Supplementary Information

Complete Hydrogen Release from Aqueous Ammonia-borane over Platinum-Loaded Titanium Dioxide Photocatalyst

Takashi Kamegawa^{*,a} and Takayuki Nakaue^{a,b}

^a Nanoscience and Nanotechnology Research Center, Osaka Prefecture University, 1-2 Gakuencho, Nakaku, Sakai, Osaka 599-8570, Japan. ^b Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuencho, Nakaku, Sakai, Osaka 599-8531, Japan. E-mail: t-kamegawa@21c.osakafu-u.ac.jp **Material.** Ammonia-borane (NH₃BH₃, AB) was obtained from Sigma-Aldrich Co. Hydrogen hexachloroplatinate (IV) hexahydrate (H₂PtCl₆·6H₂O), aqueous ammonia solution (5 mmol/l), ammonium sulfate ((NH₄)₂SO₄), and methanol were purchased from Nacalai Tesque Inc. Boron trioxide (B₂O₃) was obtained from Kishida Chemical Co. Ltd. All chemicals were used without further purification.

Sample preparation. The different types of TiO₂ such as JRC-TiO-3 (crystalline phase: rutile (R), Surface area: 51 m²/g), JRC-TiO-4 (anatase/rutile (A/R), 50 ± 15 m²/g) and JRC-TiO-8 (anatase (A), 338 m²/g) were supplied from the Catalysis Society of Japan as a reference catalyst. The photo-deposition of Pt nanoparticles on each TiO₂ was conducted using a deaerated aqueous methanol solution of H₂PtCl₆·6H₂O under UV light irradiation ($\lambda > 290$ nm). Samples were denoted as Pt/TiO₂(R), Pt/TiO₂(A/R) and Pt/TiO₂(A), respectively. As a reference, Pt-loaded SiO₂ (Pt/SiO₂) was also prepared by an impregnation method using a SiO₂ (Aerosil 300, 300 ± 30 m²/g) and aqueous H₂PtCl₆·6H₂O solution. After an impregnation, Pt/SiO₂ was calcined at 773 K for 5 h in air. Prior to the characterization and reaction test, Pt/SiO₂ was treated with H₂ gas (flow rate: 20 ml/min) at 473 K for 1 h.

Characterization. The surface area of samples was obtained by measurement of N_2 adsorption isotherms using a BEL-SORP max (BEL Japan, Inc.) at 77 K after degassing of samples under vacuum at 393 K for 2 h. CO pulse adsorption was carried out to evaluate the Pt surface area and Pt particle size in each sample by using a BEL-METAL-1 instrument (BEL Japan, Inc.) at 323 K. The Pt-loaded TiO₂ was pre-treated by a H₂ flow at 323 K for 1 h.

Catalytic reaction. In a typical experiment, the decomposition of AB was carried out in a suspension of each sample under inert conditions at 298 K. The fixed amount of sample (10 mg) was placed into a Pyrex reaction vessel under Ar atmosphere. After bubbling of Ar gas, an aqueous AB solution (2 mmol/L, 5 mL) was charged into a Pyrex glass reaction vessel. The amount of H₂ and N₂ formed in the gas phase was measured by using a gas chromatograph (Shimadzu GC-8A (Ar-carrier gas) and GC-2014 (He-carrier gas)) equipped with a MS-5A column and TCD detector. UV light irradiation was carried out using a 100 W high-pressure Hg lamp through a water filter (UV light intensity ($\lambda = 360$ nm), 10 mW/cm²). Photocatalytic reactions were carried out by using the same equipment. The solution of H₃BO₃ was prepared by dissolving a B₂O₃ in water. The aqueous solution (5 mL) with appropriate concentration of NH₃ (2 mmol/L), (NH₄)₂SO₄ (1 mmol/L) and H₃BO₃ was also obtained by mixing a predetermined quantity of them (aqueous NH₃ and H₃BO₃: 4 mmol/L, 2.5 ml). These chemicals and AB showed no typical light absorption in the wavelength longer than 220 nm.