooled to 0°C. Imidazole (337 mg, 4.95 mmol) was then added, followed by TBSCl (299 mg, 1.98 mmol), and DMAP (24 mg, 0.19 mmol). The reaction was stirred to room temperature overnight, quenched with 2M HCl (20 mL), and extracted with CH₂Cl₂ (3 x 20 mL). The combined organic layers were dried over Na₂SO₄ and concentrated under vacuum. The crude mixture was purified in 95:5 \rightarrow 90:10 hexanes:EtOAc to give the TBS ether with 71% yield (360 mg, 0.70 mmol) as a yellow oil. ¹H NMR (400 MHz, CDCl₃); δ (ppm) = 7.32-7.28 (2H, m), 7.24-7.19 (5H, m), 6.87 (2H, d, *J* = 8.7 Hz), 4.51 (1H, d, *J* = 11.0 Hz), 4.42 (1H, d, *J* = 11.0 Hz),

4.27 (1H, t, J = 5.6 Hz), 3.82 (1H, m), 3.82 (3H, s), 2.99 (1H, dd, J = 13.6, 5.2 Hz), 2.78 (1H, dd, J = 13.8, 6.2 Hz), 2.39 (2H, d, J = 5.6 Hz), 1.73-1.68 (2H, m), 1.42 (9H, s), 0.85 (9H, s), 0.02 (6H, d, J = 6.4 Hz). ¹³C NMR (100 MHz, CDCl₃); δ (ppm) = 170.61, 159.01, 138.64, 130.85, 129.53, 129.11, 128.25, 126.08, 113.71, 80.24, 77.27, 70.63, 67.11, 55.26, 44.78, 42.56, 40.69, 28.09, 25.85, 17.95, -4.28, -4.60. IR (cm⁻¹): f = 2929, 2856, 1729, 1514, 1248, 1081, 834, 775, 700. HRMS-ESI: (M+H)⁺ = 515.3187 calculated for C₃₀H₄₇O₅Si, experimental = 515.3180.

The purified TBS ether (97 mg, 0.19 mmol) was dissolved in CH₂Cl₂ (5 mL) and cooled to -78°C. DIBAL (1.1 mL, 1.13 mmol, 1M in toluene) was then added dropwise. After one hour, the reaction was slowly warmed to room temperature and stirred until completion. The reaction was cooled back to 0° C, quenched with a saturated solution of Rochelle's salt (5 mL), and stirred vigorously for 2 hours. The aqueous layer was then extracted with CH₂Cl₂ (4 x 5 mL); the organic layers were dried over Na₂SO₄ and concentrated under vacuum. The resulting crude mixture was purified in $85:15 \rightarrow 80:20$ hexanes: EtOAc to give alcohol A-21 with a yield of 47% (38 mg, 0.09 mmol) as a yellow oil. ¹H NMR (400 MHz, CDCl₃); δ (ppm) = 7.31 (2H, q, J = 7.6, 3.6 Hz), 7.23 (5H, d, J = 8.1 Hz), 6.89 (2H, d, J = 8.0 Hz), 4.53 (1H, d, J = 10.9 Hz), 4.41 (1H, d, J = 10.8 Hz), 4.03 (1H, p, J = 5.7 Hz), 3.83 (3H, s), 3.78 (1H, m), 3.72-3.61 (2H, m), 3.00 (1H, dd, J = 13.8, 5.4 Hz), 2.78 (1H, dd, J = 13.7, 6.7 Hz), 2.36 (1H, bs), 1.86 (1H, m), 1.81-1.63 (3H, m), 0.87 (9H, s), 0.05 (3H, s), 0.01 (3H, s). ¹³C NMR (100 MHz, CDCl₃); δ (ppm) = 159.14, 138.43, 130.49, 129.48, 129.29, 128.33, 126.20, 113.71, 77.49, 70.72, 69.41, 59.82, 55.26, 41.79, 40.61, 38.97, 25.79, 17.88, -4.43, -4.60. IR (cm⁻¹): f = 3410, 2928, 2855, 1513, 1248, 1079, 1034, 834, 775, 700. HRMS-ESI: $(M+H)^+$ = 445.2769 calculated for C₂₆H₄₁O₄Si, experimental = 445.2763.

(±)-(2R,4R)-4,6-bis((tert-butyldimethylsilyl)oxy)-1-phenylhexan-2-ol (A-22). Alcohol

A-21 (114 mg, 0.26 mmol) was dissolved in CH_2Cl_2 (20 mL) and cooled to 0°C. Imidazole (70 mg, 1.04 mmol) was then added, followed by TBSCl (78 mg, 0.52 mmol), and DMAP (6 mg, 0.05 mmol). The reaction was stirred to room temperature overnight. The mixture was quenched with 2M HCl (20 mL) and extracted with CH_2Cl_2 (3 x 10 mL). The combined organic layers were dried over Na₂SO₄ and concentrated under vacuum.

The crude mixture was dissolved in CH₂Cl₂:H₂O (15 mL:10 drops) and DDQ (59 mg, 0.26 mmol) was added. After 30 minutes, the reaction was quenched with a saturated NaHCO₃ solution (20 mL) and extracted with CH₂Cl₂ (4 x 15 mL). The combined organic layers were dried over NaSO₄ and concentrated under vacuum. The resulting crude mixture was purified with 100% hexanes and 98:2 \rightarrow 95:5 hexanes:EtOAc to give **A-22** with a 50% yield (59 mg, 0.13 mmol) as a yellow oil. ¹H NMR (400 MHz, CDCl₃); δ (ppm) = 7.33-7.28 (2H, m), 7.24 (3H, d, *J* = 6.9 Hz), 4.24-4.15 (2H, m), 3.67-3.48 (3H, m), 2.87 (1H, dd, *J* = 13.4, 6.8 Hz), 2.69 (1H, dd, *J* = 13.4, 6.3 Hz), 1.86 (1H, dq, *J* = 12.9, 6.4 Hz), 1.75-1.62 (2H, m), 0.92 (9H, s), 0.89 (9H, s), 0.11 (3H, s), 0.10 (3H, s), 0.03 (3H, s), 0.01 (3H, s). ¹³C NMR (100 MHz, CDCl₃); δ (ppm) = 138.67, 129.35, 128.36, 126.21, 69.63, 68.71, 59.54, 44.43, 40.97, 38.98, 25.89, 25.82, 18.21, 17.94, -4.74, -5.44. IR (cm⁻¹): *f* = 3495, 2928, 2856, 1254, 835, 775, 700. HRMS-ESI: (M+H)⁺ = 439.3058 calculated for C₂₄H₄₇O₃Si₂, experimental = 439.3056.

(\pm)-(3*R*,5*R*)-6-phenylhexane-1,3,5-triol (21). *p*-toluenesulfonic acid (54 mg, 0.28 mmol) was added into a round bottom flask containing alcohol A-22 (62 mg, 0.14 mmol). MeOH (2 mL) was then added and the reaction was allowed to stir overnight. Upon completion, the reaction was quenched with Et₃N (1 mL) and then concentrated under vacuum. The resulting
crude was purified in 10:90 hexanes:EtOAc \rightarrow 100% EtOAc \rightarrow 95:5 EtOAc:MeOH to give triol 21 with a yield of 98% (29 mg, 0.14 mmol) as a yellow oil. ¹H NMR (400 MHz, CDCl₃); δ (ppm) = 7.38-7.24 (5H, m), 4.54-4.45 (2H, m), 3.79-3.70 (2H, m), 3.17 (1H, dd, J = 14.2, 7.1Hz), 3.07 (1H, dd, J = 14.1, 6.6 Hz), 2.15 (2H, q, J = 13.2, 6.5 Hz), 2.08 (1H, d, J = 11.8 Hz), 2.01 (1H, d, J = 11.8 Hz). ¹³C NMR (100 MHz, CDCl₃); δ (ppm) = 138.11, 129.35, 128.66, 126.62, 70.22, 69.75, 61.97, 44.00, 42.09, 38.19. IR (cm⁻¹): f = 3327, 2939, 1453, 1062, 748,700. HRMS-ESI: (M+H)⁺ = 211.1329 calculated for C₁₂H₁₉O₃, experimental = 211.1332.

(±)-methyl (3*R*,5*R*)-3,5-dihydroxy-6-phenylhexanoate (A-23). Methyl ester A-16 (2.20 g, 6.75 mmol) was dissolved in MeOH (60 mL) and then Pd(OH)₂ (1.90 g, 13.49 mmol) was added. The reaction was then purged and bubbled with H₂ gas via balloon and stirred to completion. The mixture was then filtered through celite via vacuum filtration, rinsed with EtOAc (3 x 20 mL) and concentrated in vacuo. The crude mixture was purified in 60:40 \rightarrow 50:50 hexanes:EtOAc to give 1,3-*syn* diol A-23 in 58% yield (0.93 g, 3.92 mmol) as a colorless oil. ¹H NMR (400 MHz, CDCl₃); δ (ppm) = 7.30-7.18 (5H, m), 4.21 (1H, bs), 4.16 (1H, d, *J* = 2.7 Hz), 4.05 (1H, m), 3.71 (1H, d, *J* = 2.7 Hz), 3.65 (3H, s), 2.78 (1H, dd, *J* = 13.6, 7.0 Hz), 2.71 (1H,

dd, J = 13.5, 6.0 Hz), 2.49-2.37 (2H, m), 1.63-1.53 (2H, m). ¹³C NMR (100 MHz, CDCl₃); δ (ppm) = 172.34, 137.85, 129.19, 128.17, 126.13, 72.60, 68.34, 51.45, 43.98, 41.46, 41.23. IR (cm⁻¹): f = 3428, 3060, 3028, 2951, 2917, 1729, 1438, 1266, 1198, 1081, 910, 731, 700. HRMS-ESI: (M+H)⁺ = 239.1278 calculated for C₁₃H₁₉O₄, experimental 239.1279.

(±)-(4*R*,6*R*)-6-Benzyl-4-hydroxytetrahydro-2*H*-pyran-2-one (A-24). Diol A-23 (877 mg, 3.68 mmol) was dissolved in MeOH:H₂O (10:1, 33 mL) and K₂CO₃ (1.00 g, 7.37 mmol) was added and stirred at room temperature. Upon consumption of starting material, the reaction was quenched with a 1M HCl solution (50 mL) and extracted with EtOAc (3 x 50 mL). The combined organic layers were dried over Na₂SO₄ and concentrated in vacuo. The crude mixture was purified in 50:50 \rightarrow 40:60 hexanes:EtOAc to give A-24 in 75% yield (567 mg, 2.75 mmol) as a colorless oil. ¹H NMR (400 MHz, CDCl₃); δ (ppm) = 7.30-7.19 (5H, m), 4.91 (1H, dtd, *J* = 11.5, 6.3, 2.9 Hz), 4.17 (1H, p, *J* = 3.8 Hz), 3.71 (1H, bs), 2.99 (1H, dd, *J* = 14.0, 6.3 Hz), 2.88 (1H, dd, *J* = 14.0, 6.3 Hz), 2.51 (2H, d, *J* = 4.1 Hz), 1.87 (1H, dt, *J* = 14.5, 3.5 Hz), 1.59 (1H, ddd, *J* = 14.5, 11.5, 3.0 Hz). ¹³C NMR (100 MHz, CDCl₃); δ (ppm) = 171.29, 135.99, 129.31, 128.22, 126.53, 76.39, 61.72, 41.26, 38.08, 34.46. IR (cm⁻¹): *f* = 3420, 3029, 2923, 1705, 1496, 1389, 1252, 1066, 1041, 755, 702. HRMS-ESI: (M+H)⁺ = 207.1016 calculated for C₁₂H₁₅O₃, experimental = 207.1014.

$(\pm)-(4R,6R)-6$ -benzyl-4-((dimethyl(phenyl)silyl)oxy)tetrahydro-2H-pyran-2-one (A-

25). Alcohol **A-24** (390 mg, 1.89 mmol) was dissolved in CH₂Cl₂ (8 mL). Et₃N (0.50 mL, 3.40 mmol) and DMAP (10 mg, 0.08 mmol) were added and stirred for 5 minutes. Me₂PhSiCl (0.50 mL, 2.84 mmol) was then added and stirred at room temperature. Upon completion, the reaction

was quenched with a half saturated NH₄Cl solution (15 mL) and extracted with CH₂Cl₂ (3 x 15 mL). The combined organic layers were washed with NaHCO₃, dried over Na₂SO₄ and concentrated in vacuo. The crude mixture was purified in 80:20 \rightarrow 70:30 hexanes:EtOAc to give **A-25** in 83% yield (537 mg, 1.58 mmol) as a colorless oil. ¹H NMR (400 MHz, CDCl₃); δ (ppm) = 7.52-7.21 (10H, m), 4.97 (1H, dtd, J = 11.3, 6.3, 3.0 Hz) 4.24 (1H, p, J = 3.8 Hz), 3.06 (1H, dd, J = 13.9, 5.9 Hz), 2.91 (1H, dd, J = 13.9, 6.6 Hz), 2.57 (1H, dq, J = 17.5, 1.6 Hz), 2.51 (1H, dd, J = 17.5, 4.4 Hz), 1.78 (1H, m), 1.58 (1H, ddd, J = 14.2, 11.3, 2.9 Hz), 0.37 (6H, d, J = 10.4 Hz). ¹³C NMR (100 MHz, CDCl₃); δ (ppm) = 170.16, 136.89, 136.23, 133.27, 129.92, 129.55, 128.46, 127.99, 126.75, 76.24, 63.48, 41.52, 39.02, 35.24, -1.47, -1.65. IR (cm⁻¹): f = 3395, 3067, 3028, 2956, 2923, 1706, 1496, 1427, 1389, 1252, 1118, 1064, 1040, 830, 790, 699. HRMS-ESI: (M+H)⁺ = 341.1567 calculated for C₂₀H₂₅O₃Si, experimental = 341.1569.

(±)-(3S,5R)-3-((dimethyl(phenyl)silyl)oxy)-6-phenylhexane-1,5-diol (23). Lactone A-25 (200 mg, 0.59 mmol) was dissolved in THF (5 mL) and cooled to -78°C. LiBH₄ (26 mg, 1.18 mmol) was then added and the reaction was stirred to completion. The reaction was quenched with deionized H₂O (10 mL) and extracted with ether (3 x 20 mL). The combined organic layers were dried over Na₂SO₄ and concentrated in vacuo. The crude mixture was purified in 70:30 \rightarrow 60:40 \rightarrow 50:50 hexanes:EtOAc to give 23 in 34% yield (70 mg, 0.20 mmol) as a colorless oil. ¹H NMR (400 MHz, CDCl₃); δ (ppm) = 7.63-7.17 (10H, m), 4.16 (1H, p, *J* = 6.4 Hz), 3.92 (1H, p, *J* = 6.7 Hz), 3.71-3.60 (2H, m), 2.71 (2H, d, *J* = 6.4 Hz), 1.79 (1H, dt, *J* = 13.3, 7.3 Hz), 1.71-1.65 (4H, m), 1.28 (1H, m). ¹³C NMR (100 MHz, CDCl₃); δ (ppm) = 138.12, 137.31, 133.49, 129.90, 129.40, 128.48, 127.97, 126.44, 70.62, 70.44, 59.63, 44.38, 42.97, 38.76, -1.26, -1.36. IR (cm⁻¹): f = 3372, 3337, 3026, 2923, 2852, 1454, 1081, 700. HRMS-ESI: $(M+H)^+ = 345.1886$ calculated for C₂₀H₂₉O₃Si, experimental = 345.1871.

3. GC-MS DATA FOR TABLE 2

Ph18		riphosgene (1.0 equiv) pyridine (4.0 equiv) H_2Cl_2 PC → reflux 12 hrs	$ \begin{array}{c c} CI & CI \\ \hline I & I \\ \hline 10 & II \end{array} $
entry	-R	conc. (mM) ^[a]	dichloride 10 : carbonate 11 ^[b]
1	-H	25	34:66
2	-SiMe ₃	25	65 : 35
3	-SiEt ₃	25	32 : 68
4	-SiMe ₂ Ph	25	80:20
5	-SiMePh ₂	25	65 : 35
6	-SiMe ₂ Ph	5	69 : 31
7	-SiMe₂Ph	100	80 : 20
8	-SiMe ₂ Ph	500	99 : 1

Table 2. Screening and Reaction Optimization with 1,3-syn Diol Monosilylether.

[a] Concentration was based on starting material **18**. [b] The ratio of dichloride **10** and cyclic carbonate **11** was determined via GC-MS analyses of the crude reaction mixtures.

Time-->

4. ¹H AND ¹³C NMR SPECTRA

S-107

S-131

