Supplementary information

Solid phase polymerization of phenylenediamine toward self-

supported FeN_x/C catalyst with high oxygen reduction activity

Xiaogang Su,^a Jianguo Liu,^{*ab} Yingfang Yao,^{ab} Yong You,^a Xiang Zhang,^a Canyun Zhao,^a Hong Wan,^a You Zhou,^a and Zhigang Zou^{*ab}

^a Eco-materials and Renewable Energy Research Center, College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, Nanjing University, Nanjing China 210093

^b Kunshan Innovation Institute of Nanjing University, Nanjing China 210093

1. Catalyst synthesis: In a typical approach to the synthesis of PpPD-Fe-ZnO catalyst, 1 g p-phenylenediamine, 1 g zinc oxide nanoparticles, 1 g ammonium persulfate, and 0.2 g ferric chloride hexahydrate were ground together. Then the mixtures were

transferred to hydrothermal synthesis reactor, which was heated to 150 $^\circ\,$ C to allow

phenylenediamine to fully polymerize and form poly-p-phenylenediamine(PpPD). The subsequent heat treatment was performed at 950 °C in a nitrogen-gas atmosphere for one hour. The heat-treated sample was then pre-leached in 0.5 M H_2SO_4 at room temperature for 24 hours, and then thoroughly washed in de-ionized water. In the final step, the catalyst was heat-treated again in nitrogen-gas atmosphere for two hours. The PpPD-Fe was prepared without adding zinc oxide nanoparticles. The PpPD-Fe-Al₂O₃ was prepared using Al₂O₃ nanoparticles as hard template.

2. Rotating disk electrode (RDE) measurements: RDE measurements were performed using a CHI Electrochemical Station (Model 760e) in a conventional three-electrode cell. A homemade reversible hydrogen electrode was used as a reference electrode. Performance data was recorded at a catalyst loading of 0.9 mgcm⁻² for non-precious samples in 0.1 M HClO₄ at a rotating disk speed of 900 rpm and room temperature. In RDE tests, ORR steady-state polarization curves were recorded with a potential step of 10 mV and a period time of 100 s from 1.0 to 0 V using a negative-going scan.

3. Fuel cell testing: Catalyst inks were prepared by ultrasonically mixing catalyst powders with Nafion[®] solution and ethanol. The inks were then applied to the gas diffusion layer, and the cathode catalyst loading was 2.4 mgcm⁻². A commercial Pt/C (JM, 60%) was used as the anode catalyst, and the loading of Pt was 0.8 mgcm⁻². Then, the MEA was prepared by hot-pressing, and Nafion 211 membrane was adopted. Fuel cell polarization curve was tested at 80 ° C, H₂ and O₂ flow rates were 300 mLmin⁻¹ at 100% RH, and no back pressure was applied.

4. TEM image: As shown in Figure S1, the morphology of ZnO nanoparticles is irregular.

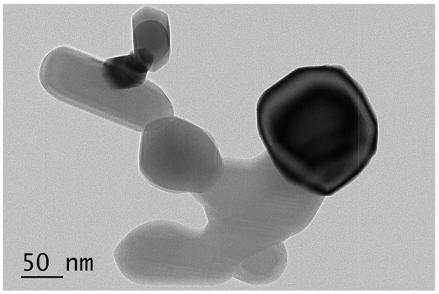


Figure S1. The TEM image of ZnO.

5. Elemental analysis by XPS: Elemental quantification of samples were performed using X-ray photoelectron spectroscopy (data shown in Table S1).

	Atomic concentration, %						
	C 1s	O 1s	N 1s	S 2p	Fe 2p	Zn 2p	Al 2P
PpPD-Fe-ZnO	92.67	2.67	2.77	0.87	0.28	0.23	0.51
PpPD-Fe	88.97	4.15	3.5	1.07	0.38	0.17	1.75
PpPD-Fe-Al ₂ O ₃	65.57	17.7	1.53	0.53	0.3	0.25	14.13

Table S1. Elemental quantification analysis of catalysts