# Rh(III)-Catalyzed Chelation-Assisted Intermolecular Carbenoid Functionaliztion of α-Imino Csp<sup>3</sup>-H Bonds

Xun Chen,<sup>a</sup> Ying Xie,<sup>a</sup> Xinsheng Xiao, <sup>a</sup> Guoqiang Li,<sup>b</sup> Yuanfu Deng,<sup>a</sup> Huanfeng Jiang,<sup>a</sup> and Wei Zeng<sup>\*, a</sup>

<sup>a</sup> School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
 <sup>b</sup> Analysis and Testing center, Jinan University, Guangzhou 510632, China

Corresponding author: zengwei@scut.edu.cn

# **Supporting Information**

#### **Table of Contents**

| 1. General Experimental Information1                                                                |
|-----------------------------------------------------------------------------------------------------|
| 1.1. Table 1. Catalyst screening for intermolecular carbenoid functionalization of $\alpha$ -imino  |
| Csp <sup>3</sup> -H bonds                                                                           |
| 1.2. Table 2. The effect of the additive on intermolecular carbenoid functionaliztion of $\alpha$ - |
| imino Csp <sup>3</sup> -H bonds2                                                                    |
| 1.3. Table 3. The effect of the solvent on intermolecular carbenoid functionaliztion of $\alpha$ -  |
| imino Csp <sup>3</sup> -H bonds2                                                                    |
| 1.4. Table 4. The effect of the the reaction temperature on intermolecular carbenoid                |
| functionalization of $\alpha$ -imino Csp <sup>3</sup> -H bonds2                                     |
| 1.5. Table 5. The effect of the reaction time on intermolecular carbenoid functionaliztion of       |
| $\alpha$ -imino Csp <sup>3</sup> -H bonds3                                                          |
| 1.6. General procedures for the diazo compounds (2a-2j)4                                            |
| 1.7. General procedures for the synthesis of pyrrole derivatives ( <b>3a-3y</b> )                   |
| 2. Controlled Experiments for Mechanism Studies                                                     |
| 3. Single Crystal Data for 3r and 3y20                                                              |
| 4. References                                                                                       |
| 5. <sup>1</sup> H NMR and <sup>13</sup> C NMR Spectrum for All Isolated Products                    |

#### **1.** General experimental information

All reactions were carried out in flame-dried sealed tubes with magnetic stirring. Unless otherwise noted, all experiments were performed under argon atmosphere. All reagents were purchased from TCI, Acros or Strem. Solvents were treated with 4 Å molecular sieves or sodium and distilled prior to use. The starting ketoimine substrates **1a-1t** were prepared according to our previously reported procedures.<sup>[1]</sup> Purifications of reaction products were carried out by flash chromatography using Qingdao Haiyang Chemical Co. Ltd silica gel (40-63 mm). Infrared spectra (IR) were recorded on a Brucker TENSOR 27 FTIR spectrophotometer and are reported as wavelength numbers (cm<sup>-1</sup>). Infrared spectra were recorded by preparing a KBr pellet containing the title compound. <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra were recorded with tetramethylsilane (TMS) as internal standard at ambient temperature unless otherwise indicated on a Bruker Avance DPX 600 fourier Transform spectrometer operating at 400 MHz for <sup>1</sup>H NMR and 100 MHz for <sup>13</sup>C NMR. Chemical shifts are reported in parts per million (ppm) and coupling constants are reported as Hertz (Hz). Splitting patterns are designated as singlet (s), broad singlet (bs), doublet (d), triplet (t). Splitting patterns that could not be interpreted or easily visualized are designated as multiple (m). Low resolution mass spectra were recorded using a Waters HPLC/ZQ4000 Mass Spectrometer. High resolution mass spectra (HRMS) were recorded on an IF-TOF spectrometer (Micromass). Gas chromatograph mass spectra were obtained with a SHIMADZU model GCMS-QP5000 spectrometer. Crystal data were collected on a Bruker D8 Advance employing graphite monochromated Mo - Ka radiation ( $\lambda = 0.71073$  Å) at 293 (2) K and operating in the  $\varphi$ - $\omega$ scan mode. The structure was solved by direct methods SHELXS-97.

# 1.1. Table 1. Catalyst screening for intermolecular carbenoid functionalization of $\alpha$ -imino Csp<sup>3</sup>-H bonds<sup>*a*</sup>

| × +   | $ \begin{array}{c} \text{Cat} \\ 0 & 0 \\ \hline 0 & - \\ 0 \\ \hline N_2 \end{array} $ | alyst (2.5 mol %)<br>IClO <sub>4</sub> (10 mol %)<br>HF, 80 °C, 8 h | EtOOC<br>N<br>N  |
|-------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------|------------------|
| 1a    | 2a                                                                                      |                                                                     | 3a               |
| entry | cataly                                                                                  | st                                                                  | yield $(\%)^{b}$ |
| 1     | Pd(OA                                                                                   | c) <sub>2</sub>                                                     | 0                |
| 2     | CuI                                                                                     |                                                                     | 0                |
| 3     | Cu(OA                                                                                   | $c)_2$                                                              | 0                |
| 4     | [{RuCl <sub>2</sub> (p-cy                                                               | mene) $\}_2$ ]                                                      | 0                |
| 5     | [Cp*IrC                                                                                 | $[l_2]_2$                                                           | 21               |
| 6     | RhCl                                                                                    | 3                                                                   | 0                |
| 7     | Rh <sub>2</sub> (COD                                                                    | $)_2Cl_2$                                                           | 0                |
| 8     | [Cp*Rh0                                                                                 | $[2l_2]_2$                                                          | 27               |

<sup>*a*</sup> All the reactions were carried out using ketoimine **1a** (0.1 mmol), diazo compound **2a** (0.2 mmol), catalyst (2.5 mol %), AgClO<sub>4</sub> (10 mol %) in THF (2.0 mL) at 80 °C for 8 h in a sealed reaction tube, followed by flash chromatography on SiO<sub>2</sub>. <sup>*b*</sup> Isolated yield.



| ↓ +<br>1a | O O<br>N <sub>2</sub> OEt | [Cp*RhCl <sub>2</sub> ] <sub>2</sub> (2.5 mol %)<br>Additive (10 mol %)<br>THF, 80 °C, 8 h | EtOOC<br>N<br>N<br>J<br>3a |
|-----------|---------------------------|--------------------------------------------------------------------------------------------|----------------------------|
| entry     |                           | additive                                                                                   | yield $(\%)^{b}$           |
| 1         |                           | AgClO <sub>4</sub>                                                                         | 27                         |
| 2         |                           | AgBF <sub>4</sub>                                                                          | 31                         |
| 3         |                           | AgNTf <sub>2</sub>                                                                         | 34                         |
| 4         |                           | AgOAc                                                                                      | 29                         |
| 5         |                           | AgSbF <sub>6</sub>                                                                         | 36                         |

<sup>*a*</sup> All the reactions were carried out using ketoimine **1a** (0.1 mmol), diazo compound **2a** (0.2 mmol), [Cp\*RhCl<sub>2</sub>]<sub>2</sub> (2.5 mol %), additive (10 mol %) in THF (2.0 mL) at 80 °C for 8 h in a sealed reaction tube , followed by flash chromatography on SiO<sub>2</sub>. <sup>*b*</sup> Isolated yield.

1.3. Table 3. The effect of solvents on the intermolecular carbenoid functionalization of  $\alpha$ -imino Csp<sup>3</sup>-H bonds<sup>*a*</sup>

| Ia    | + , O O<br>N <sub>2</sub> OEt<br>2a | [Cp*RhCl <sub>2</sub> ] <sub>2</sub> (2.5 mol %)<br>AgSbF <sub>6</sub> (10 mol %)<br>Solvent, 80 °C, 8 h | EtOOC<br>N<br>N<br>3a |
|-------|-------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------|
| entry |                                     | solvent                                                                                                  | yield $(\%)^{b}$      |
| 1     |                                     | THF                                                                                                      | 36                    |
| 2     |                                     | EtOH                                                                                                     | 23                    |
| 3     |                                     | DCE                                                                                                      | 85                    |
| 4     |                                     | Toluene                                                                                                  | trace                 |
| 5     |                                     | Dioxane                                                                                                  | 52                    |
| 6     |                                     | CH <sub>3</sub> CN                                                                                       | 90                    |
| 7     |                                     | DMSO                                                                                                     | 26                    |

<sup>*a*</sup> All the reactions were carried out using ketoimine **1a** (0.1 mmol), diazo compound **2a** (0.2 mmol),  $[Cp*RhCl_2]_2$  (1.6 mg, 2.5 mol %),  $AgSbF_6$  (10 mol %) in solvent (2.0 mL) at 80 °C for 8 h in a sealed reaction tube , followed by flash chromatography on SiO<sub>2</sub>. <sup>*b*</sup> Isolated yield.

# **1.4.** Table 4. The effect of the reaction temperature on the intermolecular carbenoid functionalization of $\alpha$ -imino Csp<sup>3</sup>-H bonds<sup>*a*</sup>



<sup>*a*</sup> All the reactions were carried out using ketoimine **1a** (0.1 mmol), diazo compound **2a** (0.2 mmol),  $[Cp*RhCl_2]_2$  (2.5 mol %), AgSbF<sub>6</sub> (10 mol %) in CH<sub>3</sub>CN (2.0 mL) at the given temperature for 8 h in a sealed reaction tube, followed by flash chromatography on SiO<sub>2</sub>. <sup>*b*</sup> Isolated yield.





<sup>*a*</sup> All the reactions were carried out using ketoimine **1a** (0.1 mmol), diazo compound **2a** (0.2 mmol),  $[Cp*RhCl_2]_2$  (2.5 mol %),  $AgSbF_6$  (10 mol %) in CH<sub>3</sub>CN (2.0 mL) at 80 °C for the given

time in a sealed reaction tube , followed by flash chromatography on SiO<sub>2</sub>. <sup>b</sup> Isolated yield.

#### 1.6. General procedures for the preparation of diazo compounds (2a-2j)



**Method A**: To a solution of  $\beta$ -ketoester or  $\beta$ -diketone (1.0 equiv.) and 4-methylbenzenesulfonyl azide (1.2 equiv.) in CH<sub>3</sub>CN at 0 °C was added triethylamine (1.2 equiv.). The resulting solution was stirred at 0 °C for 3 h and slowly brought to RT. Upon completion as indicated by thin layer chromatography (TLC), the reaction was quenched with water, extracted with ethyl acetate, and dried over anhydrous MgSO<sub>4</sub>. The reaction mixture was concentrated under reduced pressure, and the crude product was purified by column chromatography.

**Method B**: To a cold suspension of NaH (1.2 equiv.) in benzene (50 mL) and THF (8 mL) was added  $\beta$ -ketoester (1.0 equiv.) in benzene (20 mL) and the suspension stirred at 0 °C for 45 min. 4-methylbenzenesulfonyl azide (1.2 equiv.) in benzene (10 mL) was slowly added and the reaction mixture was stirred for 2 h, then warming to room temperature. The mixture was then filtered on a pad of celite and concentrated under reduced pressure, and the crude product was purified by column chromatography.



Ethyl 2-diazo-3-oxobutanoate (2a)<sup>[2]</sup>

The title compound was prepared according to Method A. The product was obtained as yellow oil in 91% yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  4.31 (q, *J* = 7.1 Hz, 2H), 2.48 (s, 3H), 1.34 (t, *J* = 7.1 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  190.2, 161.4, 61.4, 28.2, 14.3. IR (KBr): 2989, 2876, 2135, 1720, 1658, 1469, 1375, 1072 cm<sup>-1</sup>.



#### Ethyl 2-diazo-3-oxopentanoate (2b)<sup>[2]</sup>

The title compound was prepared according to Method A. The product was obtained as yellow oil in 88% yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  4.30 (q, *J* = 6.9 Hz, 2H), 2.86 (q, *J* = 7.2 Hz, 2H), 1.33 (t, *J* = 7.0 Hz, 3H), 1.14 (t, *J* = 7.2 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  193.5, 161.4, 61.3, 33.7, 14.3, 8.2. IR (KBr): 2981, 2844, 2138, 1721, 1650, 1458, 1373, 1065 cm<sup>-1</sup>.



#### Ethyl 2-diazo-3-oxo-3-phenylpropanoate (2c)<sup>[3]</sup>

The title compound was prepared according to Method A. The product was obtained as yellow oil in 90% yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.62 (d, *J* = 7.5 Hz, 2H), 7.52 (t, *J* = 7.4 Hz, 1H), 7.42 (t, *J* = 7.4 Hz, 2H), 4.24 (q, *J* = 7.1 Hz, 2H), 1.25 (t, *J* = 7.1 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  186.9, 161.0, 137.1, 132.2, 128.3, 127.8, 61.6, 14.2. IR (KBr): 3013, 2976, 2838, 2144, 1720, 1656, 1625, 1448, 1371, 1308, 1045 cm<sup>-1</sup>.



#### Ethyl 3-cyclohexyl-2-diazo-3-oxopropanoate (2d)<sup>[3]</sup>

The title compound was prepared according to Method A. The product was obtained as yellow oil in 81% yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  4.30 (q, *J* = 6.9 Hz, 2H), 3.32 (t, *J* = 9.8 Hz, 1H), 1.80 (d, *J* = 7.7 Hz, 4H), 1.69 (d, *J* = 12.3 Hz, 1H), 1.46 - 1.38 (m, 2H), 1.37 - 1.30 (m, 5H), 1.24 (d, *J* = 11.7 Hz, 1H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  196.0, 161.2, 61.2, 46.7, 28.7, 25.7, 14.3. IR (KBr): 2979, 2856, 2138, 1715, 1651, 1371, 1318, 1146, 1077, 1044 cm<sup>-1</sup>.



### Ethyl 2-diazo-3-oxo-5-phenylpentanoate (2e)<sup>[3]</sup>

The title compound was prepared according to Method A. The product was obtained as yellow oil in 78% yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.25 (t, *J* = 9.9 Hz, 4H), 7.19 (d, *J* = 5.5 Hz, 1H), 4.28 (q, *J* = 6.8 Hz, 2H), 3.18 (t, *J* = 7.2 Hz, 2H), 2.96 (t, *J* = 7.2 Hz, 2H), 1.31 (t, *J* = 6.7 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  191.9, 161.3, 140.8, 128.4, 126.1, 61.4, 41.7, 30.2, 14.3. IR (KBr): 3011, 2983, 2140, 1714, 1651, 1454, 1374, 1313, 1052 cm<sup>-1</sup>.



#### Ethyl 2-diazo-3-oxohept-6-enoate (2f)<sup>[4]</sup>

The title compound was prepared according to Method A. The product was obtained as yellow oil in 78% yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  5.92 - 5.77 (m, 1H), 5.03 (dd, *J* = 29.0, 13.6 Hz, 2H), 4.30 (q, *J* = 7.1 Hz, 2H), 2.96 (t, *J* = 7.3 Hz, 2H), 2.43 - 2.34 (m, 2H), 1.33 (t, *J* = 7.1 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  192.0, 161.3, 136.9, 115.3, 61.3, 39.3, 28.1, 14.3; IR (KBr): 3061, 2980, 2930, 2136, 1718, 1657, 1434, 1370, 1050 cm<sup>-1</sup>.

#### Methyl 2-diazo-4-methoxy-3-oxobutanoate (2g)<sup>[4]</sup>

The title compound was prepared according to Method A. The product was obtained as yellow oil in 86% yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  4.53 (s, 2H), 3.85 (s, 3H), 3.47 (s, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  188.7, 161.5, 75.7, 59.4, 52.3; IR (KBr): 2976, 2837, 2115, 1713, 1648, 1469, 1375, 1065cm <sup>-1</sup>.



#### **3-Diazopentane-2,4-dione (2h)**<sup>[4]</sup>

The title compound was prepared according to Method A. The product was obtained as yellow oil in 85% yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  2.44 (s, 6H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  188.1, 84.5, 28.3; IR (KBr): 2960, 2875, 2140, 1727, 1463, 1365 cm <sup>-1</sup>.



#### Dimethyl (1-diazo-2-oxopropyl)phosphonate (2i) [5]

The title compound was prepared according to Method B. The product was obtained as white oil in 72% yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  3.87 (s, 3H), 3.84 (s, 3H), 2.28 (s, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  189.8, 53.5, 27.1; IR (KBr): 2961, 2856, 2127, 1722, 1646, 1439, 1369, 1038 cm<sup>-1</sup>.



#### 1-Diazo-1-tosylpropan-2-one (2j)<sup>[4]</sup>

The title compound was prepared according to Method A. The product was obtained as yellow solid in 75% yield; mp 102 - 104 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.85 (d, *J* = 7.7 Hz, 2H), 7.38 (d, *J* = 7.6 Hz, 2H), 2.46 (s, 3H), 2.28 (d, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  185.8, 145.5, 139.1, 130.1, 127.3, 27.0, 21.6; IR (KBr): 3060, 2974, 2923, 2119, 1720, 1660, 1593, 1432, 1370, 1020 cm <sup>-1</sup>.

#### 1.7 General procedure for the synthesis of pyrrole derivatives (3a-3y)

A 10 mL of reaction tube was charged with  $[Cp*RhCl_2]_2$  (1.6 mg, 2.5 mol %), AgSbF<sub>6</sub> (3.4 mg, 10 mol %), ketoimines **1** (0.1 mmol) and CH<sub>3</sub>CN (1.5 mL) under Ar atmosphere. Then diazo compound **2** (0.2 mmol) in CH<sub>3</sub>CN (0.5 mL) was added in one-pot under Ar and the mixture was stirred at 80 °C for 8 h. The corresponding reaction mixture was cooled to room temperature and then filtered through a pad of Celite and concentrated under reduced pressure. The residue was purified by flash chromatography on silical gel using ethyl acetate/petroleum ether as eluent to afford the desired product **3**.



**Ethyl 2-methyl-5-phenyl-1-(pyridin-2-yl)-1H-pyrrole-3-carboxylate (3a)**: Yellow oil; 27.5 mg, 90% yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.62 (d, J = 3.0 Hz, 1H), 7.66 (t, J = 7.6 Hz, 1H), 7.33 - 7.28 (m, 1H), 7.14 (d, J = 6.3 Hz, 3H), 7.02 (d, J = 6.8 Hz, 2H), 6.95 (d, J = 7.9 Hz, 1H), 6.78 (s, 1H), 4.32 (q, J = 7.1 Hz, 2H), 2.48 (s, 3H), 1.37 (t, J = 7.1 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 165.5, 151.5, 149.4, 138.4, 138.1, 133.6, 132.4, 128.1, 126.7, 123.4, 113.4, 110.5, 59.6, 14.6, 12.4; HR-MS (ESI) calcd for  $[M + 1]^+$ : C<sub>19</sub>H<sub>19</sub>N<sub>2</sub>O<sub>2</sub>: 307.1441, found: 307.1444; IR (KBr): 3062, 2980, 2928, 1701, 1573, 1469, 1439, 1375, 1228, 1076 cm<sup>-1</sup>.



**Ethyl 2-methyl-1-(pyridin-2-yl)-5-(p-tolyl)-1H-pyrrole-3-carboxylate (3b)**: Yellow oil; 26.2 mg, 82% yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.62 (d, J = 2.0 Hz, 1H), 7.66 (t, J = 7.7 Hz, 1H), 7.30 (t, J = 5.4 Hz, 1H), 6.98 - 6.89 (m, 5H), 6.74 (s, 1H), 4.32 (q, J = 6.9 Hz, 2H), 2.47 (s, 3H), 2.25 (s, 3H), 1.37 (t, J = 7.0 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  165.5, 151.6, 149.35, 138.1, 136.4, 133.6, 129.4, 128.8, 127.9, 123.4, 123.2, 113.2, 110.0, 59.5, 21.0, 14.5, 12.3; HR-MS (ESI) calcd for [M + 1]<sup>+</sup>: C<sub>20</sub>H<sub>21</sub>N<sub>2</sub>O<sub>2</sub>: 321.1598, found: 321.1607; IR (KBr): 3130, 2983, 2926, 1702, 1580, 1534, 1469, 1331, 1228, 1076 cm<sup>-1</sup>.



Ethyl 5-(4-methoxyphenyl)-2-methyl-1-(pyridin-2-yl)-1H-pyrrole-3-carboxylate (3c): Yellow oil; 24.2 mg, 72% yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.62 (d, *J* = 2.9 Hz, 1H), 7.67 (t, *J* = 7.6 Hz, 1H), 7.33 - 7.27 (m, 1H), 6.95 (d, *J* = 7.6 Hz, 3H), 6.70 (d, *J* = 4.2 Hz, 3H), 4.32 (q, *J* = 7.1 Hz, 2H), 3.74 (s, 3H), 2.47 (s, 3H), 1.37 (t, *J* = 7.1 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  165.5, 158.46, 151.5, 149.3, 138.0, 137.8, 133.3, 129.4, 125.0, 123.4, 123.2, 113.6, 113.1, 109.5, 59.5, 55.1, 14.5, 12.3; HR-MS (ESI) calcd for [M + 1]<sup>+</sup>: C<sub>20</sub>H<sub>21</sub>N<sub>2</sub>O<sub>3</sub>: 337.1547, found: 337.1552; IR (KBr): 3148, 2978, 2927, 1700, 1571, 1535, 1468, 1333, 1376, 1227, 1076 cm<sup>-1</sup>.





Ethyl 5-(4-chlorophenyl)-2-methyl-1-(pyridin-2-yl)-1H-pyrrole-3-carboxylate (3d): Yellow oil; 30.9 mg, 91% yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.63 (d, *J* = 3.9 Hz, 1H), 7.71 (t, *J* = 7.7 Hz, 1H), 7.36 - 7.32 (m, 1H), 7.12 (d, *J* = 8.3 Hz, 2H), 6.95 (t, *J* = 8.2 Hz, 3H), 6.78 (s, 1H), 4.32 (q, *J* = 7.1 Hz, 2H), 2.47 (s, 3H), 1.37 (t, *J* = 7.1 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  165.3, 151.2, 149.5, 138.6, 138.3, 132.5, 132.3, 130.8, 129.1, 128.4, 123.4, 113.5, 110.8, 59.6, 14.5, 12.3; HR-MS (ESI) calcd for  $[M + 1]^+$ :  $C_{19}H_{18}ClN_2O_2$ : 341.1051, found: 341.1054; IR (KBr): 3129, 2986, 1701, 1580, 1473, 1400, 1228, 1082 cm<sup>-1</sup>.



Ethyl 5-(3-chlorophenyl)-2-methyl-1-(pyridin-2-yl)-1H-pyrrole-3-carboxylate (3e): Yellow oil; 28.9 mg, 85% yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.64 (d, *J* = 4.0 Hz, 1H), 7.73 (t, *J* = 7.6 Hz, 1H), 7.39 - 7.32 (m, 1H), 7.11 - 7.02 (m, 3H), 6.99 (d, *J* = 7.9 Hz, 1H), 6.82 (d, *J* = 8.4 Hz, 2H), 4.32 (q, *J* = 6.9 Hz, 2H), 2.47 (s, 3H), 1.38 (t, *J* = 7.0 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$ 165.3, 151.1, 149.5, 138.8, 138.3, 134.0, 132.0, 129.3, 127.8, 126.6, 125.9, 123.5, 123.3, 113.5, 111.2, 59.6, 14.5, 12.3; HR-MS (ESI) calcd for [M + 1]<sup>+</sup> : C<sub>19</sub>H<sub>18</sub>ClN<sub>2</sub>O<sub>2</sub>: 341.1051, found: 341.1057; IR (KBr): 3063, 2980, 2932, 1702, 1586, 1523, 1464, 1376, 1228, 1081 cm<sup>-1</sup>.



**Ethyl 5-(2-chlorophenyl)-2-methyl-1-(pyridin-2-yl)-1H-pyrrole-3-carboxylate (3f)**: Yellow oil; 21.1 mg, 62% yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.62 (d, J = 2.0 Hz, 1H), 7.66 (t, J = 7.7 Hz, 1H), 7.30 (t, J = 5.4 Hz, 1H), 6.98 - 6.89 (m, 5H), 6.74 (s, 1H), 4.32 (q, J = 6.9 Hz, 2H), 2.47 (s, 3H), 2.25 (s, 3H), 1.37 (t, J = 7.0 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 165.5, 151.6, 149.3, 138.1, 136.4, 133.6, 129.4, 128.8, 127.9, 123.4, 123.2, 113.2, 110.0, 59.5, 21.0, 14.5, 12.3; HR-MS (ESI) calcd for  $[M + 1]^+$ : C<sub>19</sub>H<sub>18</sub>ClN<sub>2</sub>O<sub>2</sub>: 341.1051, found: 341.1068; IR (KBr): 3129, 2984, 2930, 1701, 1576, 1467, 1402, 1333, 1227, 1083 cm<sup>-1</sup>.



Ethyl 5-(4-(methoxycarbonyl)phenyl)-2-methyl-1-(pyridin-2-yl)-1H-pyrrole-3-carboxylate (3g): Yellow oil; 31.3 mg, 86% yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.64 (d, *J* = 3.4 Hz, 1H), 7.82 (d, *J* = 7.9 Hz, 2H), 7.71 (t, *J* = 7.6 Hz, 1H), 7.35 (t, *J* = 5.9 Hz, 1H), 7.06 (d, *J* = 7.9 Hz, 2H), 6.99 (d, *J* = 7.8 Hz, 1H), 6.90 (s, 1H), 4.33 (q, *J* = 7.0 Hz, 2H), 3.86 (s, 3H), 2.49 (s, 3H), 1.38 (t, *J* = 6.9 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  166.7, 165.2, 151.2, 149.6, 139.4, 138.3, 136.7, 132.4, 129.5, 127.8, 127.3, 123.5, 123.3, 113.8, 111.9, 59.6, 52.0, 14.5, 12.3; HR-MS (ESI) calcd for [M + 1]<sup>+</sup>: C<sub>21</sub>H<sub>21</sub>N<sub>2</sub>O<sub>4</sub>: 365.1496, found: 365.1514; IR (KBr): 3059, 2983, 1712, 1606, 1468, 1435, 1376, 1230, 1106 cm<sup>-1</sup>.





 $NO_2$ 

**Ethyl 2-methyl-5-(4-nitrophenyl)-1-(pyridin-2-yl)-1H-pyrrole-3-carboxylate (3h)**: Reddish oil; 33.3 mg, 95% yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.65 (d, J = 3.8 Hz, 1H), 8.01 (d, J = 8.7 Hz, 2H), 7.78 (t, J = 7.6 Hz, 1H), 7.43 - 7.38 (m, 1H), 7.12 (d, J = 8.7 Hz, 2H), 7.05 (d, J = 7.9 Hz, 1H), 6.98 (s, 1H), 4.34 (q, J = 7.1 Hz, 2H), 2.49 (s, 3H), 1.39 (t, J = 7.1 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 164.9, 150.8, 149.8, 145.7, 140.3, 138.6, 131.2, 127.5, 123.9, 123.6, 123.1, 114.2, 113.2, 59.8, 14.5, 12.3; HR-MS (ESI) calcd for [M + 1]<sup>+</sup>: C<sub>19</sub>H<sub>18</sub>N<sub>3</sub>O<sub>4</sub>: 352.1292, found: 352.1305; IR (KBr): 3125, 2986, 2931, 1703, 1594, 1517, 1466, 1338, 1230, 1105 cm<sup>-1</sup>.



Ethyl 5-(benzo[d][1,3]dioxol-5-yl)-2-methyl-1-(pyridin-2-yl)-1H-pyrrole-3-carboxylate (3i): Yellow oil; 21.3 mg, 61% yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.62 (d, *J* = 4.3 Hz, 1H), 7.69 (t, *J* = 7.7 Hz, 1H), 7.34 - 7.28 (m, 1H), 6.97 (d, *J* = 7.9 Hz, 1H), 6.69 (s, 1H), 6.60 (d, *J* = 7.9 Hz, 1H), 6.51 (d, *J* = 9.2 Hz, 2H), 5.88 (s, 2H), 4.31 (q, *J* = 7.0 Hz, 2H), 2.46 (s, 3H), 1.37 (t, *J* = 7.0 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  165.5, 151.4, 149.4, 147.3, 146.5, 138.1, 137.9, 133.2, 126.4, 123.3, 122.0, 113.1, 109.9, 108.7, 108.1, 100.9, 59.5, 14.5, 12.3; HR-MS (ESI) calcd for [M + 1]<sup>+</sup>: C<sub>20</sub>H<sub>19</sub>N<sub>2</sub>O<sub>4</sub>: 351.1339, found: 351.1342; IR (KBr): 3134, 2985, 2898, 1700, 1578, 1532, 1476, 1437, 1346, 1225, 1086 cm<sup>-1</sup>.



Ethyl 5-(furan-2-yl)-2-methyl-1-(pyridin-2-yl)-1H-pyrrole-3-carboxylate (3j): Yellow oil; 18.0 mg, 61% yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.66 (d, *J* = 4.0 Hz, 1H), 7.84 (t, *J* = 7.6 Hz, 1H), 7.46 - 7.39 (m, 1H), 7.24 - 7.18 (m, 2H), 6.93 (s, 1H), 6.19 (d, *J* = 1.4 Hz, 1H), 5.49 (s, 1H), 4.31 (q, *J* = 7.1 Hz, 2H), 2.40 (s, 3H), 1.37 (t, *J* = 7.1 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  165.29, 151.2, 149.6, 146.5, 141.2, 138.4, 138.1, 124.5, 123.9, 123.2, 113.3, 110.7, 109.7, 105.6, 59.6, 14.5, 12.0; HR-MS (ESI) calcd for [M + 1]<sup>+</sup>: C<sub>17</sub>H<sub>17</sub>N<sub>2</sub>O<sub>3</sub>: 297.1234, found: 297.1242; IR (KBr): 3128, 2984, 2927, 1703, 1587, 1554, 1470, 1400, 1376, 1237, 1078 cm<sup>-1</sup>.



**Ethyl 2-methyl-1-(pyridin-2-yl)-5-(thiophen-2-yl)-1H-pyrrole-3-carboxylate (3k)**: Yellow oil; 18.1 mg, 58% yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.66 (d, *J* = 3.9 Hz, 1H), 7.78 (t, *J* = 7.6 Hz, 1H), 7.42 - 7.36 (m, 1H), 7.15 (d, *J* = 7.9 Hz, 1H), 7.07 (d, *J* = 4.6 Hz, 1H), 6.83 (s, 1H), 6.80 (t, *J* = 4.2 Hz, 1H), 6.47 (d, *J* = 2.0 Hz, 1H), 4.32 (q, *J* = 7.1 Hz, 2H), 2.42 (s, 3H), 1.37 (t, *J* = 7.1 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  165.2, 150.9, 149.6, 138.3, 134.1, 126.9, 125.0, 124.5, 123.9, 123.7, 113.2, 110.8, 59.6, 14.5, 12.2; HR-MS (ESI) calcd for [M + 1]<sup>+</sup> : C<sub>17</sub>H<sub>17</sub>N<sub>2</sub>O<sub>2</sub>S: 313.1005, found: 313.1016; IR (KBr): 3064, 2979, 2929, 1702, 1580, 1468, 1435, 1378, 1232, 1081 cm<sup>-1</sup>.



**Ethyl 2-methyl-1-(5-methylpyridin-2-yl)-5-phenyl-1H-pyrrole-3-carboxylate (3l)**: Yellow oil; 25.9 mg, 81% yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.43 (s, 1H), 7.46 (d, *J* = 7.7 Hz, 1H), 7.19 - 7.11 (m, 3H), 7.04 (d, *J* = 7.4 Hz, 2H), 6.85 (d, *J* = 8.0 Hz, 1H), 6.77 (s, 1H), 4.32 (q, *J* = 7.1 Hz, 2H), 6.85 (d, *J* = 8.0 Hz, 1H), 6.77 (s, 1H), 4.32 (q, *J* = 7.1 Hz, 2H), 6.85 (d, *J* = 8.0 Hz, 1H), 6.77 (s, 1H), 4.32 (q, *J* = 7.1 Hz, 2H), 6.85 (d, *J* = 8.0 Hz, 1H), 6.77 (s, 1H), 4.32 (q, *J* = 7.1 Hz), 6.85 (d, *J* = 8.0 Hz, 1H), 6.77 (s, 1H), 4.32 (q, *J* = 7.1 Hz), 6.85 (d, *J* = 8.0 Hz), 6.85 (d, *J* = 8.0 Hz), 6.85 (d, *J* = 8.0 Hz), 6.77 (s, 1H), 6.77 (s,

2H), 2.46 (s, 3H), 2.38 (s, 3H), 1.37 (t, J = 7.1 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  165.5, 149.6, 149.1, 138.6, 138.4, 133.5, 133.1, 132.4, 128.0, 126.5, 122.7, 113.2, 110.3, 59.5, 18.1, 14.5, 12.3; HR-MS (ESI) calcd for  $[M + 1]^+$ : C<sub>20</sub>H<sub>21</sub>N<sub>2</sub>O<sub>2</sub>: 321.1598, found: 321.1607; IR (KBr): 3063, 2977, 2926, 1702, 1570, 1529, 1481, 1400, 1332, 1228, 1075 cm<sup>-1</sup>.



Ethyl 1-(5-chloropyridin-2-yl)-2-methyl-5-phenyl-1H-pyrrole-3-carboxylate (3m): Yellow oil; 26.5 mg, 78% yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.57 (s, 1H), 7.61 (d, *J* = 8.4 Hz, 1H), 7.18 (d, *J* = 6.3 Hz, 3H), 7.02 (d, *J* = 6.7 Hz, 2H), 6.87 (d, *J* = 8.4 Hz, 1H), 6.77 (s, 1H), 4.32 (q, *J* = 7.0 Hz, 2H), 2.48 (s, 3H), 1.37 (t, *J* = 7.1 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  165.3, 149.6, 148.1, 138.3, 137.8, 133.5, 132.1, 131.5, 128.3, 128.1, 126.9, 124.0, 113.7, 110.8, 59.6, 14.5, 12.3; HR-MS (ESI) calcd for [M + 1]<sup>+</sup>: C<sub>19</sub>H<sub>18</sub>ClN<sub>2</sub>O<sub>2</sub>: 341.1051, found: 341.1056; IR (KBr): 3062, 2980, 2928, 1704, 1568, 1530, 1466, 1400, 1380, 1229, 1074 cm<sup>-1</sup>.



Ethyl 1-(5-bromopyridin-2-yl)-2-methyl-5-phenyl-1H-pyrrole-3-carboxylate (3n): Yellow oil; 28.8 mg, 75% yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.67 (s, 1H), 7.76 (d, J = 8.3 Hz, 1H), 7.18 (d, J = 6.8 Hz, 3H), 7.03 (d, J = 6.6 Hz, 2H), 6.81 (d, J = 8.3 Hz, 1H), 6.77 (s, 1H), 4.32 (q, J = 7.0 Hz, 2H), 2.49 (s, 3H), 1.37 (t, J = 7.1 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  165.3, 150.4, 150.1, 140.68, 138.2, 133.5, 132.1, 128.3, 128.1, 126.9, 124.5, 120.0, 113.7, 110.8, 59.6, 14.5, 12.3; HR-MS (ESI) calcd for [M + 1]<sup>+</sup>: C<sub>19</sub>H<sub>18</sub>BrN<sub>2</sub>O<sub>2</sub>: 385.0546, found: 385.0550; IR (KBr): 3141, 2982, 2925, 1703, 1567, 1531, 1464, 1328, 1229, 1078 cm<sup>-1</sup>.



Ethyl 1-(5-cyanopyridin-2-yl)-2-methyl-5-phenyl-1H-pyrrole-3-carboxylate (3o): Yellow oil; 26.1 mg, 79% yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.89 (s, 1H), 7.86 (d, *J* = 8.2 Hz, 1H), 7.20 (s, 3H), 6.98 (t, *J* = 6.1 Hz, 3H), 6.79 (s, 1H), 4.33 (q, *J* = 6.6 Hz, 2H), 2.55 (s, 3H), 1.38 (t, *J* = 6.9 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  165.1, 154.1, 152.2, 140.9, 138.3, 133.4, 131.7, 128.5, 128.2, 127.2, 123.3, 115.8, 114.6, 111.8, 108.9, 59.8, 14.5, 12.5; HR-MS (ESI) calcd for [M + 1]<sup>+</sup>: C<sub>20</sub>H<sub>18</sub>N<sub>3</sub>O<sub>2</sub>: 332.1394, found: 332.1398; IR (KBr): 3103, 2983, 2929, 2234, 1703, 1586, 1478, 1448, 1330, 1231, 1074 cm<sup>-1</sup>.

EtOOC



Ethyl 2-methyl-5-phenyl-1-(pyrimidin-2-yl)-1H-pyrrole-3-carboxylate (3p): Yellow oil; 23.9 mg, 78% yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.74 (d, *J* = 4.8 Hz, 2H), 7.30 - 7.26 (m, 1H), 7.17 (d, *J* = 7.0 Hz, 3H), 7.01 (d, *J* = 7.1 Hz, 2H), 6.77 (s, 1H), 4.32 (q, *J* = 7.1 Hz, 2H), 2.59 (s, 3H), 1.37 (t, *J* = 7.1 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  165.4, 158.6, 158.2, 138.4, 133.8, 132.8, 128.3, 127.8, 126.6, 119.7, 113.8, 111.1, 59.6, 14.5, 12.3; HR-MS (ESI) calcd for [M + 1]<sup>+</sup> : C<sub>18</sub>H<sub>18</sub>N<sub>3</sub>O<sub>2</sub>: 308.1394, found: 308.1397; IR (KBr): 3060, 2978, 2926, 1702, 1564, 1486, 1423, 1375, 1231, 1071 cm<sup>-1</sup>.



**Ethyl 2-ethyl-5-phenyl-1-(pyridin-2-yl)-1H-pyrrole-3-carboxylate (3q)**: Yellow oil; 27.8 mg, 87% yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.63 (s, 1H), 7.66 (t, *J* = 7.6 Hz, 1H), 7.32 (s, 1H), 7.13 (s, 3H), 7.02 (d, *J* = 6.0 Hz, 2H), 6.96 (d, *J* = 7.8 Hz, 1H), 6.79 (s, 1H), 4.33 (q, *J* = 6.9 Hz, 2H),

2.93 (q, J = 7.1 Hz, 2H), 1.37 (t, J = 7.0 Hz, 3H), 1.07 (t, J = 7.2 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  165.2, 151.5, 149.3, 144.4, 138.0, 133.5, 132.3, 128.1, 126.6, 123.6, 123.4, 112.5, 110.5, 59.5, 19.2, 14.5, 14.2; HR-MS (ESI) calcd for [M + 1]<sup>+</sup>: C<sub>20</sub>H<sub>21</sub>N<sub>2</sub>O<sub>2</sub>: 321.1598, found: 321.1605; IR (KBr): 3150, 2980, 2932, 1702, 1586, 1524, 1468, 1401, 1376, 1220, 1085 cm<sup>-1</sup>.



**Ethyl 2,5-diphenyl-1-(pyridin-2-yl)-1H-pyrrole-3-carboxylate (3r)**: White solid, 26.5 mg, 72% yield, m.p. 87-89 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.35 (d, *J* = 3.9 Hz, 1H), 7.49 (t, *J* = 7.4 Hz, 1H), 7.19 (dd, *J* = 18.0, 7.5 Hz, 8H), 7.12 (d, *J* = 7.4 Hz, 3H), 6.94 (s, 1H), 6.87 (d, *J* = 7.9 Hz, 1H), 4.18 (q, *J* = 7.1 Hz, 2H), 1.18 (t, *J* = 7.1 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  164.6, 151.3, 148.9, 139.8, 137.5, 134.8, 132.2, 131.5, 131.2, 128.4, 128.1, 127.8, 127.2, 126.9, 123.7, 122.9, 114.6, 111.1, 59.6, 14.1; HR-MS (ESI) calcd for [M + 1]<sup>+</sup>: C<sub>24</sub>H<sub>21</sub>N<sub>2</sub>O<sub>2</sub>: 369.1598, found: 369.1605; IR (KBr): 3103, 2988, 2926, 1702, 1585, 1534, 1477, 1378, 1239, 1081 cm<sup>-1</sup>.



**Ethyl 2-cyclohexyl-5-phenyl-1-(pyridin-2-yl)-1H-pyrrole-3-carboxylate (3s)**: White oil; 27.7 mg, 74% yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.63 (d, J = 2.2 Hz, 1H), 7.66 (t, J = 7.0 Hz, 1H), 7.34 (d, J = 5.6 Hz, 1H), 7.11 (s, 3H), 7.03 - 6.96 (m, 3H), 6.79 (s, 1H), 4.32 (q, J = 7.1 Hz, 2H), 2.86 (t, J = 11.4 Hz, 1H), 1.95 (s, 2H), 1.70 (s, 4H), 1.57 (d, J = 11.6 Hz, 1H), 1.39 (t, J = 7.1 Hz, 3H), 1.14 (dd, J = 25.7, 12.4 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  165.2, 152.1, 149.1, 146.4, 137.9, 133.2, 132.4, 128.3, 128.0, 126.5, 124.1, 123.6, 112.6, 111.5, 59.6, 37.7, 30.0, 27.0, 25.6, 14.5; HR-MS (ESI) calcd for [M + 1]<sup>+</sup>: C<sub>24</sub>H<sub>27</sub>N<sub>2</sub>O<sub>2</sub>: 375.2067, found: 375.2069; IR (KBr): 3100, 2926, 2854, 1704, 1585, 1517, 1465, 1397, 1224, 1087 cm<sup>-1</sup>.



**Ethyl 2-phenethyl-5-phenyl-1-(pyridin-2-yl)-1H-pyrrole-3-carboxylate (3t)**: Yellow oil; 33.3 mg, 84% yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.66 (s, 1H), 7.56 (t, *J* = 7.5 Hz, 1H), 7.30 (s, 1H), 7.17 (dd, *J* = 16.6, 7.8 Hz, 6H), 7.02 (s, 4H), 6.82 (s, 1H), 6.70 (d, *J* = 7.7 Hz, 1H), 4.36 (q, *J* = 6.7 Hz, 2H), 3.21 - 3.15 (m, 2H), 2.91 - 2.84 (m, 2H), 1.40 (t, *J* = 6.8 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  165.1, 151.3, 149.1, 141.8, 138.0, 133.6, 132.3, 128.6, 128.0, 126.7, 125.8, 123.6, 123.3, 113.29, 110.7, 59.6, 36.1, 28.4, 14.6; HR-MS (ESI) calcd for [M + 1]<sup>+</sup> : C<sub>26</sub>H<sub>25</sub>N<sub>2</sub>O<sub>2</sub>: 397.1911, found: 397.1917; IR (KBr): 3068, 2979, 2931, 2858, 1701, 1582, 1525, 1442, 1230, 1237, 1080 cm<sup>-1</sup>.



Ethyl 2-(but-3-en-1-yl)-5-phenyl-1-(pyridin-2-yl)-1H-pyrrole-3-carboxylate (3u): Yellow oil; 24.6 mg, 71% yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.63 (s, 1H), 7.64 (t, *J* = 7.5 Hz, 1H), 7.32 (d, *J* = 3.3 Hz, 1H), 7.13 (s, 3H), 7.02 (d, *J* = 5.6 Hz, 2H), 6.93 (d, *J* = 7.7 Hz, 1H), 6.80 (s, 1H), 5.70 (td, *J* = 14.5, 7.0 Hz, 1H), 4.87 (t, *J* = 13.6 Hz, 2H), 4.33 (q, *J* = 6.5 Hz, 2H), 3.01 (t, *J* = 7.1 Hz, 2H), 2.25 (d, *J* = 6.8 Hz, 2H), 1.37 (t, *J* = 6.7 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  165.2, 151.4, 149.2, 142.0, 137.9, 133.6, 132.3, 128.1, 126.6, 123.7, 123.3, 114.6, 113.2, 110.6, 59.5, 33.9, 25.5, 14.5; HR-MS (ESI) calcd for [M + 1]<sup>+</sup>: C<sub>22</sub>H<sub>23</sub>N<sub>2</sub>O<sub>2</sub>: 347.1754, found: 347.1756; IR (KBr): 3066, 2979, 2854, 1702, 1569, 1522, 1436, 1371, 1232, 1079 cm<sup>-1</sup>.



Methyl 2-(methoxymethyl)-5-phenyl-1-(pyridin-2-yl)-1H-pyrrole-3-carboxylate (3v): Yellow oil; 29.6 mg, 92% yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.56 (d, J = 2.7 Hz, 1H), 7.70 (t, J = 7.7

Hz, 1H), 7.30 (d, J = 5.9 Hz, 1H), 7.17 (d, J = 6.1 Hz, 4H), 7.05 (s, 2H), 6.81 (s, 1H), 4.78 (s, 2H), 3.87 (s, 3H), 3.19 (s, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  165.3, 151.2, 149.1, 138.0, 136.2, 135.3, 132.0, 128.2, 127.0, 123.3, 115.7, 110.7, 62.9, 57.6, 51.2; HR-MS (ESI) calcd for [M + 1]<sup>+</sup>: C<sub>19</sub>H<sub>19</sub>N<sub>2</sub>O<sub>3</sub>: 323.1390, found: 323.1387; IR (KBr): 3102, 2942, 2818, 1710, 1586, 1525, 1471, 1402, 1226, 1083 cm <sup>-1</sup>.



**1-(2-Methyl-5-phenyl-1-(pyridin-2-yl)-1H-pyrrol-3-yl)ethanone (3w**): Yellow oil, 20.9 mg, 76% yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.62 (d, *J* = 4.1 Hz, 1H), 7.69 (t, *J* = 7.2 Hz, 1H), 7.35 - 7.30 (m, 1H), 7.16 (d, *J* = 5.6 Hz, 3H), 7.03 (d, *J* = 6.5 Hz, 2H), 6.99 (d, *J* = 7.9 Hz, 1H), 6.71 (s, 1H), 2.49 (s, 6H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  195.3, 151.2, 149.4, 138.1, 137.7, 133.5, 132.2, 128.1, 126.8, 123.4, 121.8, 110.7, 28.9, 12.8; HR-MS (ESI) calcd for [M + 1]<sup>+</sup> : C<sub>18</sub>H<sub>17</sub>N<sub>2</sub>O: 277.1335, found: 277.1340; IR (KBr): 3163, 2923, 2853, 1723, 1659, 1590, 1519, 1471, 1436, 1345, 1231, 1072 cm<sup>-1</sup>.



**Dimethyl (2-methyl-5-phenyl-1-(pyridin-2-yl)-1H-pyrrol-3-yl)phosphonate (3x)**: White oil, 18.8 mg, 55% yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.63 (s, 1H), 7.68 (t, *J* = 7.5 Hz, 1H), 7.33 (s, 1H), 7.15 (s, 3H), 7.04 - 6.99 (m, 2H), 6.96 (d, *J* = 7.9 Hz, 1H), 6.58 (s, 1H), 3.80 (s, 3H), 3.77 (s, 3H), 2.41 (s, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  151.4, 149.4, 139.5, 139.2, 138.2, 134.8, 132.0, 128.2, 127.9, 126.8, 123.3, 112.4, 106.1, 103.9, 52.3, 12.4; HR-MS (ESI) calcd for [M + 1]<sup>+</sup> : C<sub>18</sub>H<sub>20</sub>N<sub>2</sub>O<sub>3</sub>P: 343.1206, found: 343.1215; IR (KBr): 3131, 2951, 2850, 1589, 1516, 1469, 1398, 1240, 1028 cm<sup>-1</sup>.



**2-(2-Methyl-5-phenyl-3-tosyl-1H-pyrrol-1-yl)pyridine** (**3y**): White solid; 24.4 mg, 63% yield; m.p. 122-124 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.60 (s, 1H), 7.86 (d, *J* = 7.9 Hz, 2H), 7.66 (t, *J* = 7.6 Hz, 1H), 7.34 - 7.27 (m, 3H), 7.15 (s, 3H), 6.98 (s, 2H), 6.91 (d, *J* = 7.8 Hz, 1H), 6.73 (s, 1H), 2.41 (s, 6H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  150.8, 149.4, 143.1, 140.8, 138.4, 134.9, 134.2, 131.4, 129.6, 128.2, 127.2, 126.8, 123.7, 123.5, 122.0, 109.3, 21.5, 11.5; HR-MS (ESI) calcd for [M + 1]<sup>+</sup> : C<sub>23</sub>H<sub>21</sub>N<sub>2</sub>O<sub>2</sub>S: 389.1318, found: 389.1321; IR (KBr): 3133, 3008, 2984, 2924, 2854, 1677, 1590, 1518, 1470, 1438, 1399, 1300, 1237, 1150 cm<sup>-1</sup>.

#### 2. Controlled experiments for mechanism studies

(a). Rh(III)-catalyzed intermolecular cyclization cascade of *N*-phenyl ketoimine 1q with diazo compound 2a



A 10 mL of reaction tube was charged with  $[Cp*RhCl_2]_2$  (1.6 mg, 2.5 mol%), AgSbF<sub>6</sub> (3.4 mg, 10 mol%), ketoimines **1q** (20 mg, 0.1 mmol) and CH<sub>3</sub>CN (1.5 mL) under Ar. Diazo compound **2a** (31 mg, 0.2 mmol) in CH<sub>3</sub>CN (0.5 mL) was then added in one-pot under Ar and the mixture was stirred at 80 °C for 8 h. Afterwards, the reaction mixture was cooled to room temperature, no product **3z** was observed by <sup>1</sup>H NMR and GC-MS analysis, this result indicated that the pyridyl group played a significant chelation-directing role in this transformation.

#### (b) H/D Exchange of N-(2-pyridyl) ketoimine (1a)



To the solution of ketoimine **1a** (20 mg, 0.1 mmol) in CH<sub>3</sub>CN (1.0 mL) were added [Cp\*RhCl<sub>2</sub>]<sub>2</sub> (1.6 mg, 2.5 mol %), AgSbF<sub>6</sub> (3.4 mg, 10 mol %) and CD<sub>3</sub>OD (2.0 equiv) under Ar. The reaction

mixture was stirred at 80 °C for 8 h and then cooled down to room temperature. After removal of solvent the resulted crude was quickly purified by flash column chromatography to give the desired compound *d*-1a (51% yield) as oil. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.46 (s, 1H), 8.00 (d, *J* = 6.7 Hz, 2H), 7.68 (t, *J* = 7.4 Hz, 1H), 7.45 (d, *J* = 7.4 Hz, 3H), 7.02 (s, 1H), 6.84 (d, *J* = 7.9 Hz, 1H), 2.25 (s, 0.55H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  167.7, 163.5, 148.9, 139.0, 137.7, 130.9, 128.3, 127.5, 118.9, 115.2. HR-MS (ESI) calcd for [M + 1]<sup>+</sup> : C<sub>13</sub>H<sub>10</sub>D<sub>3</sub>N<sub>2</sub>: 200.1262, found: 200.1262.

#### (c): Kinetic isotope effect of this transformation



A 10 mL of reaction tube was charged with ketoimines (**1a:** 20 mg, 0.1 mmol; or *d*-**1a:** 20 mg, 0.1 mmol),  $[Cp*RhCl_2]_2$  (1.6 mg, 2.5 mol%), AgSbF<sub>6</sub> (3.4 mg, 10 mol%) and CH<sub>3</sub>CN (1.5 mL) under Ar. Diazo compound **2a** (31 mg, 0.2 mmol) in CH<sub>3</sub>CN (0.5 mL) was then added in one-pot under Ar and the mixture was stirred at 80 °C. Aliquots (0.4 mL) were extracted at 1hour intervals for the first 4 hours of the reaction. After the solvent of each aliquot (0.4 mL) was removed under reduced pressure conditions and analyzed by <sup>1</sup>H NMR spectrum (see Figure 1 and Figure 2). A sample plot of the initial rate data for the reaction of both **1a** and *d*-**1a** was shown in Figure 3. The reaction progress in the early stage (0-4 hours) indicated a kinetic isotope effect (KIE) of 2.3.

*d*-3a: Yellow liquid; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.62 (s, 1H), 7.66 (t, J = 7.6 Hz, 1H), 7.31 (d, J = 4.3 Hz, 1H), 7.14 (s, 3H), 7.03 (d, J = 6.3 Hz, 2H), 6.95 (d, J = 7.8 Hz, 1H), 6.78 (s, 0.22H), 4.32 (q, J = 6.7 Hz, 2H), 2.48 (s, 3H), 1.37 (t, J = 7.0 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  165.5 (s), 151.5 (s), 149.3 (s), 138.3 (s), 138.1 (s), 133.4 (s), 132.3 (s), 128.0 (d, J = 13.8 Hz), 126.6 (s), 123.3 (d, J = 16.1 Hz), 113.3 (s), 110.5 (s), 59.5 (s), 14.5 (s), 12.3 (s). HR-MS (ESI) calcd for [M + 1]<sup>+</sup>: C<sub>19</sub>H<sub>18</sub>DN<sub>2</sub>O<sub>2</sub>: 308.1504, found: 308.1512.



Figure 1, The conversion of 1a was monitored by <sup>1</sup>H NMR method



Figure 2. The conversion of *d*-1a was monitored by <sup>1</sup>H NMR method



Figure 3, The plot of initial rates for KIE measurements.

#### 3.1 Singlerystal structure and crystallographic data for 3r





# Table 6. Crystal data and structure refinement for 3r.

| Identification code         | 3r                               |
|-----------------------------|----------------------------------|
| Empirical formula           | $C_{24}H_{21}N_2O_2$             |
| Formula weight              | 369.43                           |
| Temperature                 | 571(2) K                         |
| Wavelength                  | 1.54178 A                        |
| Crystal system, space group | Monoclinic, C2/C                 |
| Unit cell dimensions        | a = 29.4790(8) A alpha = 90 deg. |

|                                 | b = 12.0530(3) A beta = 108.029(2) deg. |
|---------------------------------|-----------------------------------------|
|                                 | c = 11.6531(3) A gamma = 90 deg.        |
| Volume                          | 3937.17(18) A^3                         |
| Z, Calculated density           | 8, 1.246 Mg/m^3                         |
| Absorption coefficient          | 0.635 mm^-1                             |
| F(000)                          | 61560                                   |
| Crystal size                    | 0.28 x 0.24 x 0.20 mm <sup>3</sup>      |
| Theta range for data collection | 5.99 to 62.68 deg.                      |
| Limiting indices                | -33<=h<=33, -11<=k<=13, -13<=l<=12      |
| Reflections collected / unique  | 8227 / 3109 [R(int) = 0.0228]           |
| Completeness to theta $= 27.45$ | 98.3 %                                  |
| Refinement method               | Full-matrix least-squares on F^2        |
| Data / restraints / parameters  | 3109 / 0 / 253                          |
| Goodness-of-fit on F^2          | 0.674                                   |
| Final R indices [I>2sigma(I)]   | R1 = 0.0396, $wR2 = 0.1129$             |
| R indices (all data)            | R1 = 0.0439, wR2 = 0.1192               |
| Largest diff. peak and hole     | 0.172 and -0.162 e.A^-3                 |

Table 7. Atomic coordinates (×10<sup>4</sup>) and equivalent isotropic displacement parameters (Å<sup>2</sup> × 10<sup>3</sup>) for 3r.

|       | Х       | У       | Z        | U(eq) |
|-------|---------|---------|----------|-------|
| O(1)  | 3796(1) | 3824(1) | 757(1)   | 75(1) |
| O(2)  | 4133(1) | 4806(1) | -380(1)  | 65(1) |
| N(1)  | 3503(1) | 7512(1) | 876(1)   | 43(1) |
| C(17) | 3504(1) | 8702(1) | 816(1)   | 44(1) |
| C(1)  | 4143(1) | 7335(1) | -83(1)   | 47(1) |
| C(2)  | 4160(1) | 7090(1) | -1237(1) | 54(1) |
| C(3)  | 4504(1) | 7563(1) | -1658(2) | 66(1) |
| C(4)  | 4831(1) | 8287(2) | -956(2)  | 73(1) |
| C(5)  | 4820(1) | 8541(1) | 191(2)   | 70(1) |
| C(6)  | 4479(1) | 8065(1) | 625(2)   | 57(1) |
| C(7)  | 3780(1) | 6840(1) | 401(1)   | 43(1) |
| C(8)  | 3675(1) | 5752(1) | 620(1)   | 45(1) |
| C(9)  | 3334(1) | 5789(1) | 1246(1)  | 48(1) |
| C(10) | 3230(1) | 6867(1) | 1403(1)  | 44(1) |
|       |         |         |          |       |

U(eq) is defined as one third of the trace of the orthogonalized  $U^{ij}$  tensor.

| C(11) | 2885(1) | 7292(1)  | 1977(1)  | 45(1) |
|-------|---------|----------|----------|-------|
| C(12) | 2844(1) | 6726(1)  | 2984(1)  | 54(1) |
| C(13) | 2502(1) | 7019(2)  | 3507(2)  | 63(1) |
| C(14) | 2200(1) | 7897(1)  | 3058(2)  | 62(1) |
| C(15) | 2242(1) | 8474(1)  | 2082(1)  | 57(1) |
| C(16) | 2580(1) | 8177(1)  | 1538(1)  | 49(1) |
| N(2)  | 3670(1) | 9217(1)  | 1870(1)  | 57(1) |
| C(18) | 3691(1) | 10323(1) | 1814(2)  | 73(1) |
| C(19) | 3563(1) | 10921(1) | 756(2)   | 76(1) |
| C(20) | 3386(1) | 10362(1) | -312(2)  | 70(1) |
| C(21) | 3350(1) | 9220(1)  | -286(1)  | 54(1) |
| C(22) | 3870(1) | 4701(1)  | 358(1)   | 50(1) |
| C(23) | 4331(1) | 3804(2)  | -714(2)  | 81(1) |
| C(24) | 4620(1) | 4134(2)  | -1495(2) | 88(1) |
|       |         |          |          |       |

# Table 8. Bond lengths [A] and angles [deg] for 3r.

| 1.2023(18) |
|------------|
| 1.3290(19) |
| 1.4468(19) |
| 1.3806(17) |
| 1.3904(17) |
| 1.4359(17) |
| 1.3268(18) |
| 1.373(2)   |
| 1.389(2)   |
| 1.392(2)   |
| 1.4812(19) |
| 1.380(2)   |
| 0.9300     |
| 1.368(3)   |
| 0.9300     |
| 1.382(3)   |
| 0.9300     |
| 1.384(2)   |
| 0.9300     |
| 0.9300     |
|            |

| C(7)-C(8)        | 1.3884(19) |
|------------------|------------|
| C(8)-C(9)        | 1.414(2)   |
| C(8)-C(22)       | 1.4618(19) |
| C(9)-C(10)       | 1.3597(19) |
| C(9)-H(9A)       | 0.9300     |
| C(10)-C(11)      | 1.4715(19) |
| C(11)-C(16)      | 1.388(2)   |
| C(11)-C(12)      | 1.3951(19) |
| C(12)-C(13)      | 1.377(2)   |
| C(12)-H(12A)     | 0.9300     |
| C(13)-C(14)      | 1.378(2)   |
| C(13)-H(13A)     | 0.9300     |
| C(14)-C(15)      | 1.372(2)   |
| C(14)-H(14A)     | 0.9300     |
| C(15)-C(16)      | 1.383(2)   |
| C(15)-H(15A)     | 0.9300     |
| C(16)-H(16A)     | 0.9300     |
| N(2)-C(18)       | 1.338(2)   |
| C(18)-C(19)      | 1.375(3)   |
| C(18)-H(18A)     | 0.9300     |
| C(19)-C(20)      | 1.369(3)   |
| C(19)-H(19A)     | 0.9300     |
| C(20)-C(21)      | 1.381(2)   |
| C(20)-H(20A)     | 0.9300     |
| C(21)-H(21A)     | 0.9300     |
| C(23)-C(24)      | 1.479(3)   |
| C(23)-H(23B)     | 0.9700     |
| C(23)-H(23C)     | 0.9700     |
| C(24)-H(24C)     | 0.9600     |
| C(24)-H(24D)     | 0.9600     |
| C(24)-H(24A)     | 0.9600     |
| C(22)-O(2)-C(23) | 117.38(13) |
| C(7)-N(1)-C(10)  | 110.08(11) |
| C(7)-N(1)-C(17)  | 123.80(11) |
| C(10)-N(1)-C(17) | 126.12(11) |
| N(2)-C(17)-C(21) | 124.95(13) |
| N(2)-C(17)-N(1)  | 115.33(12) |

| C(21)-C(17)-N(1)   | 119.69(12) |
|--------------------|------------|
| C(6)-C(1)-C(2)     | 118.48(14) |
| C(6)-C(1)-C(7)     | 119.66(13) |
| C(2)-C(1)-C(7)     | 121.86(13) |
| C(3)-C(2)-C(1)     | 120.37(16) |
| C(3)-C(2)-H(2A)    | 119.8      |
| C(1)-C(2)-H(2A)    | 119.8      |
| C(4)-C(3)-C(2)     | 120.73(17) |
| C(4)-C(3)-H(3A)    | 119.6      |
| C(2)-C(3)-H(3A)    | 119.6      |
| C(3)-C(4)-C(5)     | 119.78(16) |
| C(3)-C(4)-H(4A)    | 120.1      |
| C(5)-C(4)-H(4A)    | 120.1      |
| C(6)-C(5)-C(4)     | 119.96(17) |
| C(6)-C(5)-H(5A)    | 120.0      |
| C(4)-C(5)-H(5A)    | 120.0      |
| C(5)-C(6)-C(1)     | 120.68(16) |
| C(5)-C(6)-H(6A)    | 119.7      |
| C(1)-C(6)-H(6A)    | 119.7      |
| N(1)-C(7)-C(8)     | 106.71(11) |
| N(1)-C(7)-C(1)     | 120.14(12) |
| C(8)-C(7)-C(1)     | 132.73(12) |
| C(7)-C(8)-C(9)     | 107.41(11) |
| C(7)-C(8)-C(22)    | 130.96(13) |
| C(9)-C(8)-C(22)    | 121.58(12) |
| C(10)-C(9)-C(8)    | 108.92(12) |
| C(10)-C(9)-H(9A)   | 125.5      |
| C(8)-C(9)-H(9A)    | 125.5      |
| C(9)-C(10)-N(1)    | 106.87(12) |
| C(9)-C(10)-C(11)   | 127.50(12) |
| N(1)-C(10)-C(11)   | 125.60(12) |
| C(16)-C(11)-C(12)  | 118.07(13) |
| C(16)-C(11)-C(10)  | 124.11(12) |
| C(12)-C(11)-C(10)  | 117.70(13) |
| C(13)-C(12)-C(11)  | 120.90(15) |
| C(13)-C(12)-H(12A) | 119.5      |
| C(11)-C(12)-H(12A) | 119.5      |
| C(14)-C(13)-C(12)  | 120.34(14) |

| C(14)-C(13)-H(13A)  | 119.8      |
|---------------------|------------|
| C(12)-C(13)-H(13A)  | 119.8      |
| C(15)-C(14)-C(13)   | 119.40(14) |
| C(15)-C(14)-H(14A)  | 120.3      |
| C(13)-C(14)-H(14A)  | 120.3      |
| C(14)-C(15)-C(16)   | 120.78(15) |
| C(14)-C(15)-H(15A)  | 119.6      |
| C(16)-C(15)-H(15A)  | 119.6      |
| C(15)-C(16)-C(11)   | 120.47(13) |
| C(15)-C(16)-H(16A)  | 119.8      |
| C(11)-C(16)-H(16A)  | 119.8      |
| C(17)-N(2)-C(18)    | 115.51(14) |
| N(2)-C(18)-C(19)    | 124.16(16) |
| N(2)-C(18)-H(18A)   | 117.9      |
| C(19)-C(18)-H(18A)  | 117.9      |
| C(20)-C(19)-C(18)   | 118.62(15) |
| C(20)-C(19)-H(19A)  | 120.7      |
| C(18)-C(19)-H(19A)  | 120.7      |
| C(19)-C(20)-C(21)   | 118.69(16) |
| C(19)-C(20)-H(20A)  | 120.7      |
| C(21)-C(20)-H(20A)  | 120.7      |
| C(17)-C(21)-C(20)   | 117.98(15) |
| C(17)-C(21)-H(21A)  | 121.0      |
| C(20)-C(21)-H(21A)  | 121.0      |
| O(1)-C(22)-O(2)     | 123.09(13) |
| O(1)-C(22)-C(8)     | 123.42(14) |
| O(2)-C(22)-C(8)     | 113.48(12) |
| O(2)-C(23)-C(24)    | 107.38(16) |
| O(2)-C(23)-H(23B)   | 110.2      |
| C(24)-C(23)-H(23B)  | 110.2      |
| O(2)-C(23)-H(23C)   | 110.2      |
| C(24)-C(23)-H(23C)  | 110.2      |
| H(23B)-C(23)-H(23C) | 108.5      |
| C(23)-C(24)-H(24C)  | 109.5      |
| C(23)-C(24)-H(24D)  | 109.5      |
| H(24C)-C(24)-H(24D) | 109.5      |
| C(23)-C(24)-H(24A)  | 109.5      |
| H(24C)-C(24)-H(24A) | 109.5      |

#### H(24D)-C(24)-H(24A) 109.5

Symmetry transformations used to generate equivalent atoms:

|       | U11    | U22    | U33    | U23    | U13   | U12    |
|-------|--------|--------|--------|--------|-------|--------|
| O(1)  | 106(1) | 37(1)  | 94(1)  | 8(1)   | 47(1) | 8(1)   |
| O(2)  | 83(1)  | 45(1)  | 80(1)  | 3(1)   | 41(1) | 17(1)  |
| N(1)  | 54(1)  | 33(1)  | 45(1)  | 1(1)   | 21(1) | 1(1)   |
|       |        |        |        |        |       |        |
| C(17) | 54(1)  | 34(1)  | 51(1)  | -2(1)  | 26(1) | -1(1)  |
| C(1)  | 52(1)  | 36(1)  | 55(1)  | 6(1)   | 22(1) | 7(1)   |
| C(2)  | 62(1)  | 48(1)  | 57(1)  | 5(1)   | 27(1) | 10(1)  |
| C(3)  | 79(1)  | 59(1)  | 75(1)  | 12(1)  | 45(1) | 13(1)  |
| C(4)  | 76(1)  | 58(1)  | 103(1) | 17(1)  | 54(1) | 7(1)   |
| C(5)  | 65(1)  | 48(1)  | 101(1) | 1(1)   | 33(1) | -7(1)  |
| C(6)  | 63(1)  | 45(1)  | 67(1)  | 0(1)   | 27(1) | -1(1)  |
| C(7)  | 50(1)  | 38(1)  | 42(1)  | 0(1)   | 16(1) | 3(1)   |
| C(8)  | 54(1)  | 36(1)  | 45(1)  | 1(1)   | 15(1) | 3(1)   |
| C(9)  | 59(1)  | 37(1)  | 50(1)  | 5(1)   | 22(1) | -3(1)  |
| C(10) | 54(1)  | 40(1)  | 42(1)  | 2(1)   | 18(1) | -2(1)  |
| C(11) | 53(1)  | 41(1)  | 42(1)  | -2(1)  | 17(1) | -5(1)  |
| C(12) | 67(1)  | 50(1)  | 49(1)  | 6(1)   | 24(1) | 5(1)   |
| C(13) | 82(1)  | 65(1)  | 54(1)  | 3(1)   | 37(1) | -2(1)  |
| C(14) | 67(1)  | 63(1)  | 64(1)  | -10(1) | 34(1) | -2(1)  |
| C(15) | 58(1)  | 52(1)  | 63(1)  | -6(1)  | 21(1) | 4(1)   |
| C(16) | 57(1)  | 45(1)  | 46(1)  | 1(1)   | 17(1) | -1(1)  |
| N(2)  | 78(1)  | 47(1)  | 54(1)  | -10(1) | 29(1) | -11(1) |
| C(18) | 100(1) | 48(1)  | 84(1)  | -23(1) | 49(1) | -19(1) |
| C(19) | 107(2) | 34(1)  | 109(2) | -2(1)  | 65(1) | -3(1)  |
| C(20) | 97(1)  | 45(1)  | 80(1)  | 18(1)  | 47(1) | 14(1)  |
| C(21) | 73(1)  | 42(1)  | 52(1)  | 5(1)   | 26(1) | 6(1)   |
| C(22) | 58(1)  | 39(1)  | 50(1)  | 1(1)   | 14(1) | 4(1)   |
| C(23) | 92(1)  | 60(1)  | 96(1)  | -7(1)  | 38(1) | 29(1)  |
| C(24) | 89(1)  | 105(2) | 72(1)  | -11(1) | 27(1) | 36(1)  |

Table 9. Anisotropic displacement parameters (A^2 x 10^3) for 3r. The anisotropic displacement factor exponent takes the form:  $-2\pi^2 [h^2 a^* U^{11} + ... + 2 hka^* b^* U^{12}]$ 

| x         y         z         U           H(2A)         3938         6604         -1726           H(3A)         4514         7387         -2427           H(4A)         5060         8607         -1251           H(5A)         5042         9032         671         1400           H(6A)         4474         8236         1400         1400           H(9A)         3202         5176         1508         1400           H(12A)         3051         6143         3307         141           H(13A)         2474         6622         4167         141           H(14A)         1970         8097         3415         1400           H(14A)         1970         8097         3415         1407           H(16A)         2602         8574         873         141           H(16A)         2602         8574         873         141           H(18A)         3798         10714         2536         141           H(19A)         3291         10744         -1041         141           H(20A)         3291         10744         -1041         141           H(23B)         4077 |       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| H(2A)39386604-1726H(3A)45147387-2427H(4A)50608607-1251H(5A)50429032671H(6A)447482361400H(9A)320251761508H(12A)305161433307H(13A)247466224167H(14A)197080973415H(15A)204190721782H(16A)26028574873H(18A)3798107142536H(19A)329110744-1041H(20A)329110744-1041H(23B)40773306-1146H(23C)452934271                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | U(eq) |
| H(3A)45147387-2427H(4A)50608607-1251H(5A)50429032671H(6A)447482361400H(9A)320251761508H(12A)305161433307H(13A)247466224167H(14A)197080973415H(15A)204190721782H(16A)26028574873H(18A)3798107142536H(19A)359711688767H(20A)329110744-1041H(21A)32278815-993H(23B)40773306-1146H(23C)452934271                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 64    |
| H(4A)50608607-1251H(5A)50429032671H(6A)447482361400H(9A)320251761508H(12A)305161433307H(13A)247466224167H(14A)197080973415H(15A)204190721782H(16A)26028574873H(18A)3798107142536H(19A)329110744-1041H(20A)329110744-1041H(23B)40773306-1146H(23C)452934271                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 79    |
| H(5A)50429032671H(6A)447482361400H(9A)320251761508H(12A)305161433307H(13A)247466224167H(14A)197080973415H(15A)204190721782H(16A)26028574873H(18A)3798107142536H(19A)359711688767H(20A)329110744-1041H(21A)32278815-993H(23B)40773306-1146H(23C)452934271                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 88    |
| H(6A)447482361400H(9A)320251761508H(12A)305161433307H(13A)247466224167H(14A)197080973415H(15A)204190721782H(16A)26028574873H(18A)3798107142536H(19A)359711688767H(20A)329110744-1041H(21A)32278815-993H(23B)40773306-1146H(23C)452934271                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 84    |
| H(9A)320251761508H(12A)305161433307H(13A)247466224167H(14A)197080973415H(15A)204190721782H(16A)26028574873H(18A)3798107142536H(19A)359711688767H(20A)329110744-1041H(21A)32278815-993H(23B)40773306-1146H(23C)452934271                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 68    |
| H(12A)305161433307H(13A)247466224167H(14A)197080973415H(15A)204190721782H(16A)26028574873H(18A)3798107142536H(19A)359711688767H(20A)329110744-1041H(23B)40773306-1146H(23C)452934271                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 57    |
| H(13A)247466224167H(14A)197080973415H(15A)204190721782H(16A)26028574873H(18A)3798107142536H(19A)359711688767H(20A)329110744-1041H(21A)32278815-993H(23B)40773306-1146                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 65    |
| H(14A)197080973415H(15A)204190721782H(16A)26028574873H(18A)3798107142536H(19A)359711688767H(20A)329110744-1041H(21A)32278815-993H(23B)40773306-1146H(23C)452934271                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 76    |
| H(15A)204190721782H(16A)26028574873H(18A)3798107142536H(19A)359711688767H(20A)329110744-1041H(21A)32278815-993H(23B)40773306-1146H(23C)452934271                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 74    |
| H(16A)26028574873H(18A)3798107142536H(19A)359711688767H(20A)329110744-1041H(21A)32278815-993H(23B)40773306-1146H(23C)452934271                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 69    |
| H(18A)3798107142536H(19A)359711688767H(20A)329110744-1041H(21A)32278815-993H(23B)40773306-1146H(23C)452934271                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 59    |
| H(19A)359711688767H(20A)329110744-1041H(21A)32278815-993H(23B)40773306-1146H(23C)452934271                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 87    |
| H(20A)329110744-1041H(21A)32278815-993H(23B)40773306-1146H(23C)452934271                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 91    |
| H(21A)32278815-993H(23B)40773306-1146H(23C)452934271                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 84    |
| H(23B) 4077 3306 -1146<br>H(23C) 4529 3427 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 65    |
| H(23C) 4529 3427 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 97    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 97    |
| H(24C) 4757 3486 -1733 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 133   |
| H(24D) 4870 4626 -1058 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 133   |
| H(24A) 4420 4505 -2199 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 133   |

Table 10. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (A^2 x 10^3) for 3r.

#### 3.2 Single crystal structure and crystallographic data for 3y



Figure 2. The Single crystal structure of compound 3y

# Table 11. Crystal data and structure refinement for 3y.

| Identification code             | 3у                                     |
|---------------------------------|----------------------------------------|
| Empirical formula               | $C_{23}H_{20}N_2O_2S$                  |
| Formula weight                  | 388.47                                 |
| Temperature                     | 571(2) K                               |
| Wavelength                      | 1.54178 A                              |
| Crystal system, space group     | Monoclinic, P21/C                      |
| Unit cell dimensions            | a = 15.4468(4) A alpha = 90 deg.       |
|                                 | b = 12.2137(3) A beta = 90.313(3) deg. |
|                                 | c = 10.5709(3) A gamma = 90 deg.       |
| Volume                          | 1994.30(9) A^3                         |
| Z, Calculated density           | 4, 1.294 Mg/m^3                        |
| Absorption coefficient          | 1.606 mm^-1                            |
| F(000)                          | 816                                    |
| Crystal size                    | 0.26 x 0.22 x 0.21 mm <sup>3</sup>     |
| Theta range for data collection | 4.62 to 62.60 deg.                     |

| Limiting indices                | -17<=h<=17, -14<=k<=13, -12<=l<=6 |
|---------------------------------|-----------------------------------|
| Reflections collected / unique  | 5045 / 2672 [R(int) = 0.0233]     |
| Completeness to theta $= 27.45$ | 83.7 %                            |
| Refinement method               | Full-matrix least-squares on F^2  |
| Data / restraints / parameters  | 2672 / 0 / 254                    |
| Goodness-of-fit on F^2          | 1.023                             |
| Final R indices [I>2sigma(I)]   | R1 = 0.0542, wR2 = 0.1537         |
| R indices (all data)            | R1 = 0.0585, wR2 = 0.1591         |
| Largest diff. peak and hole     | 0.434 and -0.386 e.A^-3           |
|                                 |                                   |

Table 12. Atomic coordinates (×10<sup>4</sup>) and equivalent isotropic displacement parameters ( $\mathring{A}^2 \times 10^3$ ) for 3y.

|              | Х        | У        | Z        | U(eq) |
|--------------|----------|----------|----------|-------|
| <b>S</b> (1) | 7161(1)  | 9647(1)  | 370(1)   | 51(1) |
| O(1)         | 6583(2)  | 9823(2)  | 1399(2)  | 67(1) |
| O(2)         | 7851(2)  | 8868(2)  | 530(2)   | 66(1) |
| N(1)         | 8794(2)  | 14207(2) | 453(3)   | 66(1) |
| N(2)         | 7978(1)  | 12617(2) | -255(2)  | 40(1) |
| C(1)         | 8034(2)  | 13777(2) | -27(3)   | 42(1) |
| C(2)         | 7338(2)  | 14341(2) | -317(3)  | 52(1) |
| C(3)         | 7382(3)  | 15427(3) | -106(5)  | 85(1) |
| C(4)         | 8097(3)  | 15939(3) | 362(4)   | 74(1) |
| C(5)         | 8812(2)  | 15329(2) | 647(3)   | 58(1) |
| C(6)         | 8528(2)  | 12032(2) | -1052(3) | 42(1) |
| C(7)         | 8298(2)  | 10955(2) | -956(3)  | 45(1) |
| C(8)         | 7616(2)  | 10884(2) | -81(3)   | 44(1) |
| C(9)         | 7418(2)  | 11921(2) | 356(3)   | 42(1) |
| C(10)        | 6812(2)  | 12310(3) | 1345(3)  | 56(1) |
| C(11)        | 9204(2)  | 12510(2) | -1849(3) | 43(1) |
| C(12)        | 9073(2)  | 13444(2) | -2585(3) | 49(1) |
| C(13)        | 9712(2)  | 13781(3) | -3412(3) | 61(1) |
| C(14)        | 10484(2) | 13216(3) | -3511(3) | 63(1) |
| C(15)        | 10630(2) | 12316(3) | -2760(3) | 60(1) |
| C(16)        | 9991(2)  | 11969(2) | -1938(3) | 52(1) |
| C(17)        | 6543(2)  | 9225(2)  | -954(3)  | 53(1) |

U(eq) is defined as one third of the trace of the orthogonalized  $U^{ij}$  tensor.

| C(18) | 6760(3) | 8287(3) | -1605(4) | 74(1)  |
|-------|---------|---------|----------|--------|
| C(19) | 6256(3) | 7952(3) | -2604(5) | 90(1)  |
| C(20) | 5542(2) | 8528(4) | -2984(4) | 83(1)  |
| C(21) | 5335(2) | 9459(4) | -2323(5) | 91(1)  |
| C(22) | 5828(2) | 9806(3) | -1315(4) | 78(1)  |
| C(23) | 4991(4) | 8149(6) | -4079(6) | 128(2) |
|       |         |         |          |        |

Table 13. Bond lengths [A] and angles [deg] for 3y.

| S(1)-O(1)    | 1.427(3) |
|--------------|----------|
| S(1)-O(2)    | 1.438(2) |
| S(1)-C(8)    | 1.734(3) |
| S(1)-C(17)   | 1.767(3) |
| N(1)-C(1)    | 1.381(4) |
| N(1)-C(5)    | 1.386(4) |
| N(2)-C(9)    | 1.377(3) |
| N(2)-C(6)    | 1.397(4) |
| N(2)-C(1)    | 1.440(3) |
| C(1)-C(2)    | 1.312(4) |
| C(2)-C(3)    | 1.346(4) |
| C(2)-H(2A)   | 0.9300   |
| C(3)-C(4)    | 1.360(6) |
| C(3)-H(3A)   | 0.9300   |
| C(4)-C(5)    | 1.364(5) |
| C(4)-H(4A)   | 0.9300   |
| C(5)-H(5A)   | 0.9300   |
| C(6)-C(7)    | 1.366(4) |
| C(6)-C(11)   | 1.466(4) |
| C(7)-C(8)    | 1.409(4) |
| C(7)-H(7A)   | 0.9300   |
| C(8)-C(9)    | 1.383(4) |
| C(9)-C(10)   | 1.485(4) |
| C(10)-H(10A) | 0.9600   |
| C(10)-H(10B) | 0.9600   |
| C(10)-H(10C) | 0.9600   |
| C(11)-C(16)  | 1.387(4) |
| C(11)-C(12)  | 1.396(4) |

| C(12)-C(13)     | 1.384(4)   |
|-----------------|------------|
| C(12)-H(12A)    | 0.9300     |
| C(13)-C(14)     | 1.383(5)   |
| C(13)-H(13A)    | 0.9300     |
| C(14)-C(15)     | 1.374(5)   |
| C(14)-H(14A)    | 0.9300     |
| C(15)-C(16)     | 1.384(4)   |
| C(15)-H(15A)    | 0.9300     |
| C(16)-H(16A)    | 0.9300     |
| C(17)-C(22)     | 1.365(5)   |
| C(17)-C(18)     | 1.378(4)   |
| C(18)-C(19)     | 1.371(6)   |
| C(18)-H(18A)    | 0.9300     |
| C(19)-C(20)     | 1.367(6)   |
| C(19)-H(19A)    | 0.9300     |
| C(20)-C(21)     | 1.373(6)   |
| C(20)-C(23)     | 1.506(7)   |
| C(21)-C(22)     | 1.374(6)   |
| C(21)-H(21A)    | 0.9300     |
| C(22)-H(22A)    | 0.9300     |
| C(23)-H(23A)    | 0.9600     |
| C(23)-H(23B)    | 0.9600     |
| C(23)-H(23C)    | 0.9600     |
|                 |            |
| O(1)-S(1)-O(2)  | 118.42(15) |
| O(1)-S(1)-C(8)  | 109.52(14) |
| O(2)-S(1)-C(8)  | 107.94(13) |
| O(1)-S(1)-C(17) | 108.04(15) |
| O(2)-S(1)-C(17) | 107.30(14) |
| C(8)-S(1)-C(17) | 104.76(14) |
| C(1)-N(1)-C(5)  | 116.5(3)   |
| C(9)-N(2)-C(6)  | 110.6(2)   |
| C(9)-N(2)-C(1)  | 124.5(2)   |
| C(6)-N(2)-C(1)  | 124.7(2)   |
| C(2)-C(1)-N(1)  | 125.5(3)   |
| C(2)-C(1)-N(2)  | 115.5(2)   |
| N(1)-C(1)-N(2)  | 119.0(2)   |
| C(1)-C(2)-C(3)  | 115.9(3)   |

| C(1)-C(2)-H(2A)     | 122.0    |
|---------------------|----------|
| C(3)-C(2)-H(2A)     | 122.0    |
| C(2)-C(3)-C(4)      | 123.6(3) |
| C(2)-C(3)-H(3A)     | 118.2    |
| C(4)-C(3)-H(3A)     | 118.2    |
| C(3)-C(4)-C(5)      | 118.9(3) |
| C(3)-C(4)-H(4A)     | 120.5    |
| C(5)-C(4)-H(4A)     | 120.5    |
| C(4)-C(5)-N(1)      | 119.5(3) |
| C(4)-C(5)-H(5A)     | 120.2    |
| N(1)-C(5)-H(5A)     | 120.2    |
| C(7)-C(6)-N(2)      | 106.8(2) |
| C(7)-C(6)-C(11)     | 127.8(3) |
| N(2)-C(6)-C(11)     | 125.4(2) |
| C(6)-C(7)-C(8)      | 107.7(2) |
| C(6)-C(7)-H(7A)     | 126.1    |
| C(8)-C(7)-H(7A)     | 126.1    |
| C(9)-C(8)-C(7)      | 109.3(2) |
| C(9)-C(8)-S(1)      | 128.0(2) |
| C(7)-C(8)-S(1)      | 122.7(2) |
| N(2)-C(9)-C(8)      | 105.6(2) |
| N(2)-C(9)-C(10)     | 122.2(2) |
| C(8)-C(9)-C(10)     | 132.0(3) |
| C(9)-C(10)-H(10A)   | 109.5    |
|                     |          |
| C(9)-C(10)-H(10B)   | 109.5    |
| H(10A)-C(10)-H(10B) | 109.5    |
| C(9)-C(10)-H(10C)   | 109.5    |
| H(10A)-C(10)-H(10C) | 109.5    |
| H(10B)-C(10)-H(10C) | 109.5    |
| C(16)-C(11)-C(12)   | 118.4(3) |
| C(16)-C(11)-C(6)    | 118.4(3) |
| C(12)-C(11)-C(6)    | 123.0(3) |
| C(13)-C(12)-C(11)   | 119.5(3) |
| C(13)-C(12)-H(12A)  | 120.2    |
| C(11)-C(12)-H(12A)  | 120.2    |
| C(14)-C(13)-C(12)   | 121.2(3) |
| C(14)-C(13)-H(13A)  | 119.4    |

| 119.4      |
|------------|
| 119.6(3)   |
| 120.2      |
| 120.2      |
| 119.5(3)   |
| 120.3      |
| 120.3      |
| 121.7(3)   |
| 119.2      |
| 119.2      |
| 119.4(3)   |
| 120.2(3)   |
| 120.4(3)   |
| 119.6(4)   |
| 120.2      |
| 120.2      |
| 121.8(4)   |
| 119.1      |
| 119.1      |
| 117.8(4)   |
| 121.3(4)   |
| 120.8(5)   |
| 121.3(4)   |
| 119.3      |
| 119.3      |
| 120.1(3)   |
| 120.0      |
| 120.0      |
| 109.5      |
| 109.5      |
| 109.5      |
| 109.5      |
| 109.5      |
| 109.5      |
| 124.11(12) |
| 117.70(13) |
| 120.90(15) |
|            |
|            |

| C(11)-C(12)-H(12A)  | 119.5      |
|---------------------|------------|
| C(14)-C(13)-C(12)   | 120.34(14) |
| C(14)-C(13)-H(13A)  | 119.8      |
| C(12)-C(13)-H(13A)  | 119.8      |
| C(15)-C(14)-C(13)   | 119.40(14) |
| C(15)-C(14)-H(14A)  | 120.3      |
| C(13)-C(14)-H(14A)  | 120.3      |
| C(14)-C(15)-C(16)   | 120.78(15) |
| C(14)-C(15)-H(15A)  | 119.6      |
| C(16)-C(15)-H(15A)  | 119.6      |
| C(15)-C(16)-C(11)   | 120.47(13) |
| C(15)-C(16)-H(16A)  | 119.8      |
| C(11)-C(16)-H(16A)  | 119.8      |
| C(17)-N(2)-C(18)    | 115.51(14) |
| N(2)-C(18)-C(19)    | 124.16(16) |
| N(2)-C(18)-H(18A)   | 117.9      |
| C(19)-C(18)-H(18A)  | 117.9      |
| C(20)-C(19)-C(18)   | 118.62(15) |
| C(20)-C(19)-H(19A)  | 120.7      |
| C(18)-C(19)-H(19A)  | 120.7      |
| C(19)-C(20)-C(21)   | 118.69(16) |
| C(19)-C(20)-H(20A)  | 120.7      |
| C(21)-C(20)-H(20A)  | 120.7      |
| C(17)-C(21)-C(20)   | 117.98(15) |
| C(17)-C(21)-H(21A)  | 121.0      |
| C(20)-C(21)-H(21A)  | 121.0      |
| O(1)-C(22)-O(2)     | 123.09(13) |
| O(1)-C(22)-C(8)     | 123.42(14) |
| O(2)-C(22)-C(8)     | 113.48(12) |
| O(2)-C(23)-C(24)    | 107.38(16) |
| O(2)-C(23)-H(23B)   | 110.2      |
| C(24)-C(23)-H(23B)  | 110.2      |
| O(2)-C(23)-H(23C)   | 110.2      |
| C(24)-C(23)-H(23C)  | 110.2      |
| H(23B)-C(23)-H(23C) | 108.5      |
| C(23)-C(24)-H(24C)  | 109.5      |
| C(23)-C(24)-H(24D)  | 109.5      |
| H(24C)-C(24)-H(24D) | 109.5      |
|                     |            |

| C(23)-C(24)-H(24A)  | 109.5 |
|---------------------|-------|
| H(24C)-C(24)-H(24A) | 109.5 |
| H(24D)-C(24)-H(24A) | 109.5 |

Symmetry transformations used to generate equivalent atoms:

Table 14. Anisotropic displacement parameters (A^2 x 10^3) for 3y. The anisotropic displacement factor exponent takes the form:  $-2\pi [h^2 a^2 U^{11} + ... + 2 hka*b*U^{12}]$ 

|       | U11   | U22    | U33    | U23    | U13   | U12    |
|-------|-------|--------|--------|--------|-------|--------|
| S(1)  | 52(1) | 33(1)  | 67(1)  | 6(1)   | 12(1) | -1(1)  |
| O(1)  | 79(2) | 51(1)  | 72(2)  | 4(1)   | 30(1) | -6(1)  |
| O(2)  | 65(1) | 43(1)  | 90(2)  | 16(1)  | 5(1)  | 9(1)   |
| N(1)  | 79(2) | 60(2)  | 60(2)  | -2(1)  | -8(2) | -10(1) |
| N(2)  | 45(1) | 31(1)  | 45(1)  | 0(1)   | 3(1)  | 1(1)   |
| C(1)  | 49(2) | 33(1)  | 45(2)  | 0(1)   | 1(1)  | -4(1)  |
| C(2)  | 41(1) | 27(1)  | 87(2)  | 1(1)   | -7(2) | 4(1)   |
| C(3)  | 73(2) | 43(2)  | 139(4) | 2(2)   | -2(3) | 15(2)  |
| C(4)  | 97(3) | 35(2)  | 90(3)  | -7(2)  | 13(2) | -3(2)  |
| C(5)  | 76(2) | 44(2)  | 56(2)  | -9(1)  | 2(2)  | -17(2) |
| C(6)  | 49(2) | 35(1)  | 44(2)  | -1(1)  | 1(1)  | -3(1)  |
| C(7)  | 52(2) | 34(1)  | 51(2)  | -2(1)  | 9(1)  | -1(1)  |
| C(8)  | 46(2) | 36(1)  | 50(2)  | 2(1)   | 4(1)  | -5(1)  |
| C(9)  | 42(1) | 37(1)  | 47(2)  | 1(1)   | 2(1)  | -1(1)  |
| C(10) | 53(2) | 49(2)  | 67(2)  | -2(2)  | 12(2) | 5(1)   |
| C(11) | 50(2) | 38(1)  | 39(2)  | -3(1)  | 3(1)  | -9(1)  |
| C(12) | 61(2) | 40(1)  | 46(2)  | -1(1)  | -7(2) | -12(1) |
| C(13) | 89(3) | 49(2)  | 45(2)  | 7(1)   | -4(2) | -27(2) |
| C(14) | 63(2) | 71(2)  | 54(2)  | -10(2) | 11(2) | -29(2) |
| C(15) | 56(2) | 65(2)  | 59(2)  | -12(2) | 11(2) | -10(2) |
| C(16) | 58(2) | 45(2)  | 52(2)  | -3(1)  | 6(2)  | -4(1)  |
| C(17) | 44(2) | 35(1)  | 79(2)  | -5(1)  | 13(2) | -2(1)  |
| C(18) | 74(2) | 48(2)  | 99(3)  | -16(2) | 8(2)  | 12(2)  |
| C(19) | 92(3) | 66(2)  | 114(3) | -40(2) | 9(3)  | -4(2)  |
| C(20) | 59(2) | 89(3)  | 100(3) | -32(2) | 13(2) | -18(2) |
| C(21) | 51(2) | 108(3) | 114(3) | -25(3) | -8(2) | 15(2)  |
| C(22) | 62(2) | 68(2)  | 106(3) | -31(2) | -1(2) | 18(2)  |
|        | Х     | У     | Z     | U(eq) |  |
|--------|-------|-------|-------|-------|--|
| H(2A)  | 6843  | 14011 | -647  | 62    |  |
| H(3A)  | 6897  | 15850 | -291  | 102   |  |
| H(4A)  | 8099  | 16693 | 486   | 89    |  |
| H(5A)  | 9307  | 15664 | 968   | 70    |  |
| H(7A)  | 8547  | 10374 | -1391 | 55    |  |
| H(10A) | 6838  | 13094 | 1398  | 84    |  |
| H(10B) | 6972  | 11998 | 2146  | 84    |  |
| H(10C) | 6233  | 12089 | 1130  | 84    |  |
| H(12A) | 8559  | 13838 | -2521 | 59    |  |
| H(13A) | 9620  | 14399 | -3910 | 73    |  |
| H(14A) | 10903 | 13445 | -4083 | 75    |  |
| H(15A) | 11153 | 11942 | -2804 | 72    |  |
| H(16A) | 10092 | 11359 | -1433 | 62    |  |
| H(18A) | 7245  | 7884  | -1367 | 89    |  |
| H(19A) | 6404  | 7315  | -3034 | 108   |  |
| H(21A) | 4850  | 9862  | -2563 | 109   |  |
| H(22A) | 5675  | 10437 | -879  | 94    |  |
| H(23A) | 5229  | 7487  | -4422 | 192   |  |
| H(23B) | 4980  | 8705  | -4721 | 192   |  |
| H(23C) | 4412  | 8014  | -3791 | 192   |  |
|        |       |       |       |       |  |

 Table 15. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (A^2 x 10^3) for 3y.

#### 4. References

1. Xie, Y.; Chen, T.; Fu, S. M.; Li, X. S.; Deng, Y.; Jiang, H. F.; Zeng. W. Chem. Commun. 2014, 50, 10699.

2. Jiang, Y.; Khong, V. Z. Y.; Lourdusamy, E.; Park, C. M. Chem. Commun. 2012, 48, 3133.

3. Pasceri, R.; Bartrum, H. E.; Hayes, C. J.; Moody, C. J. Chem. Commun. 2012, 48, 10077.

4. Shi, Z.; Koester, D. C.; Boultadakis-Arapinis, M.; Glorious, F. J. Am. Chem. Soc. 2013, 135, 12204.

5. Christie, D.; Davoile, R. J.; Elsegood, M. R.; Fryatt, R.; Jones, R. C.; Pritchard, G. J. Chem. Commun. 2004, 7, 2474.

# 5. <sup>1</sup>H NMR and <sup>13</sup>C NMR spectrum for all isolated products.

(1) The <sup>1</sup>H NMR and <sup>13</sup>C NMR spectrum for **2a** (using CDCl<sub>3</sub> as solvent)



(2) The <sup>1</sup>H NMR and <sup>13</sup>C NMR spectrum for **2b** (using CDCl<sub>3</sub> as solvent)



38

## (3) The <sup>1</sup>H NMR and <sup>13</sup>C NMR spectrum for 2c (using CDCl<sub>3</sub> as solvent)



(4) The <sup>1</sup>H NMR and <sup>13</sup>C NMR spectrum for **2d** (using CDCl<sub>3</sub> as solvent)



(5) The <sup>1</sup>H NMR and <sup>13</sup>C NMR spectrum for 2e (using CDCl<sub>3</sub> as solvent)



(6) The <sup>1</sup>H NMR and <sup>13</sup>C NMR spectrum for 2f (using CDCl<sub>3</sub> as solvent)



(7) The <sup>1</sup>H NMR and <sup>13</sup>C NMR spectrum for 2g (using CDCl<sub>3</sub> as solvent)



(8) The <sup>1</sup>H NMR and <sup>13</sup>C NMR spectrum for **2h** (using CDCl<sub>3</sub> as solvent)



(9) The <sup>1</sup>H NMR and <sup>13</sup>C NMR spectrum for **2i** (using CDCl<sub>3</sub> as solvent)









## (11) The <sup>1</sup>H NMR and <sup>13</sup>C NMR spectrum for 3a (using CDCl<sub>3</sub> as solvent)

(12) The <sup>1</sup>H NMR and <sup>13</sup>C NMR spectrum for **3b** (using  $CDCl_3$  as solvent)



#### (13) The <sup>1</sup>H NMR and <sup>13</sup>C NMR spectrum for 3c (using CDCl<sub>3</sub> as solvent)







(14) The <sup>1</sup>H NMR and <sup>13</sup>C NMR spectrum for **3d** (using  $CDCl_3$  as solvent)







(15) The <sup>1</sup>H NMR and <sup>13</sup>C NMR spectrum for 3e (using CDCl<sub>3</sub> as solvent)





(16) The <sup>1</sup>H NMR and <sup>13</sup>C NMR spectrum for **3f** (using  $CDCl_3$  as solvent)

(17) The <sup>1</sup>H NMR and <sup>13</sup>C NMR spectrum for 3g (using CDCl<sub>3</sub> as solvent)



f1 (ppm)

(18) The <sup>1</sup>H NMR and <sup>13</sup>C NMR spectrum for **3h** (using  $CDCl_3$  as solvent)

















(22) The <sup>1</sup>H NMR and <sup>13</sup>C NMR spectrum for **3**l (using  $CDCl_3$  as solvent)



58

(23) The <sup>1</sup>H NMR and <sup>13</sup>C NMR spectrum for 3m (using CDCl<sub>3</sub> as solvent)







## (25) The <sup>1</sup>H NMR and <sup>13</sup>C NMR spectrum for **30** (using CDCl<sub>3</sub> as solvent)



## (26) The <sup>1</sup>H NMR and <sup>13</sup>C NMR spectrum for 3p (using CDCl<sub>3</sub> as solvent)



(27) The <sup>1</sup>H NMR and <sup>13</sup>C NMR spectrum for 3q (using CDCl<sub>3</sub> as solvent)



(28) The <sup>1</sup>H NMR and <sup>13</sup>C NMR spectrum for 3r (using CDCl<sub>3</sub> as solvent)



-- (PPm)







(30) The <sup>1</sup>H NMR and <sup>13</sup>C NMR spectrum for **3t** (using CDCl<sub>3</sub> as solvent)

(31) The <sup>1</sup>H NMR and <sup>13</sup>C NMR spectrum for **3u** (using CDCl<sub>3</sub> as solvent)



(32) The <sup>1</sup>H NMR and <sup>13</sup>C NMR spectrum for 3v (using CDCl<sub>3</sub> as solvent)







(34) The <sup>1</sup>H NMR and <sup>13</sup>C NMR spectrum for 3x (using CDCl<sub>3</sub> as solvent)



(35) The <sup>1</sup>H NMR and <sup>13</sup>C NMR spectrum for 3y (using CDCl<sub>3</sub> as solvent)






(37) The <sup>1</sup>H NMR and <sup>13</sup>C NMR spectrum for **d-3a** (using  $CDCl_3$  as solvent)



(38) The crude <sup>1</sup>H NMR spectrum for calculating KIE value via parallel reactions.



- 8.63 - 8.46













~ 8.63 ~ 8.46