Supporting Information

Chemoselective Reduction of the Phosphoryl Bond of O-Alkyl Phosphinates and Related Compounds: An Apparently Impossible Transformation

Niall P. Kenny, Kamalraj V. Rajendran and Declan G. Gilheany*

Centre for Synthesis and Chemical Biology, School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland

Contents

General Experimental	02
Synthesis of Materials	03
Reduction of Phosphine, Phosphinate, Phosphinothioate and Phosphonamidate	12
Investigations of Side Reactions occurring during Reduction Reaction	22
Solvent Study of LiBH ₄ Reaction	23
HPLC Chromatographs and NMR Spectra of Starting Materials and Products	25
References	49

General Experimental

IR spectra were obtained on a Varian 3100 FTIR Excalibur series spectrometer. Routine electrospray mass spectra were obtained on a Micromass Quattro spectrometer. High-resolution mass spectra were run on a Waters Micromass GCT syste in electrospray ionization mode (ESI), also at UCD. The NMR spectra were recorded at 25 °C on Varian VNMRS 300, 400, 500 and 600 MHz spectrometers. All NMR samples of potentially air-sensitive compounds were made up under nitrogen by syringing a small amount of a solution into an NMR tube contained in a long Schlenk tube that was charged with an atmosphere of nitrogen, and then using dry CDCl₃ to dissolve the compound. The NMR tube was then taken out using tweezers. CDCl₃ was purchased from Aldrich, and dried by adding to a Young's flask containing activated molecular sieves (4 Å) under an atmosphere of nitrogen. It was then stored under nitrogen in the Young's flask over the molecular sieves. A number of 1H-NMR spectra contain an impurity peak at approximately δ = 0.07 ppm due to the presence of adventitious silicone grease transferred from the lubricated rubber septa.

Unless otherwise stated, all reactions were carried out under a N₂ atmosphere in dry glassware using Schlenk-line techniques and all glassware was flame dried prior to use. Air and moisture sensitive liquids and solutions were transferred via syringe. All commercially available solvents were used as supplied unless otherwise stated. All "dry" solvents were dried and distilled by standard procedures or were processed through a Grubbs type still, a Pure Solv-400-3-MD solvent purification system supplied by Innovative Technology Inc. Oxygen free nitrogen was obtained from BOC gases and was used without further drying. Thin layer chromatography (TLC) was performed on Merck pre-coated Kieselgel 60F254 aluminium plates with realization by UV irradiation or iodine staining. Flash column chromatography was performed on Merck silica 9385, particle size 0.040-0.063 mm. Magnesium turnings for Grignard reactions were heated to 180 °C prior to use. Prior to use sieves were heated to ~300 °C, using a heat gun, for 2 minutes while under vacuum in Schlenkware. They were allowed to cool to room temperature and this procedure was then repeated (x 3). All products were isolated as oils and so melting points were not obtained.

Synthesis of Materials

P-methyl-P-phenyl-P-(ortho-tolyl)phosphine oxide

Compound was previously synthesised and characterised by us.¹

O-Ethyl P,P-diphenylphosphinate

P-Chloro-*P*,*P*-diphenylphosphine (3.0 g, 2.4 mL, 12.7 mmol) was dissolved in diethyl ether (40 mL) in a dry 100 mL Schlenk flask under an atmosphere of N_2 . The flask was cooled to 0 ^oC in an ice-bath and triethylamine (2.13 mL, 15.2 mmol, 1.2 equiv.) was added, followed by ethanol (0.89 mL, 15.2 mmol, 1.2 equiv.). The flask was allowed to warm to room temperature and stirred for 3 hours.

The insoluble salt by-product, triethylammonium chloride, was removed by cannula filtering the solution into a 100 mL round bottomed flask. The flask was cooled to 0 °C in an ice-bath and de-ionized water (10 mL) was added followed by hydrogen peroxide (35% v/v in water, 1.52 mL, 15.2 mmol, 1.2 equiv.), added slowly to avoid an exotherm. After 30 minutes, the diethyl ether was removed by rotary evaporator (care being taken not to remove any water, as this could lead to concentrated peroxide). The product was extracted from the aqueous solution with DCM (2x20 mL). The organic layer was then washed with water (20 mL) to remove any residual peroxide and, following separation, dried over anhydrous MgSO₄ for 5 minutes. The DCM was finally removed *in vacuo* to produce a white solid. The yield was 2.35 g (75%).

¹H NMR shifts matched those in the literature ²

¹H NMR (CDCl₃, 400 MHz): δ = 7.94-7.73 (m, 4H, *o*-ArH)(lit.: 7.81-7.76), 7.58-7.36 (m, 6H, *m/p*-ArH)(lit.:7.48-7.37), 4.21-4.02 (m, 2H, OCH₂)(lit.: 4.11-4.03), 1.36 (t, ${}^{3}J_{HH}$ = 7 Hz, 3H, OCCH₃)(lit.: 1.32, ${}^{3}J_{HH}$ = 7.1 Hz); ppm.

³¹P NMR (CDCl₃, 162 MHz): δ = 31.1 ppm (lit.² 31.4).

O-Ethyl P,P-diphenylphosphinothioate

P-chloro-*P*,*P*-diphenylphosphine (3.0 g, 2.4 mL, 12.7 mmol) was dissolved in diethyl ether (40 mL) in a dry 100 mL Schlenk flask under an atmosphere of N_2 . The flask was cooled to 0 °C in an ice-bath and triethylamine (2.13 mL, 15.2 mmol, 1.2 equiv.) was added, followed by ethanol (0.89 mL, 15.2 mmol, 1.2 equiv.). The flask was allowed to warm to room temperature and stirred for 3 hours.

The insoluble salt by-product, triethylammonium chloride, was removed by cannula filtering the solution into a 100 mL round bottomed flask. The flask was cooled to 0 °C in an ice-bath and elemental sulfur (2.17 g, 68 mmol, 5 equiv.) was added. The mixture was allowed to warm up to room temperature and stirred overnight.

The excess S₈ was removed by vacuum filtration through a Buchner funnel and the solvent was removed *in vacuo*. The product was purified by column chromatography with a silica stationary phase and eluent of cyclohexane/ethyl acetate 96:4. The pure product was a crystalline solid with a yield of 1.92 g (54%). Some loss of yield may have been due to air oxidation during manipulation of the sample.

¹H NMR (CDCl₃, 400 MHz): δ = 7.92-7.82 (m, 2H, *o*-ArH), 7.49-7.35 (m, 3H, *m/p*-ArH), 4.09 (dq, ${}^{3}J_{PH}$ = 9 Hz, ${}^{3}J_{HH}$ = 7 Hz, 2H, OCH₂), 1.33 (t, ${}^{3}J_{HH}$ = 7 Hz, 3H, OCCH₃); ppm.

¹³C NMR {¹H, ³¹P} (CDCl₃, 101 MHz): δ =134.7, 131.8, 131.1, 128.4, 61.1, 16.3; ppm.

³¹P NMR (CDCl₃, 162 MHz): δ = 81.0 ppm.

HRMS (ES+) [M+ H]⁺ C₁₄H₁₆OPS Found: 263.0659 Calculated: 263.0853

IR (cm⁻¹): 3058, 2980, 2896, 1480, 1439, 1389

O-ethyl P-phenyl-P-isopropylphosphinate

Phenylphosphinic dichloride (2.14 mL, 3.0 g, 15.4 mmol) was dissolved in dry THF (40 mL) in a dry 100 mL Schlenk round bottomed flask under an atmosphere of N₂. The flask was cooled to -78 °C in an acetone/liq. nitrogen bath and isopropyl magnesium chloride (2M in THF, 9.25 mL, 18.5 mmol, 1.2 equiv.) was added dropwise via syringe. The flask was allowed to warm to room temperature and stirred for 3 hrs. A ³¹P-NMR of the intermediate at this point showed one major peak at 67 ppm. (Note: In contrast to the other procedures, the salt by-product is soluble in THF and so was not removed at this point.)

The flask was cooled to 0 °C in an ice-bath and dry ethanol (1.1 mL, 18.5 mmol, 1.2 equiv.) was added followed by dry triethylamine (2.6 mL, 18.5 mmol, 1.2 equiv.). The reaction was allowed to warm to room temperature and stirred overnight. In order to remove the triethylammonium chloride, the THF was removed *via* rotary evaporator and the product was dissolved in bench diethyl ether. The salt is insoluble, thereby precipitating and enabling isolation of the product by vacuum filtration. This action of removing the solvent

and re-dissolving in diethyl ether was repeated until most of the salt was judged to have been removed.

The product was purified by column chromatography with a silica stationary phase and eluent of cyclohexane/isopropanol in the ratio 94:6. The yield was 2.73 g (84%).

(Note: the isopropyl CH₃ groups appear as diastereotopic in both proton and carbon NMR) ¹H NMR (CDCl₃, 400 MHz): δ = 7.74-7.63 (m, 2H, *o*-ArH), 7.51-7.34 (m, 3H, *m/p*-ArH), 4.10-3.93 (m, 1H, OCH₂), 3.87-3.73 (m, 1H, OCH₂), 1.97 (dsept, ²J_{PH} = 14 Hz, ³J_{HH} = 7 Hz, 1H, PCH), 1.23 (t, ³J_{HH} = 7 Hz, 3H, OCCH₃), 1.10 (dd, ³J_{PH} = 17 Hz, ³J_{HH} = 7 Hz, 3H, PCCH₃), 0.98 (dd, ³J_{PH} = 18 Hz, ³J_{HH} = 7 Hz, 3H, PCCH₃); ppm.

¹³C NMR {¹H, ³¹P} (CDCl₃, 101 MHz): δ =132.2, 132.0, 129.6, 128.4, 60.5, 28.3, 16.4, 15.5, 15.1; ppm.

³¹P NMR (CDCl₃, 162 MHz): δ = 53.8 ppm.

HRMS (ES+) [M]⁺ C₁₁H₁₇O₂P Found: 212.0961 Calculated: 212.0966

IR (cm⁻¹): 2971, 2936, 1647, 1470, 1439, 1389, 1268

O-Methyl P,P-diphenylphosphinate

P-Chloro-*P*,*P*-diphenylphosphine (3.0 g, 2.4 mL, 12.7 mmol) was dissolved in diethyl ether (40 mL) in a dry 100 mL Schlenk flask under an atmosphere of N_2 . The flask was cooled to 0° C in an ice-bath and triethylamine (2.13 mL, 15.2 mmol, 1.2 equiv.) was added, followed

by methanol (0.62 mL, 15.2 mmol, 1.2 equiv.). The flask was allowed to warm to room temperature and stirred for 3 hours.

The insoluble salt by-product, triethylammonium chloride, was removed by cannula filtering the solution into a 100 mL round bottomed flask. The flask was cooled to 0 $^{\circ}$ C in an ice-bath and de-ionized water (10 mL) was added followed by hydrogen peroxide (35% v/v in water, 1.52 mL, 15.2 mmol, 1.2 equiv.), added slowly to avoid an exotherm. After 30 minutes, the diethyl ether was removed by rotary evaporator (care being taken not to remove any water, as this could lead to concentrated peroxide). The product was extracted from the aqueous solution with DCM (2x20 mL). The organic layer was then washed with water (20 mL) to remove any residual peroxide and, following separation, dried over anhydrous MgSO₄ for 5 minutes. The DCM was finally removed *in vacuo* to produce a white solid.

¹H NMR shifts matched those in the literature³

¹H NMR (CDCl₃, 400 MHz): δ = 7.97-7.24 (m, 10H, ArH)(lit.: 7.77-7.37), 3.74 (d, ³J_{PH} = 10 Hz, 3H, OCH₃)(lit.: 3.70, ³J_{PH} = 10.1 Hz); ppm.

³¹P NMR (CDCl₃, 162 MHz): δ = 33.0 ppm (lit.: 34.908).

O-Ethyl N,N-diisopropyl P-phenylphosphonamidate

P,*P*-dichloro-*P*-phenylphosphine (10.0 g, 7.6 mL, 0.056 mmol) was dissolved in dry DCM (80 mL) in a dry 250 mL Schlenk flask under an atmosphere of nitrogen. The flask was cooled to -78 $^{\circ}$ C in a liq. N₂/acetone bath. Diisopropylamine (17.1 g, 23.7 mL, 0.17 mmol, 3 equiv.) was added slowly and the reaction was stirred for 1 hr. The flask was removed form the cooling bath, allowed to gradually warm to room temperature and was continued to be stirred for a

further 3 hrs. A ³¹P-NMR taken at this point showed one peak for the desired intermediate as the primary species present.

The Flask was cooled to 0 $^{\circ}$ C in an ice bath and triethylamine (20 g, 27.67 mL, 0.2 mmol, 3 equiv.) was added followed by ethanol (3.11 g, 3.95 mL, 0.068 mmol, 1.2 equiv.). The reaction was stirred and allowed to warm gradually to room temperature overnight.

To remove the ammonium salt by-products, deionised water (20 mL), which had been degassed thoroughly with nitrogen, was added to the flask, creating a biphasic mixture. The mixture was stirred vigorously for approx. 10 minutes. The water was removed *via* syringe with care being taken to leave the DCM in the flask. This procedure was repeated two further times.

Deionised water (20 mL) was added followed by hydrogen peroxide (35% v/v in H₂O, 4.5 mL, 0.045 mol, 1.3 equiv.) introduced slowly at 0 $^{\circ}$ C in an ice-bath. The reaction was stirred for 1 hr. The mixture was transferred to a separating funnel. The organic layer, DCM, was isolated and washed with water (20 mL) and sat. brine (20 mL). Remaining peroxides in the aqueous layer were quenched by the addition of sodium metabisulphite. The DCM solution was dried with MgSO₄, isolated by filtration and the solvent was removed *in vacuo* on a rotary evaporator. The final product was purified with column chromatography with an eluent of cyclohexane/ isopropanol (94:6). The yield was 9 g (63%).

(Note: the NC(CH₃) protons and carbons appear as diastereotopic in NMR)

¹H NMR (CDCl₃, 400 MHz): δ = 7.92-7.26 (m, 5H, ArH), 4.27-3.98 (m, 2H, OCH₂), 3.34 (dsept 2H, ³J_{PH} = 18 Hz, ³J_{HH} = 7 Hz, NCH), 1.38 (t, 3H, ³J_{HH} = 7 Hz, OCCH₃), 1.29 (d, 6H, ³J_{HH} = 7 Hz, NC(CH₃)₂), 1.13 (d, 6H, ³J_{HH} = 7 Hz, NC(CH₃)₂); ppm.

¹³C NMR {¹H, ³¹P} (CDCl₃, 101 MHz): δ = 133.3, 131.2, 130.8, 128.0, 59.4, 45.6, 23.3, 21.8, 16.3; ppm.

³¹P NMR (CDCl₃, 162 MHz): δ = 21.3 ppm.

HRMS (ES+) [M+ H]⁺ C₁₄H₂₅NO₂P Found: 270.1623 Calculated: 270.1628

IR (cm⁻¹): 2969, 1405, 1264, 1157

N,N-Diethyl-O-ethyl-P-chloromethylphosphonamidate

P-(Chloromethyl)phosphonic *P*,*P*-dichloride (3.0 g, 1.83 mL, 17.93 mmol) was dissolved in diethyl ether (50 mL) in a dry 100 mL Schlenk flask under an atmosphere of N₂. The flask was cooled to -78 °C in an acetone/liq. nitrogen bath and triethylamine (3.8 mL, 26.9 mmol, 1.5 equiv.) was added, followed by diethylamine (1.85 mL, 17.93 mmol, 1.0 equiv.). After one hour the flask was allowed to warm to room temperature and was then stirred for a further 3 hours. A ³¹P-NMR spectrum of the intermediate showed one major peak at δ = 35.1 ppm (97% conversion by integration).

The insoluble salt by-product, triethylammonium chloride, was removed by cannula filtering the solution into a second dry 100 mL Schlenk flask under a N_2 atmosphere. A second portion of triethylamine (10.0 mL, 70.8 mmol, 4 equiv.) was added followed by dry ethanol (5 mL, 85 mmol, 4.85 equiv.) and 4-dimethylaminopyridine (0.22 g, 1.8 mmol, 10 mol%). The reaction was stirred overnight at room temperature.

The salt by-product was removed by cannula filtration with the solution entering a 100 mL round bottomed flask. The solvent, ether, was removed *in vacuo*. The product was purified by column chromatography with a silica stationary phase and an eluent of cyclohexane/isopropanol in the ratio 94:6. The yield was 2.15 g (52%). (Loss of yield was caused by a side-product, likely formed through double addition to the phosphorus precursor, having a similar R_f to the desired product.)

(Note: the OCH₂ protons appear as diastereotopic in ¹H-NMR)

¹H NMR (CDCl₃, 400 MHz): δ = 4.25-4.08 (m, 1H, OCH₂), 4.07-3.92 (m, 1H, OCH₂), 3.59-3.46 (m, 2H, PCH₂Cl), 3.23-3.09 (m, 4H, NCH₂), 1.39-1.30 (m, 3H, OCCH₃), 1.21-1.10 (m, 6H, NCCH₃); ppm.

¹³C NMR {¹H, ³¹P} (CDCl₃, 101 MHz): δ =60.4, 38.8, 34.8, 16.1, 14.1; ppm.

³¹P NMR (CDCl₃, 162 MHz): δ = 23.8 ppm.

HRMS (ES+) [M+ Na]⁺ C₇H₁₇NO₂NaPCl Found: 236.0589 Calculated: 236.0583

IR (cm⁻¹): 2976, 2938, 1466, 1384, 1248

O-Phenyl P,P-diphenylphosphinate

P-Chloro-*P*,*P*-diphenylphosphine (3.0 g, 2.4 mL, 12.7 mmol) was dissolved in diethyl ether (40 mL) in a dry 100 mL Schlenk flask under an atmosphere of N_2 . The flask was cooled to 0 °C in an ice-bath and triethylamine (2.13 mL, 15.2 mmol, 1.2 equiv.) was added, followed by phenol (1.43 g, 15.2 mmol, 1.2 equiv.). The flask was allowed to warm to room temperature and stirred for 3 hours.

The insoluble salt by-product, triethylammonium chloride, was removed by cannula filtering the solution into a 100 mL round bottomed flask. The flask was cooled to 0 $^{\circ}$ C in an ice-bath and de-ionized water (10 mL) was added followed by hydrogen peroxide (35% v/v in water, 1.52 mL, 15.2 mmol, 1.2 equiv.), added slowly to avoid an exotherm. After 30 minutes, the diethyl ether was removed by rotary evaporator (care being taken not to remove any water, as this could lead to concentrated peroxide). The product was extracted from the aqueous solution with DCM (2x20 mL). The organic layer was then washed with water (20 mL) to remove any residual peroxide and, following separation, dried over anhydrous MgSO₄ for 5 minutes. The DCM was finally removed *in vacuo* to produce a white solid. The yield was 3.36 g (90%).

¹H NMR shifts matched those in the literature⁴ ¹H NMR (CDCl₃, 300 MHz): δ = 8.21-6.97 (m, 15H, ArH)(lit.: 7.87-7.05); ppm ³¹P NMR (CDCl₃, 162 MHz): δ = 30.0 ppm (lit.: 31.4 ppm).

O,O-Diethyl P-phenylphosphonate

P-Phenylphosphonic P,P-dichloride (3.0 g, 2.14 mL, 15.4 mmol) was dissolved in dry diethyl ether (70 mL) in a dry 100 mL Schlenk flask under an atmosphere of N_2 . The flask was cooled to 0 $^{\circ}$ C in an ice-bath and triethylamine (5.38 mL, 38.5 mmol, 2.5 equiv.) was added, followed by ethanol (2.69 mL, 46.2 mmol, 3 equiv.). The flask was allowed to warm to room temperature and stirred overnight.

The insoluble salt by-product, triethylammonium chloride, was removed by cannula filtering the solution into a 100 mL round bottomed flask. The solvent was removed *in vacuo*. The resulting yellow oil was dissolved in DCM (30 mL) and extracted with water (2x30 mL) to yield a clear oil which was pure by NMR analysis with a yield of 3.2 g (97%).

¹H NMR shifts matched those in the literature⁵

¹H NMR (CDCl₃, 400 MHz): δ = 7.87-7.77 (m, 2H, *o*-ArH)(lit.: 7.84-7.78), 7.58-7.41 (m, 3H, *m/p*-ArH)(lit.:7.57-7.43), 4.22-4.02 (m, 4H, OCH₂)(lit.: 4.18-4.04), 1.32 (t, ³J_{HH} = 7 Hz, 6H, OCCH₃)(lit.: 1.32, ³J_{HH} = 7.14 Hz); ppm.

¹³C NMR {¹H, ³¹P} (CDCl₃, 101 MHz): δ =132.3, 131.7, 128.41, 128.38, 62.0, 16.3; ppm.

³¹P NMR (CDCl₃, 162 MHz): δ = 18.7 ppm (lit.: 18.9).

Reduction of Phosphine, Phosphinate, Phosphinothioate and

Phosphonamidate

P-methyl-P-phenyl-P-(ortho-tolyl)phosphine borane

Dry *P*-methyl-*P*-phenyl-*P*-(*ortho*-tolyl)phosphine oxide (0.23 g, 1.0 mmol, 93% ee with *S* config.) was dissolved in dry chloroform (2 mL) in a dry 10 mL Schlenk flask under an atmosphere of nitrogen. Triethyloxonium tetrafluoroborate (0.22 g, 1.2 mmol, 1.2 equiv.) was added, the flask was closed and the mixture was heated to reflux for 2 hours. The mixture was then allowed to cool to room temperature. ³¹ P-NMR spectroscopy at this point shows one peak, corresponding to the phosphonium tetrafluoroborate salt, at δ = 71 ppm. Lithium aluminium hydride (1 M in THF, 1.0 mL, 1.0 mmol, 1 equiv.) was added the reaction was left to stir overnight. Following this any excess LiAlH₄ was carefully quenched with water (10 mL) and the aqueous layer was extracted with DCM (3 x 10 mL). The organic layer was dried over MgSO₄ and the solvent was removed *in vacuo* to yield pure *P*-methyl-*P*-phenyl-*P*-(*ortho*-tolyl)phosphine borane (.21 g, 91%; 93% ee (*S*)).

Product was previously synthesised and characterised by us.⁶

P,P-diphenylphosphine borane

Dry ethyl diphenylphosphinate (0.246 g, 1.0 mmol) was dissolved in dry chloroform (2 mL) in a dry 10 mL Young's tube under an atmosphere of nitrogen. Triethyloxonium tetrafluoroborate (0.38 g, 2 mmol, 2 equiv.) was added, the flask was screwed tightly closed and flask was submerged in an oil-bath only up to the level of the solvent. The mixture was heated to 160 °C for 5 hours. The mixture was then allowed to cool to room temperature. ³¹P-NMR spectroscopy at this point shows one peak, corresponding to the phosphonium tetrafluoroborate salt intermediate, at δ = 40.3 ppm.

The flask was cooled to 0 °C in an ice-bath and lithium aluminium hydride (1 M in THF, 2.0 mL, 2.0 mmol, 2 equiv.) was added. The reaction was left to stir overnight. Following this any excess LiAlH₄ was carefully quenched with water (10 mL) and the aqueous layer was extracted with DCM (3 x 10 mL). The organic layer was dried over MgSO₄ and the solvent was removed *in vacuo* to yield pure *P*,*P*-diphenylphosphine borane (.17 g, 84%).

NMR analysis matched that in the literature⁷

¹H NMR (CDCl₃, 300 MHz): δ = 7.90-7.38 (m, 10H, ArH), 6.30 (dq, ¹J_{PH} = 379 Hz, ³J_{HH} = 7 Hz, 1H, PH), 1.54-0.52 (br, 3H, BH₃); ppm.

O-Ethyl P,P-diphenylphosphinite borane (initial conditions)

Dry ethyl diphenylphosphinate (400 mg, 1.64 mmol) was dissolved in dry chloroform (4.0 mL) in a dry 100 mL Schlenk tube that contained 4 Å molecular sieves (3.6 g), activated by flame drying for approximately one minute followed by being placed under high vacuum for ca. 30 minutes. Dry ethyl triflate (0.44 mL, 3.39 mmol, 2 equiv.), stored in a Young's flask, was added and tube was closed tight under an atmosphere of N_2 . (Note: ethyl triflate is potentially highly toxic and care should be taken to always handle it in a fumehood and to quench any residue carefully using an aqueous solution of sodium hydroxide). The flask was placed in an oil-bath such that the level of the solvent in the tube matched the level of the oil, i.e. only the very bottom of the flask was submerged. This portion of the flask was heated to 160 °C for 8 hours. A Perspex blast shield was placed in forward of the whole apparatus as a protective measure against sudden, and potentially explosion, shattering of the glass, while under pressure.

Following this the flask was allowed to cool to room temperature (as a precaution the tube was opened slowly while wearing a thick oven-glove). A ³¹P-NMR showed one major peak, for the dialkoxyphosphonium salt, at δ = 55.7 ppm, with the remainder as starting phosphinate. (Note: the peak for the phosphinate can often be broadened to the point of being nearly indistinguishable from the base-line.)

Lithium borohydride (2.0 M in THF, 1.92 mL, 3.84 mmol, 2.5 equiv.) was placed in a dry 100 mL Schlenk flask, followed by the additional of isopropanol (17.3 mL). The flask was cooled to -78 $^{\circ}$ C with acetone/liq. N₂ and the DiAPS solution was added slowly, via syringe leaving the molecular sieves behind. The reaction of lithium borohydride with the excess ethyl triflate can be quite exothermic, so it is important to add the DiAPS solution slowly. The Young's tube, in which the alkylation reaction took place, was washed out with dry isopropanol (2x1 mL) with the washings added to the reduction reaction.

The reaction was allowed to warm up slowly overnight. Note: a gradual warm up to room temperature aids conversion to product. The product had a conversion of 80% as measured by ³¹P-NMR, relative to the starting phosphinate. (the mass balance was made up almost exclusively by unreacted starting phosphinate)

Exemplar A: Dry ethyl diphenylphosphinate (400 mg, 1.64 mmol) was dissolved in dry tetrachloroethane (4.0 mL) in a dry 100 mL Schlenk tube that contained activated molecular sieves (3.6 g). Dry ethyl triflate (0.44 mL, 3.39 mmol, 2 equiv.), taken from a Young's flask, was added and tube was closed tight under an atmosphere of N₂. (Note: ethyl triflate is potentially highly toxic and care should be taken to always handle it in a fumehood and to quench it carefully using an aqueous solution of sodium hydroxide). The flask was placed in an oil-bath such that the level of the solvent in the tube matched the level of the oil, i.e. only the very bottom of the flask was submerged. This portion of the flask was heated to 100 °C for 8 hours. This time period is quite strict with any deviation in either direction leading to a lowering of the conversion.

Following this the flask was allowed to cool to room temperature. A ³¹P-NMR showed one major peak, for the dialkoxyphosphonium salt, at δ = 55.7 ppm, with the remainder as starting phosphinate. (Note: the peak for the phosphinate can often be broadened to the point of being nearly indistinguishable from the base-line.)

Lithium borohydride (2.0 M in THF, 1.92 mL, 3.84 mmol, 2.5 equiv.) was placed in a dry 100 mL Schlenk flask and diluted down to 0.2 M with dry THF (17.3 mL). The flask was cooled to

-78 °C with acetone/liq. N_2 and the DiAPS solution was added slowly, *via* syringe leaving the molecular sieves behind. The reaction of lithium borohydride with the excess ethyl triflate can be quite exothermic, so it is important to add the DiAPS solution slowly. The Young's tube, in which the alkylation reaction took place, was washed out with dry THF (2x1 mL) with the washings added to the reduction reaction.

The reaction was allowed to warm up slowly overnight. Note: a gradual warm up to room temperature aids conversion to product. The product was purified with a short plug of silica with an eluent of cyclohexane/ethyl acetate 90:10, with a yield of 0.29 g (73%).

An identical procedure was followed with ethyl diphenylthiophosphinate (400 mg, 1.53 mmol) as the starting material with a yield of ethyl diphenylphosphinite borane of 0.27 g (72%). The same product was obtained as with ethyl diphenylphosphinate, namely ethyl diphenylphosphinite. The mass balance was not the starting material, as ordinarily observed, but the rearranged starting material, whereby the ethyl group has migrated to the sulfur, forming a P=O bond.

¹H NMR (CDCl₃, 400 MHz): δ = 7.78-7.68 (m, 4H, *o*-ArH), 7.51-7.37 (m, 6H, *m/p*-ArH), 4.06 (dq, ³J_{HH} = 7 Hz, ³J_{PH} = 8 Hz, 2H, OCH₂), 1.32 (t, ³J_{HH} = 7 Hz, 3H, OCCH₃), 1.54-0.52 (m, 3H, BH₃); ppm.

¹³C NMR {¹H, ³¹P} (CDCl₃, 101 MHz): δ =132.4, 131.8, 131.2, 128.6, 63.6, 16.7; ppm.

³¹P NMR (CDCl₃, 162 MHz): δ = 103.7 (br) ppm.

¹¹B NMR (CDCl₃, 128 MHz): δ = -40.4 (d, ¹J_{PB} = 67 Hz, 1B, BH₃) ppm.

HRMS (ES+) [M - BH₃ + H]⁺ C₁₄H₁₆OP Found: 231.0947 Calculated: 231.0939

IR (cm⁻¹): 2980, 2386 (P-B), 1438

O-Ethyl P-phenyl-P-isopropylphosphinite borane

Exemplar A was applied to dry *O*-ethyl *P*,*P*-phenylisopropylphosphinate (400 mg, 1.88 mmol), with the alteration that the first step, alkylation, was run for 6 hours. Following this, a ³¹P-NMR showed one peak, for the dialkoxyphosphonium salt, at δ = 75.7 ppm. ³¹P-NMR analysis with 1024 scans, which affords a very good signal to noise ratio, showed no remaining phosphinate starting material, i.e. >99% conversion.

Following reduction, the desired product was purified with a short plug of silica with an eluent of cyclohexane/ethyl acetate 90:10, with a yield of 0.32g (80%).

(Note: the isopropyl CH₃ groups appear as diastereotopic in both ¹H and ¹³C NMR) ¹H NMR (CDCl₃, 400 MHz): δ = 7.76-7.68 (m, 2H, *o*-ArH), 7.55-7.43 (m, 3H, *m/p*-ArH), 4.09-3.98 (m, 1H, OCH₂), 3.91-3.79 (m, 1H, OCH₂), 2.11 (dsept, ²J_{PH} = 12 Hz, ³J_{HH} = 7 Hz, 1H, PCH₁), 1.28 (t, ³J_{HH} = 7 Hz, 3H, OCCH₃), 1.16 (dd, ³J_{PH} = 16 Hz, ³J_{HH} = 7 Hz, 3H, PCCH₃), 1.00 (dd, ³J_{PH} = 16 Hz, ³J_{HH} = 7 Hz, 3H, PCCH₃), 1.11-0.20 (m, 3H, BH₃); ppm.

¹³C NMR {¹H, ³¹P} (CDCl₃, 101 MHz): δ =131.6, 131.2, 130.7, 128.4, 63.5, 29.3, 16.6, 15.7, 15.4; ppm.

³¹P NMR (CDCl₃, 162 MHz): δ = 119.3 ppm.

¹¹B NMR (CDCl₃, 128 MHz): δ = -43.5 (d, ¹J_{PB} = 67 Hz, 1B, BH₃) ppm.

HRMS (ES+) [M+ H -BH₃]⁺ C₁₁H₁₈OP Found: 197.1095 Calculated: 197.1095

IR (cm⁻¹): 2978, 2384 (P-B), 1438

O-Methyl P,P-diphenylphosphinite borane

Exemplar A was applied to dry *O*-methyl *P*,*P*-diphenylphosphinate (400 mg, 1.85 mmol), with the alteration that the first step, alkylation, was run for 16 hours at 75 °C. Following this, a ³¹P-NMR showed one peak, for the dialkoxyphosphonium salt, at δ = 60.6 ppm. Following reduction, the desired product was purified with a short plug of silica with an eluent of cyclohexane/ethyl acetate 90:10, with a yield of 0.24g (60%).

NMR data matched that in the literature⁸

¹H NMR (CDCl₃, 400 MHz): δ = 7.79-7.68 (m, 4H, *o*-ArH) (lit.: 7.84-7.71), 7.55-7.41 (m, 6H, *m*/*p*-ArH) (lit.: 7.62-7.44), 3.74 (d, ³*J*_{PH} = 12 Hz, 3H, OCH₃) (lit.: 3.78, ³*J*_{PH} = 12Hz), 1.51-0.49 (m, 3H, BH₃) (lit.: 1.90-0.20); ppm.

 13 C NMR {¹H, 31 P} (CDCl₃, 101 MHz): δ = 131.9, 131.6, 131.3, 128.6, 54.0; ppm.

³¹P NMR (CDCl₃, 162 MHz): δ = 107.4 (br) (lit.: 109.0) ppm.

¹¹B NMR (CDCl₃, 128 MHz): δ = -40.9 (d, ¹J_{PB} = 67 Hz, 1B, BH₃) ppm.

O-Ethyl N,N-diisopropyl P-phenylphosphonamidite borane

Exemplar A was applied to dry *O*-Ethyl N,N-diisopropyl *P*-phenylphosphonamidite borane (400 mg, 1.49 mmol), with the alterations that the first step, alkylation, was run at 80 °C for 2 hours with ethyl triflate (0.33 mL, 2.47 mmol, 1.66 equiv.). Following this, a ³¹P-NMR showed one major peak, for the dialkoxyphosphonium salt, with 87% conversion, with the remainder as starting phosphinate.

Following reduction, the desired product was purified with a short plug of silica with an eluent of cyclohexane/ethyl acetate 90:10, with a yield of 0.2 g (50%).

(Note: the NC(CH₃) protons and carbons appear as diastereotopic in NMR)

¹H NMR (CDCl₃, 400 MHz): δ = 7.77-7.36 (m, 5H, ArH), 4.27-4.15 (m, 1H, OCH₂), 4.10-3.99 (m, 1H, OCH₂), 3.59 (dsept, 2H, ³J_{PH} = 15 Hz, ³J_{HH} = 7 Hz, NCH), 1.40 (t, 3H, ³J_{HH} = 7 Hz, OCCH₃), 1.22 (d, 6H, ³J_{HH} = 7 Hz, NC(CH₃)₂), 1.18 (d, 6H, ³J_{HH} = 7 Hz, NC(CH₃)₂), 0.86 (br, q, 3H, BH₃); ppm.

¹³C NMR {¹H, ³¹P} (CDCl₃, 101 MHz): δ = 134.7, 130.9, 130.6, 128.1, 61.6, 47.8, 23.5, 22.8, 16.5; ppm.

³¹P NMR (CDCl₃, 162 MHz): δ = 105.7 (br, q) ppm.

¹¹B NMR (CDCl₃, 128 MHz): δ = -36.9 (d, ¹J_{PB} = 77 Hz, 1B, BH₃) ppm.

IR (cm⁻¹): 2969, 2385 (P-B), 1643

N,N-Diethyl-O-ethyl-P-chloromethylphosphonamidite borane

Exemplar A was applied to dry *N*,*N*-diethyl-*O*-ethyl-*P*-chloromethylphosphonamidate (400 mg, 1.88 mmol), with the alterations that the first step, alkylation, was run at 80 °C for 23 hours with ethyl triflate (0.42 mL, 3.12 mmol, 1.66 equiv.). Following this, a ³¹P-NMR showed one major peak, for the dialkoxyphosphonium salt, at δ = 42.0 ppm, with 58% conversion, with the remainder as starting phosphinate.

Following reduction, the desired product was purified with a short plug of silica with an eluent of cyclohexane/ethyl acetate 90:10, with a yield of 0.13g (32%)

(Note: the OCH₂ protons appear as diastereotopic in the proton NMR)

¹H NMR (CDCl₃, 400 MHz): δ = 4.08-3.93 (m, 1H, OCH₂), 3.92-3.78 (m, 1H, OCH₂), 3.58-3.49 (m, 2H, PCH₂Cl), 3.25-3.07 (m, 4H, NCH₂), 1.27 (t, ³J_{HH} = 8 Hz, 3H, OCCH₃), 1.13 (t, ³J_{HH} = 7 Hz, 6H, NCCH₃), 1.04-0.12 (m, 3H, BH₃); ppm.

¹³C NMR {¹H, ³¹P} (CDCl₃, 101 MHz): δ = 62.0, 39.4, 36.7, 16.4, 14.3; ppm.

³¹P NMR (CDCl₃, 162 MHz): δ = 115.4 ppm.

¹¹B NMR (CDCl₃, 128 MHz): δ = -42.5 (d, ¹J_{PB} = 78 Hz, 1B, BH₃) ppm.

HRMS (ES+) [M-BH₃+ H]⁺ C₇H₁₈NOPCI Found: 198.0819 Calculated: 198.0815

IR (cm⁻¹): 2981, 2393 (P-B), 1453, 1383

Reversibility of the Alkylation Reaction

O-Ethyl *P*-phenyl-*P*-isopropylphosphinate (200 mg, 0.94 mmol) was reacted with ethyl triflate (0.24 ml, 1.88 mmol, 2.0 equiv.) according to exemplar A. To the resulting DiAPS solution was added methyl triflate (0.21 mL, 1.88 mmol, 2.0 equiv.) and the reaction was heated to 75 $^{\circ}$ C for 15 hours.

A ³¹P-NMR spectrum of the reaction mixture showed three products at δ = 75.9, 78.2 and 80.5 ppm. This experiment proves that the alkylation of *O*-ethyl *P*-phenyl-*P*-isopropylphosphinate with ethyl triflate is a reversible process.

Investigations of Side Reactions occurring during Reduction Reaction

Reaction of ethyl triflate with lithium borohydride

Ethyl triflate (75 mg, 0.05 mL, 0.421 mmol) was dissolved in dry tetrachloroethane (0.4 mL) in a dry 100 mL Young's tube. The flask was cooled to -78 °C in a dry ice/acetone bath and lithium borohydride (2.0 M in THF, 0.63 mL, 1.26 mmol, 3 equiv.) was added via syringe. The reaction was stirred for one hour before being removed from the bath and allowed to warm to room temperature. The reaction was them stirred for a further 2.5 hours.

A ¹¹B-NMR spectrum of the mixture showed four products at δ = -42.9, -26.5, -1.4 and 18.5 ppm. The products were not identified.

Heating of ethyl triflate in tetrachloroethane

Ethyl triflate (75 mg, 0.05 mL, 0.421 mmol) was dissolved in dry tetrachloroethane (0.4 mL) in a dry 100 mL Young's tube. The flask was heated to 100 °C for 3.5 hours. The reaction was allowed to cool to room temperature and a ¹⁹F-NMR spectrum of the reaction showed that no reaction had taken place. The ¹⁹F NMR shift of ethyl triflate is δ = -75 ppm.

Solvent study of LiBH₄ reaction

Effect of concentration of the reductant and solvent^[a] on conversion to phosphinite borane from phosphinate with $LiBH_4^{[b]}$

Solvent ^[c]	ent ^[c] Concentration (M) $^{[d]}$ Conversion to PB (%) $^{[e]}$	
MeOH	0.5	29
EtOH	0.5	42
IPA	0.5	73
IPA 0.2 51 ^[f]		51 ^[f]
THF	THF 2 0	
THF	0.5	46
THF	0.2	80
THF	0.1	80
Et ₂ O	0.2	14 ^[g]
MeCN	0.2	36
Et ₃ N	20 equiv. ^[h] in THF	0

[a] all solvents accompanied by THF, as originating from LiBH₄ solution (2.5 mL) [b] 5 equiv. of LiBH₄ were used in each case [c] solvents were thoroughly dried before use [d] values are the absolute concentration of the LiBH₄ in mixed solvent, or neat THF, prior to the addition of DiAPS [e] as measured by ³¹P-NMR with 3 second relaxation delay, from starting phosphinate [f] conversion to phosphinate is lower, but conversion to phosphinite borane desired product is also lowered due to emergence of sec-phosphine borane side-product [g] LiBH₄ was dissolved in neat diethyl ether, no THF [h] 20 equiv. relative to phosphinate.

From the table above it is clear that there is both a strong concentration and a solvent effect in operation in the reduction reaction.

Employing non-sterically hindered alcohols, methanol and ethanol, as the solvent is detrimental to the yield, likely through a side reaction of the alcohol with the reductant. Isopropanol as previously stated is a good solvent, with 73% conversion at 0.5 M. Surprisingly, given later results, lowering the concentration further to 0.2 M also lowers the conversion, due to the emergence of a side-product, the secondary phosphine borane *P*-phenyl-*P*-isopropylphosphine borane. The exact cause of this side reaction is not known. Tetrahydrofuran is also a good solvent with the yield now inversely proportional to the concentration, ranging from 0% at 2 M to 80% at 0.2 M. The mass balance is made up by the reformed starting phosphinate. This concentration effect eventually ceases, as decreasing the concentration further, e.g. from 0.2 to 0.1 M, carries no benefit. Diethyl ether and acetonitrile are not good solvents to employ, possibly due to the low polarity of the former and the nitrogen of the latter becoming alkylated instead of the phosphoryl bond. Triethylamine completely disrupts the reaction, again probably due to transfer of the alkyl group from the phosphonium salt to the amine nitrogen.

HPLC chromatographs and NMR spectra of starting materials and products

CSP-HPLC chromatographs of racemic *P*-methyl-*P*-phenyl-*P*-(ortho-tolyl)phosphine

oxide and borane

<pre>Ged. Operator : General sequence Seq. Line : 4 indection Date : 3/13/2010 6:22:51 PM Int : 1 indection Date : 3/13/2010 6:22:51 PM int : 10 For the S ph indection Date : 3/13/2010 6:22:51 PM int : 10 For the S ph indection Date : 3/13/2010 6:22:53 PM by General sequence (modified after : Location) sequence : 10/2010 9:23:55 M by General sequence indection Date : 7/8/2009 9:24:55 M by General sequence indection Date : 7/8/2009 9:25 M by General sequence indection Date : 7/8/2009 0:25 M by General sequence indection Date : 7/8/2009 0:25 M by General sequen</pre>					
<pre>perturb Date : 3/13/2003 close to the transmission of transmissi</pre>	cq. Operator	: General s	equence	Seq. Line : 4	
$Ind Volume : 5 µl generating : CitChesd21110ATA1A06410 2010-03-13 17-07-41100_0_0_20_0_300H1_HMHLM.M as changed : 21/12/2010 512:13 PH by General sequence induiting atter loading as changed : 17/8/2008 9168-15 M by General sequence is control to the distribution of the di$	njection Date	: 3/13/2010	6:22:51 PM	Inj: 1	
reg. Mathod :: C: (CHARJA) (DATA), A004 -1-10 2010-03-13 17-07-41 (D02-0401.D)(DA.M. (ISO_06_20_SOUTH_UNMIN.M. as changed :: (CHARJA) (DATA), A004 -1-10 2010-03-13 17-07-41 (D02-0401.D)(DA.M. (ISO_06_20_SOUTH_UNMIN.M. as changed :: (CHARJA), UNATA), A004 -1-10 2010-03-13 17-07-41 (D02-0401.D)(DA.M. (ISO_06_20_SOUTH_UNMIN.M. as changed :: (CHARJA), UNATA), A004 -1-10 2010-03-13 17-07-41 (D02-0401.D)(DA.M. (ISO_06_20_SOUTH_UNMIN.M. as changed :: (CHARJA), UNATA), A004 -1-10 2010-03-13 (D1-07-41 (D02-0401.D)(DA.M. (ISO_06_20_SOUTH_UNMIN.M. as changed :: (CHARJA), UNATA), A004 -1-10 2010-03-14 (D1-07-41 (D02-0401.D)(DA.M. (ISO_06_20_C)) (D1-07-41 (D02-0401.D)(DA.M. (ISO_06_20_C)) (D1-07-41 (D02-0401.D)(DA.M. (ISO_06_20_C)) (D1-07-41 (D02-0401.D)(DA.M. (ISO_06_20_C)) (D1-07-41 (D1-07-41 (D02-0401.D)(DA.M. (ISO_06_20_C))) (D1-07-41 (D1-07-				Inj Volume : 5 µl	
as changed : 3/13/2010 6:22:39 PB by General sequence modified after loading) malysis Worked : C1CHRNAULATALAGE-3-10 2010-03-13 17-07-411/02-0401.D(DL.N.M. (130_00_20_ astychanged : 17/8/2009 5:48:45 M by General sequence theod fator : isocratic at 69/20 hepta-and/2016 for Solin at Inl/min Theory of the object of the	cq. Method	: C:\Chem32	1\DATA\AOB4-3-1	0 2010-03-13 17-07-41\ISO_80_20_30MIN_1MLMIN.M	
nalysis Method : 0.0011464 after: 10010-03-13 17-07-41/002-0401.D/DA.M (ISO_80_20_0) SUBM_HANNYM ast changed : 7/8/2005 9749:63 M by Coneral sequence it lacoratic at 80/20 heptane/ECO for 30m at Inf/min Theorem is the sequence in the	ast changed	: 3/13/2010	6:22:39 PM by G	eneral sequence	
DOTE: LIMMENT: NO act changed : 7.94/2008 949-945 M My General sequence at changed : 7.94/2008 949-946 M by General sequence the change is a constrained to the constrained in the constrained interest in the constrained	nalvsis Method	(modified	after loading)	0 2010-03-13 17-07-41\002-0401.D\DA.M (ISO 80 20	
sat change $: ?1/8/2009 $:49:45$ M by General sequence without at inl/min to later the sequence of the sequen		30MIN_1ML	MIN.M)	• • • • • • • • • • • • • • • • • • •	
which Info [°] : Isocratic at 80/20 heptane/SEOH for 30min at Inf/min Tool 10, 592-200, He-300, 100 (AOH-4-102 Molto-10 Hopf High High High High High High High High	ast changed	: 7/8/2009	9:49:45 AM by Ge	neral sequence	
$\frac{1}{100} = \frac{1}{100} + \frac{1}$	ethod Info	: Isocratic	at 80/20 heptan	e/EtOH for 30min at 1ml/min	
$\frac{1}{100} \int_{0}^{0} \int_{0$	DAD1 D, Sig	=230,8 Ref=360,100	(AOB4-3-10 2010-03-13 17	-07-41\002-0401.D)	-
$ \frac{1000}{900} = \frac{1}{900} + $	mAU .		\$ A31		
$= \left(\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	1000 -		1 a 150	O I	
$\frac{1}{100} = \frac{1}{100} + \frac{1}{100} + \frac{1}{100} + \frac{1}{100} + \frac{1}{100} + \frac{1}{1000} + \frac{1}{1000$	1		Proc	, P,	
$\frac{1}{100} = \frac{1}{100} + \frac{1}$	-		19229		
$= \frac{1}{1000} = \frac{1}{10000} = \frac{1}{1000} = $	800 -		472		
$ \frac{1}{10^{-4}} = \frac{1}{10^{-4$]		- T	Racemic	
$= \frac{60}{20} - \frac{1}{9} - \frac{1}{9} - \frac{1}{10} - \frac{1}{15} - \frac{1}{20} - \frac{1}{25} - \frac{1}{10} - \frac{1}{10}$	-				
$= \frac{4}{20} - \frac{4}{20} - \frac{4}{20} - \frac{4}{10} - \frac{4}{10} - \frac{4}{10} - \frac{4}{10} - \frac{4}{20} - \frac{4}{20$	600 -				
$= \frac{400}{90} = \frac{1}{90} = \frac{1}{90} = \frac{1}{10} = \frac{1}{$]				
$\frac{1}{10} = \frac{1}{10} $					
$\frac{1}{10} = \frac{1}{10} $	400 -				
$\frac{200}{9} \frac{1}{9} $	-				
nstrument Conditions : At Start At Stop nstrument Conditions : At Start At Stop clumn Temp. (left) : 24.9 24.9 °C olumn Temp. (left) : 26.0 26.0 °C ressure : 54.1 54.5 bar low : 54.1 0000 1.0000 nl/min Talve 1 Position : 4 4 4 etector Lamp Burn Times: Current On-Time Accumulated On-Time AD 1, Visible Lamp : 0.75 1193.6 h AD 1, Visible Lamp : 0.FF 11.2 h Novent Description : WP1 , Solvent A : Heptane WP1 , Solvent A : Heptane WP1 , Solvent B : EtcH M010, Sup-220.8 Had.sec.100 (CCH-HM22: UDATARHUN CUEUE 2010.07:30:256:16PG CDE164F1-9365.D) The second of the second of th					
netrument Conditions : At Start At Stop Tolumn Temp. (left) : 24.9 24.9 °C tocsum Temp. (right) : 26.0 26.0 26 tocsume : 54.1 54.5 bar low : 1.000 1.000 nl/min alve 1 Position : 4 4 4 etector Lamp Burn Times: Current On-Time Accumulated On-Time AD 1, UV Lamp : 1.75 1193.6 h AD 1, Visible Lamp : OFF 11.2 h olvent Description : MP1 , Solvent B : EtoH DADID. SQ-200,8 MeJ-SK0100 (CMDHEM32 NDATAFILIUN OLEUE 2010 07:50 22:55-1697G CDE 164F1-956AD) MP4 10 10 10 10 10 10 10 10 10 10	200-				
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \end{array} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $	-				
instrument Conditions : At Start At Stop Tolum Temp. (left) : 24.9 24.9 °C bolum Temp. (right) : 26.0 26.0 °C tressure : 54.1 54.5 bar 'low : 1.000 1.000 ml/min Talve 1 Position : 4 4 4 betector Lamp Burn Times: Current On-Time Accouncilated On-Time NAD 1, Visible Lamp : 0.75 1193.6 h NAD 1, Visible Lamp : 0FF 11.2 h Nolvent Description : MP1, Solvent B : EtCH OAD10, 59,200.8 Rel.380,100 (C)CHEM23: NDATABUN QUEUE 2010 07:30 22:55 16 PG-CDE 16 PF 3505.D) The second of the sec	0		JUL		
s 10 15 20 25 m nstrument Conditions : At Start At Stop tolumn Temp. (left) : 24.9 24.9 °C tolumn Temp. (right) : 26.0 26.0 °C ressure : 54.1 55.5 bar low c : 1.000 1.000 ml/min alve 1 Position : 4 4 4 etector Lamp Burn Times: Current On-Time Accumulated On-Time AD 1, UV Lamp : 1.75 1193.6 h AD 1, UV Lamp : 0FF 11.2 h tolvent Description : MP1, Solvent A : Heptane MP1, Solvent B : EtcH DADID 0.59-2008 DAL-320,100 (CXCHEM28:NDATAHUN QUEUE 2010 07:30:22:55:16PG CDE:164F1:9505.D) M01 100 100 100 100 100 100 100	×				_
nstrument Conditions : At Start At Stop folumn Temp. (left) : 24.9 24.9 °C folumn Temp. (right) : 26.0 26.0 °C ressure : 54.1 554.5 bar low : 1.000 1.000 ml/min alve 1 Position : 4 4 etector Lamp Burn Times: Current On-Time Accumulated On-Time AD 1, VI amp : 1.75 1193.6 h AD 1, VI sible Lamp : OFF 11.2 h folvent Description : MP1 , Solvent A : Heptane MP1 , Solvent B : EtoH DAD 10, Sig-230.8 HeJ-360,100 (CXCHEM32.NDATARUN QUEUE 2010 07 30 22 45 16 PG CDE 164F1 9506.D) MAU 10, Sig-230.8 HeJ-360,100 (CXCHEM32.NDATARUN QUEUE 2010 07 30 22 45 16 PG CDE 164F1 9506.D) MAU 10, Sig-230.8 HeJ-360,100 (CXCHEM32.NDATARUN QUEUE 2010 07 30 22 45 16 PG CDE 164F1 9506.D) MAU 10, Sig-230.8 HeJ-360,100 (CXCHEM32.NDATARUN QUEUE 2010 07 30 22 45 16 PG CDE 164F1 9506.D) MAU 10, Sig-230.9 HeJ-360,100 (CXCHEM32.NDATARUN QUEUE 2010 07 30 22 45 16 PG CDE 164F1 9506.D) MAU 10, Sig-230.9 HeJ-360,100 (CXCHEM32.NDATARUN QUEUE 2010 07 30 22 45 16 PG CDE 164F1 9506.D) MAU 10, Sig-230.9 HeJ-360,100 (CXCHEM32.NDATARUN QUEUE 2010 07 30 22 45 16 PG CDE 164F1 9506.D) MAU 10, Sig-230.9 HeJ-360,100 (CXCHEM32.NDATARUN QUEUE 2010 07 30 22 45 16 PG CDE 164F1 9506.D) MAU 10, Sig-230.9 HeJ-360,100 (CXCHEM32.NDATARUN QUEUE 2010 07 30 22 45 16 PG CDE 164F1 9506.D) MAU 10, Sig-230.9 HeJ-360,100 (CXCHEM32.NDATARUN QUEUE 2010 07 30 22 45 16 PG CDE 164F1 9506.D) MAU 10, Sig-230.9 HeJ-360,100 (CXCHEM32.NDATARUN QUEUE 2010 07 30 22 45 16 PG CDE 164F1 9506.D) MAU 10, Sig-230.9 HeJ-360,100 (CXCHEM32.NDATARUN QUEUE 2010 07 30 22 45 16 PG CDE 164F1 9506.D) MAU 10, Sig-230.9 HeJ-360,100 (CXCHEM32.NDATARUN QUEUE 2010 07 30 22 45 16 PG CDE 164F1 9506.D) MAU 10, Sig-230.9 HeJ-360,100 (CXCHEM32.NDATARUN QUEUE 2010 07 30 22 45 16 PG CDE 164F1 9506.D) MAU 10, Sig-230.9 HeJ-360,100 (CXCHEM32.NDATARUN QUEUE 2010 07 30 22 45 16 PG CDE 164F1 9506.D) MAU 10, Sig-230.9 HeJ-360,100 (CXCHEM32.NDATARUN QUEUE 2010 07 30 22 45 16 PG CDE 164F1 9506.D) MAU 10, Sig-230.9 HeJ-360,100 (Sig-230.9 HeJ-360,100 (Sig-240,100 (Sig-240,100 (Sig-240,100 (Sig-240,100 (Sig-240,100 (Sig-240,100 (5	10	15 20 25 m	ni
bolumn Temp. (left) : 24.9 °C Solumn Temp. (right) : 26.0 26.0 °C Pressure : 54.1 54.5 bar low : 1.000 1.000 ml/min Alve 1 Position : 4 4 Netector Lamp Burn Times: Current On-Time Accumulated On-Time AbD 1, VU Lamp : 1.75 1193.6 h AbD 1, Visible Lamp : OFF 11.2 h Solvent Description : MPI , Solvent A : Heptane MPI , Solvent B : EtOH DAD D, Sg-230.8 Ref-360.100 (C:CHEM32 NDATARUN QUEUE 2010 07 30 22 55 160 ^G ODE164F1-950E.D) MAU 100 100 100 100 100 100 100 10					
Automin Temp. (Fight) : 20:0 C Tressure : 54.1 54.5 bar Now : 1.000 1.000 ml/min Naive 1 Position : 4 4 Detector Lamp Burn Times: Current On-Time Accumulated On-Time DAD 1, UV Lamp : 1.75 1193.6 h NDD 1, UV Lamp : 1.75 1193.6 h NDD 1, VIsible Lamp : OFF 11.2 h Solvent A : Heptane MP1 , Solvent B : EtcH DAD 10, Sig-230,8 Rel-360,100 (C:CHEM32:NDATARUN QUEUE 2010-07:80 22:55-16PG-ODE164F1-9506.D) MAU 100 100 100 100 100 100 100 10	Instrument Con	ditions :	At Start	At Stop	
Plow : 1.000 1.000 ml/min Palve 1 Position : 4 4 4 Petector Lamp Burn Times: Current On-Time Accumulated On-Time PAD 1, UV Lamp : 1.75 1193.6 h NAD 1, VIsible Lamp : OFF 11.2 h Solvent Description : MPI , Solvent B : EtoH DAUTD, Sg_230.8 Heijaso(100 (CCCHEM32:10ATAIRUN QUEUE 2010 07:50 22:55:16PG-CDE164F1-9505.D) MAU 140 140 140 140 140 140 140 140 140 140	instrument Con Jolumn Temp. (ditions : left) : right) :	At Start 24.9 26.0	At Stop 24.9 °C 26.0 °C	
<pre>alve 1 Position : 4 4 etector Lamp Burn Times: Current On-Time Accumulated On-Time AD 1, UV Lamp : 1.75 1193.6 h AD 1, UV Lamp : 0FF 11.2 h Solvent Description : MP1, solvent B : EtOH DADI D. SG-200.8 Ref-380.100 (C:CHEM32:NDATARUN QUEUE 2010 07 50 22:55:16PG-CDE164F1-9505.D) DADI D. SG-200.8 Ref-380.100 (C:CHEM32:NDATARUN QUEUE 2010 07 50 22:55:16PG-CDE164F1-9505.D) TM01 140 15 10 10 10 10 10 10 10 10 10 10 10 10 10</pre>	nstrument Con Column Temp. (Column Temp. (ressure	ditions : left) : right) :	At Start 24.9 26.0 54.1	At Stop 24.9 °C 26.0 °C 54.5 bar	
etector Lamp Burn Times: Current On-Time Accumulated On-Time AD 1, UV Lamp : 1.75 1193.6 h AD 1, Visible Lamp : OFF 11.2 h bolvent Description : MP1 , Solvent A : Heptane MP1 , Solvent B : EtCR DADID, Sig-230,8 Ref-360,100 (C:CHEM32:10ATAIRUN QUEUE 2010.07.30 22:65 16PG-CDE154F1-9506.D) M01 140 140 140 140 140 140 140 15 20 20 20 20 20 20 20 20 20 20 20 20 20	nstrument Con column Temp. (column Temp. (ressure 'low	ditions : left) : right) : :	At Start 24.9 26.0 54.1 1.000	At Stop 24.9 °C 26.0 °C 54.5 bar 1.000 ml/min	
AD 1, UV Lamp : 1.75 1193.6 h AD 1, V Visible Lamp : OFF 11.2 h ND1, Visible Lamp : OFF 11.2 h ND1, Solvent A : Heptane MP1, Solvent B : EtCH DADIO, Sig-230,8 Ref-360,100 (C:CHEM32:IDATAIRUN QUEUE 2010-07:30 22:55-16PG-CDE164F1-9506.D) MOU 140 140 140 140 140 140 140 140 140 140	nstrument Con column Temp. (column Temp. (ressure low alve 1 Positi	ditions : left) : right) : : on :	At Start 24.9 26.0 54.1 1.000 4	At Stop 24.9 °C 26.0 °C 54.5 bar 1.000 ml/min 4	
AD 1, Visible Lamp : OFF 11.2 h solvent Description : NP1 , Solvent A : Heptane MP1 , Solvent B : EtCR DADI D, Sig-200,8 ReL-360,100 (C:CHEM32:1/DATARUN QUEUE 2010-07:30 22:65-16PG-CDE154F1-9505.D) MAU 140 140 140 140 140 140 140 140	nstrument Con column Temp. (column Temp. ('ressure 'low 'alve 1 Positi	ditions : left) : right) : on :	At Start 24.9 26.0 54.1 1.000 4	At Stop 24.9 °C 26.0 °C 54.5 bar 1.000 ml/min 4	
Notice the theorem is the second sec	nstrument Con column Temp. (icolumn Temp. (ressure clow alve 1 Positi etector Lamp AD 1. UV Lamm	ditions : left) : right) : on : Burn Times:	At Start 24.9 26.0 54.1 1.000 4 Current On-Time 1.75	At Stop 24.9 °C 26.0 °C 54.5 bar 1.000 ml/min 4 Accumulated On-Time 1193.6 h	
olvent Description : MP1 , Solvent A : Heptane DADI D, Sig-220,8 Rei-S80,100 (C:CHEM32:NDATARUN QUEUE 2010-07:50 22:55:16PG-CDE164F1-9505.D) MAU 140 140 120 100 100 100 100 100 100 10	nstrument Con olumn Temp. (olumn Temp. (ressure low alve 1 Positi etector Lamp AD 1, UV Lamp AD 1, VIsible	ditions : left) : right) : on : Burn Times: Lamp :	At Start 24.9 26.0 54.1 1.000 4 Current On-Time 1.75 OFF	At Stop 24.9 °C 26.0 °C 54.5 bar 1.000 ml/min 4 Accumulated On-Time 1193.6 h 11.2 h	
MP1 , Solvent A : Heptane MP1 , Solvent B : Etch DA01 D, Sig-220,8 Rel-360,100 (C:CHEM32HDATAIRUN QUEUE 2010 07:30 22:65:16PG CDE164F1-9505.D) MAU 140 120 100 100 100 100 100 100 100 100 10	nstrument Con Jolumn Temp. (Jolumn Temp. (Ivessure low Talve 1 Positi Netector Lamp AD 1, UV Lamp AD 1, Visible	ditions : left) : right) : on : Burn Times: Lamp :	At Start 24.9 26.0 54.1 1.000 4 Current On-Time 1.75 OFF	At Stop 24.9 °C 26.0 °C 54.5 bar 1.000 ml/min 4 Accumulated On-Time 1193.6 h 11.2 h	
DAD1 D, Sig-220,8 Ref-380,100 (C:CHEM32 I)DATARUN QUEUE 2010 07 30 22-55 T6PG-CDET84F1-9505.D) MAU 140 140 140 100 100 100 100 100	nstrument Con olumn Temp. (olumn Temp. (ressure low alve 1 Positi etector Lamp AD 1, VV Lamp AD 1, VV sible olvent Descri	ditions : left) : right) : on : Burn Times: Lamp : ption :	At Start 24.9 26.0 54.1 1.000 4 Current On-Time 1.75 OFF	At Stop 24.9 °C 26.0 °C 54.5 bar 1.000 ml/min 4 Accumulated On-Time 1193.6 h 11.2 h	
$\begin{array}{c} \text{mAU} \\ 140 \\ 120 \\ 100 \\ 80 \\ 60 \\ 40 \\ 20 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	nstrument Con olumn Temp. (olumn Temp. (ressure low alve 1 Positi etector Lamp AD 1, UV Lamp AD 1, VIsible olvent Descri MP1 , Solvent	ditions : left) : right) : on : Burn Times: : Lamp : ption : B	At Start 24.9 26.0 54.1 1.000 4 Current On-Time 1.75 OFF Heptane EtOH	At Stop 24.9 °C 26.0 °C 54.5 bar 1.000 ml/min 4 Accumulated On-Time 1193.6 h 11.2 h	
$\begin{array}{c} 140 \\ 120 \\ 100 \\ 60 \\ 60 \\ 40 \\ 40 \\ 40 \\ 40 \\ 40 \\ $	nstrument Con olumn Temp. (olumn Temp. (ressure low alve 1 Positi etector Lamp AD 1, UV Lamp AD 1, Visible olvent Descri MP1 , Solvent MP1 , Solvent	ditions : left) : right) : on : Lamp : ption : B	At Start 24.9 26.0 54.1 1.000 4 Current On-Time 1.75 OFF Heptane EtOH DO (CKCHEM323 (NDATAIR	At Stop 24.9 °C 26.0 °C 54.5 bar 1.000 ml/min 4 Accumulated On-Time 1193.6 h 11.2 h UN QUEUE 2010-07-80 22-85-16MPG-CDE164F1-8505.D)	
140 120 100 80 60 40 40 40 5 10 10 15 20 20 25 20 25	nstrument Con olumn Temp. (olumn Temp. (ressure low alve 1 Positi etector Lamp AD 1, VI Lamp AD 1, VIsible olvent Descri MPI , Solvent DADID.S mAU_	ditions : left) : right) : : on : Burn Times: Lamp : ption : A : <u>P</u> : <u>P</u> : <u>P</u> : <u>P</u> :	At Start 24.9 26.0 54.1 1.000 4 Current On-Time 1.75 OFF Heptane EtOH 20(C3CHEM3210DATAR 5 2	At Stop 24.9 °C 26.0 °C 54.5 baz 1.000 ml/min 4 Accumulated On-Time 1193.6 h 11.2 h UN QUEUE 2010-07:30 22:55:16PG-CDE164F1-9805.D)	
120 100 80 40 40 20 5 10 15 20 20 25 20 25	nstrument Con olumn Temp. (olumn Temp. (ressure low alve 1 Positi etector Lamp AD 1, Visible olvent Descri MP1, Solvent MP1, Solvent DADID,S mAU	ditions : left) : right) : on : Burn Times: Lamp : ption : A : B : ug-230,8 Ref-360,10	At Start 24.9 26.0 54.1 1.000 4 Current On-Time 1.75 OFF Heptane EtOH 30 (CACHEM32:NDATAIR	At Stop 24.9 °C 26.0 °C 54.5 bar 1.000 ml/min 4 Accumulated On-Time 1193.6 h 11.2 h UN QUEUE 2010-07-30 22-65-16PG-CDE 164F1-9505.D)	
	nstrument Con olumn Temp. (olumn Temp. (ressure low alve 1 Positi etector Lamp AD 1, VV Lamp AD 1, VV Lamp AD 1, VV Lamp AD 1, VV Sible olvent Descrit DAD10, S mAU 1 140-	ditions : left) : right) : on : Burn Times: Lamp : ption : A : p : g_230,8 Ret=380,10	At Start 24.9 26.0 54.1 1.000 4 Current On-Time 1.75 OFF Heptane EtOH 20 (CICHEM82: (DATA(R	At Stop 24.9 °C 26.0 °C 54.5 bar 1.000 ml/min 4 Accumulated On-Time 1193.6 h 11.2 h UN QUEUE 2010-07-30 22-55-16P/G-CDE 164F1-9505.D)	
100 80 60 40 20 60 5 10 15 20 20 20 25 20 25 20 25	Instrument Con Jolumn Temp. (Jolumn Temp. (Tressure low AD 1, UV Lamp AD 1, UV Lamp AD 1, UV Lamp AD 1, VIsible olvent Descri MP1, Solvent MP1, Solvent MP1, Solvent IAD 10, Solvent	ditions : left) : right) : on : Burn Times: : Lamp : ption : B : g_230,8 Ref=360,10	At Start 24.9 26.0 54.1 1.000 4 Current On-Time 1.75 OFF Heptane EtOH 20 (CACHEM32A NDATAIR 3 6	At Stop 24.9 °C 26.0 °C 54.5 bar 1.000 ml/min 4 Accumulated On-Time 1193.6 h 11.2 h UN QUEUE 2010-07-30 22-55-16PG-CDE 164F1-9805.D)	
	nstrument Con olumn Temp. (olumn Temp. (ressure low alve 1 Positi etector Lamp AD 1, UV Lamp AD 1, Visible olvent Descri MP1, Solvent DAD1D,S mAU 140- 120-	ditions : left) : right) : on : Burn Times: : Lamp : ption : A : B : ig_230,8 Ref_360,10	At Start 24.9 26.0 54.1 1.000 4 Current On-Time 1.75 OFF Heptane EtOH 0 (C:CHEM22: UDATAIR	At Stop 24.9 °C 26.0 °C 54.5 bar 1.000 ml/min 4 Accumulated On-Time 1193.6 h 11.2 h UN QUEUE 2010 07 30 22 65 16PG-CDE164F1-9506.D)	
	nstrument Con olumn Temp. (olumn Temp. (ressure low alve 1 Positi etector Lamp AD 1, UV Lamp AD 1, Visible olvent Descri MP1, Solvent MP1, Solvent DADIDS mAU 140- 120-	ditions : left) : right) : : on : Burn Times: : Lamp : ption : A : B : gq.230.8 Het=360.10	At Start 24.9 26.0 54.1 1.000 4 Current On-Time 1.75 OFF Heptane EtOH 30 (CACHEMS2: 10ATA/R Š	At Stop 24.9 °C 26.0 °C 54.5 baz 1.000 ml/min 4 Accumulated On-Time 1193.6 h 11.2 h UN QUELE 2010-07-30 22-65 16PG-CDE 164F1-9505.D)	
	nstrument Con Jolumn Temp. (Jolumn Temp. (Iressure low alve 1 Positi etector Lamp AD 1, VV Lamp AD 1, VV sible iolvent Descri DAD 15, Solvent DAD 15, Solvent 140- 140- 140-	ditions : left) : right) : : on : Burn Times: Lamp : ption : A : B : g_220,8 HeL_360,10	At Start 24.9 26.0 54.1 1.000 4 Current On-Time 1.75 OFF Heptane EtOH 20(CACHEM32:NDATAR	At Stop 24.9 °C 26.0 °C 54.5 bar 1.000 ml/min 4 Accumulated On-Time 1193.6 h 11.2 h UN QUEUE 2010-07-30 22-65-16PG-CDE 164F1-9505.D) W UN QUEUE 2010-07-30 22-65-16PG-CDE 164F1-9505.D)	
	Instrument Con Jolumn Temp. (Jolumn Temp. (Iressure low Talve 1 Positi Netector Lamp AD 1, VV Lamp AD 1, VV Lamp AD 1, VV Lamp AD 1, VV Sible INP1, Solvent MP1, Solvent DADID.S mAU 140 120 100	ditions : left) : right) : on : Lamp : ption : A : B : ag_230,8 Hel=360,10	At Start 24.9 26.0 54.1 1.000 4 Current On-Time 1.75 OFF Heptane EtOH 50(C:CHEM82::UDATAIR 2	At Stop 24.9 °C 26.0 °C 54.5 bar 1.000 ml/min 4 Accumulated On-Time 1193.6 h 11.2 h UN QUEUE 2010-07-30 22-55-16P/G-CDE 164F1-9505.D) W UN QUEUE 2010-07-30 22-55-16P/G-CDE 164F1-9505.D)	
	instrument Con Jolumn Temp. (Jolumn Temp. (Investigation of the second Valve 1 Positi Detector Lamp AD 1, UV Lamp AD 1, UV Lamp AD 1, UV Lamp AD 1, Visible Jolvent Descri MP1, Solvent MP1, Solvent MP1, Solvent 140 140 140 140 140 140 140	ditions : left) : right) : on : Burn Times: : Lamp : ption : A : B : gg_230,8 Ref_360,10	At Start 24.9 26.0 54.1 1.000 4 Current On-Time 1.75 OFF Heptane EtOH 20 (C:CHEM32: NDATAIR	At Stop 24.9 °C 26.0 °C 54.5 bar 1.000 ml/min 4 Accumulated On-Time 1193.6 h 11.2 h UN QUEUE 2010-07-30 22-55-16PG-CDE 164F1-8505.D)	
	Instrument Con Jolumn Temp. (Column Temp. (Versesure Valve 1 Positi Detector Lamp DAD 1, UV Lamp DAD 1, UV Lamp DAD 1, Visible Solvent Descri MPI, Solvent DAD10, Solvent DAD10, Solvent 140- 120- 100- 80-	ditions : left) : right) : on : Lamp : ption : A : B : ig_230,8 Ref_360,10	At Start 24.9 26.0 54.1 1.000 4 Current On-Time 1.75 OFF Heptane EtOH 0 (CACHEM32ANDATAIR	At Stop 24.9 °C 26.0 °C 54.5 bar 1.000 ml/min 4 Accumulated On-Time 1193.6 h 11.2 h UN QUEUE 2010-07 S0 22-55-16PG-CDE 154F1-9505.D) UN QUEUE 2010-07 S0 22-55-16PG-CDE 154F1-9505.D)	
	instrument Con Solumn Temp. (Solumn Temp. (Investigation of the solution	ditions : left) : right) : on : Burn Times: Lamp : ption : A : B : gq.230.8 Het-360.10	At Start 24.9 26.0 54.1 1.000 4 Current On-Time 1.75 OFF Heptane EtOH 30 (CACHEM82: 10ATANR \$	At Stop 24.9 °C 26.0 °C 54.5 bar 1.000 ml/min 4 Accumulated On-Time 1193.6 h 11.2 h UN QUEUE 2010 07 30 22 65 16PG CDE 164F1-9505.D) UN QUEUE 2010 07 30 22 65 16PG CDE 164F1-9505.D)	
	Instrument Con Jolumn Temp. (Jolumn Temp. (Jolum Temp. (Jola V Jola V I Positi Detector Lamp AD 1, UV Lamp AD 1, UV Lamp AD 1, Visible Jolvent Descrit MP1, Solvent DAD10,5 mAU 140- 120- 100 80- 50- 50- 50- 50- 50- 50- 50- 5	ditions : left) : right) : on : Burn Times: Lamp : ption : A : B : gg-230,8 Ret=360,10	At Start 24.9 26.0 54.1 1.000 4 Current On-Time 1.75 OFF Heptane EtOH 20 (CACHEM32: NOATAIR	At Stop 24.9 °C 26.0 °C 34.5 bar 1.000 ml/min 4 Accumulated On-Time 1193.6 h 11.2 h UN QUEUE 2010.07.30 22:55:16PG-CDE 164F1-9505.D) UN QUEUE 2010.07.30 22:55:16PG-CDE 164F1-9505.D)	
	instrument Con Jolumn Temp. (Jolumn Temp. (Jolumn Temp. (Instruction Temp. (Jolumn Temp. (J	ditions : left) : right) : on : Lamp : ption : A : B : ag-230,8 Ref-360,10	At Start 24.9 26.0 54.1 1.000 4 Current On-Time 1.75 OFF Heptane EtOH 20 (C3CHEM32:NDATAIR \$	At Stop 24.9 °C 26.0 °C 54.5 bar 1.000 ml/min 4 Accumulated On-Time 1193.6 h 11.2 h UN QUEUE 2010/7:30 22:55:16P/G-CDE 164F1-9505.D) UN QUEUE 2010/7:30 22:55:16P/G-CDE 164F1-9505.D)	
	instrument Con Jolumn Temp. (Jolumn Temp. (Investigation of the second Valve 1 Positi Detector Lamp DAD 1, UV Lamp DAD 1, UV Lamp DAD 1, Visible Jolvent Descri MP1, Solvent MP1, Solvent MP1, Solvent 140 140 140 140 140 140 140	ditions : left) : right) : on : Burn Times: Lamp : ption : A : B : 39-230,8 Ref=360,10	At Start 24.9 26.0 54.1 1.000 4 Current On-Time 1.75 OFF Heptane EtOH DO (COCHEM82: NDATAIR	At Stop 24.9 °C 26.0 °C 54.5 bar 1.000 ml/min 4 Accumulated On-Time 1193.6 h 11.2 h UN QUEUE 2010-07-80 22-85-16PG-CDE 164F1-8505.D) WARDED TO THE STORY OF THE STO	
	nstrument Con Jolumn Temp. (Jolumn Temp. (Iovan Temp. (ditions : left) : right) : on : Lamp : ption : A : B : g_230,8 Ref_360,10	At Start 24.9 26.0 54.1 1.000 4 Current On-Time 1.75 OFF Heptane EtOH 00 (CACHEMS2: NDATARE	At Stop 24.9 °C 26.0 °C 36.5 baz 1.000 ml/min 4 Accumulated On-Time 1193.6 h 11.2 h UN QUELE 2010-07-30 22-65 16PG-CDE 164F1-9505.D) UN QUELE 2010-07-30 22-65 16PG-CDE 164F1-9505.D)	
1	nstrument Con olumn Temp. (olumn Temp. (ressure low alve 1 Positi etector Lamp AD 1, VV Lamp AD 1, VV sible olvent Descri MPI, Solvent DAD 1D, S mAU 140- 140- 100- 50- 50- 50- 50- 50- 50- 50- 50- 50-	ditions : left) : right) : on : Lamp : ption : A : B : gg_230.8 Het=360.10	At Start 24.9 26.0 54.1 1.000 4 Current On-Time 1.75 OFF Heptane EtOH DI (CICHEM22: NDATAIR ST	At Stop 24.9 °C 26.0 °C 36.5 baz 1.000 ml/min 4 Accumulated On-Time 1193.6 h 11.2 h UNQUEUE 2010 07 30 22 65 16PG-CDE 164F1-9505.D) UNQUEUE 2010 07 30 22 65 16PG-CDE 164F1-9505.D)	
5 10 15 20 25	nstrument Con olumn Temp. (olumn Temp. (ressure low alve 1 Positi etector Lamp AD 1, VV Lamp AD 1, VV sible olvent Descrit MP1, Solvent MP1, Solvent MP1, Solvent 140- 140- 100- 100- 100- 100- 100- 100-	ditions : left) : right) : on : Lamp : ption : A : B : ag-230,8 Hel-360,10	At Start 24.9 26.0 54.1 1.000 4 Current On-Time 1.75 OFF Heptane EtOH 20 (CACHEM32: NOATAIR	At Stop 24.9 °C 26.0 °C 54.5 bar 1.000 ml/min 4 Accumulated On-Time 1193.6 h 11.2 h UN QUEUE 2010-07-30 22-55-16PG-CDE 154F1-9505.D) UN QUEUE 2010-07-30 22-55-16PG-CDE 154F1-9505.D)	
	nstrument Con olumn Temp. (olumn Temp. (reseure low alve 1 Positi etector Lamp AD 1, UV Lamp AD 1, UV Lamp AD 1, UV Lamp AD 1, VIsible olvent Descri MP1, Solvent MP1, Solvent MP1, Solvent 140 140 140 140 140 100 100 100 100 100	ditions : left) : right) : on : Lamp : ption : A : B : ig-230,8 Ref-360,10	At Start 24.9 26.0 54.1 1.000 4 Current On-Time 1.75 OFF Heptane EtOH DO (CICHEM22: UDATAIN EtOH	At Stop 24.9 °C 26.0 °C 54.5 bar 1.000 ml/min 4 Accumulated On-Time 1193.6 h 11.2 h UN QUEUE 2010-07-80 22-85-16PG-CDE 164F1-9505.D) UN QUEUE 2010-07-80 22-85-16PG-CDE 164F1-9505.D)	

CSP-HPLC chromatograph of P-methyl-P-phenyl-P-(ortho-tolyl)phosphine oxide

with 93% ee (S)

Use Multiplier & Dilution Factor with ISTDs

Signal 1: DAD1 D, Sig=230,8 Ref=360,100

Peak	RetTime	туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	7.321	BV	0.2061	2.74307e4	2103.87964	96.3471
2	8.363	VB	0.1894	1040.00745	83.42152	3.6529

CSP-HPLC chromatograph of *P*-methyl-*P*-phenyl-*P*-(ortho-tolyl)phosphine borane

with 93% ee (S)

Area Percent Report

Sorted By	:	Signal	
Multiplier	:	1.0000	
Dilution	:	1.0000	
Use Multiplier	& Dilution	Factor with	ISTDS

Signal 1: DAD1 D, Sig=230,8 Ref=360,100

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	26
1	10.519	MM	0.1778	40.71126	3.81536	3.4379
2	12.328	MM	0.2483	1143.46362	76.75564	96.5621

¹H-NMR

¹³C-NMR

¹H-NMR

References

- E. Bergin, C. T. O'Connor, S. B. Robinson, E. M. McGarrigle, C. P. O'Mahony,
 D. G. Gilheany, *J. Am. Chem. Soc.* 2007, *129*, 9566-9567.
- 2. T. Wang, S. Sang, L. Liu, H. Qiao, Y. Gao, Y. Zhao, J. Org., Chem. 2014, 79, 608.
- W. Goldeman, T. K. Olszewski, B. Boduszek, W. Sawka-Dobrowolska, *Tetrahedron* 2006, 62, 4506.
- 4. B. Xiong, X. Feng, L. Zhu, T. Chen, Y. Zhou, C.-T. Au, S.-F. Yin, ACS Catal. 2015, 5, 537.
- 5. T. Hirao, T. Masunaga, Y. Ohshiro, T. Agawa, *Synthesis* 1981, **1**, 56.
- 6. K. V. Rajendran, D. G., Gilheany, Chem. Commun., 2012, 48, 817.
- 7. G. Baccolini, C. Boga, M. Mazzacurati and F. Sangirardi, Org. Lett., 2006, 8, 1677.
- 8. M. Stankevic, K. M. Pietrusiewicz, *Synthesis* 2005, **8**, 1279.