# Enantioselective Hydrogenation of Cyclic Imines Catalysed by NoyoriIkariya Half-Sandwich Complexes and Their Analogues 



[^0]
## Table of contents:

1. Experimental ..... S2
1.1 General ..... S2
1.2 Chemicals ..... S3
1.3 Synthetic procedures ..... S4
2. Supplementary results ..... S14
2.1 Asymmetric hydrogenation experiments ..... S14
2.2 Synthesis of $\mathbf{G}$ and $\mathbf{H}$, structural elucidation of 13a-c ..... S16
2.3 X-ray diffraction analysis of complex $\mathbf{G}$ ..... S17
3. References ..... S19
4. Copies of NMR spectra ..... S20
4.1 4-(4-methylcyclohexa-1,4-dienyl)butan-1-ol (13a-c) ..... S20
$4.2\left[\left(\eta^{6}-(4-(p-m e t h y l p h e n y l) b u t a n o l) \mathrm{RuCl}_{2}\right]_{2}(\mathbf{1 4 a}, \mathbf{b})\right.$ ..... S22
$4.3 \quad\left[\mathrm{RuCl}\left(\eta^{6}-(p-m e t h y l p h e n y l) b u t a n o l\right)(S, S)-\mathrm{TsDPEN}\right](\mathbf{G})$ ..... S24
4.4 4-(4-methylcyclohexa-1,4-dienyl)butane (15a-c) ..... S26
$4.5\left[\left(\eta^{6}-\left(4-\left(p-\text { methylphenyl)butane) } \mathrm{RuCl}_{2}\right]_{2}(\mathbf{1 6 a , b})\right.\right.\right.$ ..... S28
$4.6\left[\operatorname{RuCl}\left(\eta^{6}-(p-m e t h y l p h e n y l) b u t a n e\right)(S, S)-T s D P E N\right](H)$ ..... S30

## 1. Experimental

### 1.1 General

Reactions with oxygen- and moisture-sensitive materials were carried out under argon atmosphere using standard Schlenk techniques. Solvents were dried using activated molecular sieves ( $4 \AA$ ).
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Bruker AVANCE III $400 \mathrm{MHz}, 600 \mathrm{MHz}$ and 700 MHz spectrometers with reference to the solvent residual signal as an internal standard $\left(\mathrm{CD}_{3} \mathrm{CN}: \delta_{\mathrm{H}} 1.950 \mathrm{ppm}, \delta_{\mathrm{C}} 118.69\right.$ and 1.39 ppm, DMSO- $d_{6}: \delta_{\mathrm{H}} 2.500 \mathrm{ppm}, \delta_{\mathrm{C}}$ $\left.39.600 \mathrm{ppm}, \mathrm{CDCl}_{3}: \delta_{\mathrm{H}} 7.265 \mathrm{ppm}, \delta_{\mathrm{C}} 77.00 \mathrm{ppm}, \mathrm{CD}_{2} \mathrm{Cl}_{2}: \delta_{\mathrm{H}} 5.320 \mathrm{ppm}, \delta_{\mathrm{C}} 54.00 \mathrm{ppm}\right) .{ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, COSY, gHSQCAD, gHMBCAD and 2D J-resolved spectra were measured using the manufacturers' software (Topspin 2.1 and 3.2, Bruker Biospin GmbH, Rheinstetten, Germany). The chemical shifts are given in $\delta$ scale [ppm] and coupling constants in Hz. The digital resolution enabled reporting the $\delta$ of ${ }^{1} \mathrm{H}$ to 3 , coupling constants to 1 , and ${ }^{13} \mathrm{C}$ to 2 decimal places. Signals assigned from 2D experiments are reported to $2\left({ }^{1} \mathrm{H}\right)$ and $1\left({ }^{13} \mathrm{C}\right)$ decimal places, respectively.

High resolution mass spectrometry measurements were carried out on LTQ Orbitrap Velos (Thermo Fisher Scientific, USA), UltrafleXtreme ${ }^{\text {TM }}$ MALDI-TOF/TOF (Bruker Daltonics, Germany) and GC-MS (Agilent 7890A GC + OA-TOF Waters GCT Premier MS) spectrometers. Electrospray ionization (ESI), matrix-assisted laser desorption/ionization (MALDI), or atmospheric pressure chemical ionization (APCI) were used as an ion sources.

For imines 1-6, GC analyses were carried out on a Varian CP-3800 GC equipped with a Varian 1177 autosampler, FID and and a non-polar column (Varian VF-1, $60 \mathrm{~m} \times$ $0.25 \mathrm{~mm} \times 0.25 \mu \mathrm{~m}$ ). Nitrogen ( $99.99 \%$ ) was used as the carrier gas at a flow rate of 0.5 $\mathrm{mL} / \mathrm{min}$. The injector was heated to $300^{\circ} \mathrm{C}$, the injected volume was $1 \mu \mathrm{~L}$ and split ratio $1: 25$. The detector was heated to $270^{\circ} \mathrm{C}$ for the measurement of conversion and $250^{\circ} \mathrm{C}$ for the analysis of ee using a pre-column derivatization method previously described by us $^{9 \mathrm{e}}$. In the case of $\mathbf{7 - 1 2}$, the conversion and ee were acquired on a Agilent 7693/7890 GC equipped with the chiral J\&W CycloSilTM-B ( $30 \mathrm{~m} \times 0.25 \mathrm{~mm} \times 0.25 \mu \mathrm{~m}$ ) column, Agilent 5975C Triple-Axis MSD detector and helium as the carrier gas.

IR spectra were measured on Nicolet 6700 FTIR instrument.
Crystallographic measurements were done with four circle CCD diffractometer Gemini by Oxford Diffraction, Ltd., with graphite monochromated $\mathrm{Cu} \mathrm{K} \alpha$ radiation $(\lambda=$ 1.54187 Å). The crystal structure was solved by charge flipping method using program Superflip ${ }^{1}$ and refined with the Jana2006 program package ${ }^{2}$ by full-matrix least squares technique on F. The molecular structure plot was prepared using ORTEP III. ${ }^{3}$ Supramolecular interactions were viewed in Mercury. ${ }^{4}$

### 1.2 Chemicals

The following compounds were purchased from commercial sources and used as received:
$(S, S)$ - $N$ - $p$-toluenesulfonyl-1,2-diphenylethylenediamine ( $98 \%, \mathrm{ABCR}$ ),
Dichloro( $\eta^{5}-\mathrm{Cp}{ }^{*}$ )rhodium(I) dimer ( 99 \%, Strem Chemicals),
Dichloro( $\eta^{6}-p$-cymene)ruthenium(II) dimer (Sigma-Aldrich),
[ $\mathrm{RuCl}\left(\eta^{6}-p\right.$-cymene) $(S, S)$-TsDPEN] (A, Sigma-Aldrich),
[ $\mathrm{RuCl}\left(\eta^{6}\right.$-mesitylene) $(S, S)$-TsDPEN] (C, Sigma-Aldrich),
$[\operatorname{RuCl}(S, S)$-Teth-TsDPEN] (D, Strem Chemicals),
[ $\mathrm{RuCl}(S, S)$-Ts-DENEB] (E, Strem Chemicals),
6,7-diethoxy-1-methyl-3,4-dihydroisoquinoline (7, Acros Organics),
7-methoxy-1-methyl-3,4-dihydro- $\beta$-carboline (harmaline, 11, TCI).

The following known compounds were synthesized according to previously reported procedures:

6,7-dimethoxy-1-methyl-3,4-dihydroisoquinoline (1), ${ }^{9 b}$
1-methyl-3,4-dihydroisoquinoline (2), ${ }^{9 b}$
6-methoxy-1-methyl-3,4-dihydroisoquinoline (3), ${ }^{\text {bb }}$
7-methoxy-1-methyl-3,4-dihydroisoquinoline (4), ${ }^{\text {bb }}$
1-phenyl-3,4-dihydroisoquinoline (5), ${ }^{9 f}$
1-(4-trifluoromethylphenyl)-3,4-dihydroisoquinoline (6),9f
6,7-dimethoxy-1-isopropyl-3,4-dihydroisoquinoline (8),9g
1 -isopropyl-3,4-dihydroisoquinoline (9), ${ }^{9 \mathrm{~g}}$
1-methyl-3,4-dihydro- $\beta$-carboline (harmalane, 10), ${ }^{9 \mathrm{~h}}$
3-methyl-1,2-benzoisothiazole-1,1-dioxide (12). ${ }^{9 \mathrm{i}}$

The syntheses of the following compounds are based on published procedures:
$\left[\mathrm{Ru}\left(\eta^{6}-p\right.\right.$-cymene)( $\left.\left.\mathrm{HN}-\mathrm{CHPhCHPhNSO} 2_{2} \mathrm{C}_{6} \mathrm{H}_{4}-p-\mathrm{CH}_{3}\right)\right](\mathbf{B}),{ }^{5}$
$\left[\operatorname{RhCl}\left(\eta^{5}-\mathrm{Cp}^{*}\right)(S, S)\right.$-TsDPEN] (F), ${ }^{6 a}$
4-(4-methylcyclohexa-1,4-dienyl)butan-1-ol (13a), ${ }^{7}$
[ $\left[\eta^{6} \text {-(4-( } p \text {-methylphenyl)butanol) } \mathrm{RuCl}_{2}\right]_{2}(\mathbf{1 4 a}),{ }^{8}$
4-(4-methylcyclohexa-1,4-dienyl)butane (15a), ${ }^{7}$
$\left[\operatorname{RuCl}\left(\eta^{6}-\left(p-\right.\right.\right.$ methylphenyl)butanol)( $(S, S)$-TsDPEN] (G), ${ }^{6 \mathrm{~b}}$
$\left[\operatorname{RuCl}\left(\eta^{6}-(p-\right.\right.$ methylphenyl)butane)$(S, S)-T s D P E N](H) .{ }^{6 b}$

### 1.3 Synthetic procedures

### 1.3.1 Synthesis of $\left[\mathrm{Ru}\left(\eta^{6}-p\right.\right.$-cymene $\left.)\left(\mathrm{HN}-\mathrm{CHPhCHPhNSO}{ }_{2} \mathrm{C}_{6} \mathrm{H}_{4}-p-\mathrm{CH}_{3}\right)\right]$ (B)

$\left[\mathrm{RuCl}_{2}\left(\eta^{6}-p \text {-cymene }\right)\right]_{2}(125.4 \mathrm{mg}, 0.197 \mathrm{mmol}),(S, S)$-TsDPEN $(150.0 \mathrm{mg}, 0.409$ mmol ) were dissolved in dichloromethane ( 2.9 mL ), KOH ( $163.8 \mathrm{mg}, 2.920 \mathrm{mmol}$ ) was added and the mixture was stirred at room temperature for 5 min . The reaction mixture was washed with water ( 2.9 mL ), dried over $\mathrm{CaH}_{2}$ and filtered. The solvent was evaporated under reduced pressure to afford a dark purple solid. Yield: 148 mg , ( $61 \%$ ).

${ }^{1} \mathrm{H}$ NMR ( $600.23 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 300.0 \mathrm{~K}$ ): $\delta 1.201$ ( $3 \mathrm{H}, \mathrm{d}, J=6.9, \mathrm{H}-7{ }^{2}$ ), 1.292 ( $3 \mathrm{H}, \mathrm{d}, J=6.9, \mathrm{H}-7$ ), $2.146(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-1), 2.296\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right.$-para ${ }^{\mathrm{Ts}}$ ), $2.642(1 \mathrm{H}, \mathrm{dd}, J=6.9,6.9, \mathrm{H}-6), 3.938(1 \mathrm{H}, \mathrm{d}, J=4.9$, H-3'), 4.286 ( $1 \mathrm{H}, \mathrm{s}, \mathrm{H}-2$ '), 5.328 ( $1 \mathrm{H}, \mathrm{d}, J=6.0, \mathrm{H}-4$ ), $5.414\left(1 \mathrm{H}, \mathrm{d}, J=6.0, \mathrm{H}-3{ }^{\prime \prime}\right), 5.627$ ( $1 \mathrm{H}, \mathrm{d}, J=$ $6.0, \mathrm{H}-4 \mathrm{H}), 5.768(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.0, \mathrm{H}-3), 6.945\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-\right.$ meta $\left.^{\mathrm{Ts}}\right), 7.125(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-$ ortho), $7.15(2 \mathrm{H}$, m, H-meta), 7.17 ( $2 \mathrm{H}, \mathrm{m}, \mathrm{H}$-para, H-para'), 7.211 ( $2 \mathrm{H}, \mathrm{m}, \mathrm{H}$-ortho ${ }^{\mathrm{Ts}}$ ), 7.248 ( $2 \mathrm{H}, \mathrm{m}, \mathrm{H}-$ meta'), 7.443 (1H, br. s, H-4'), 7.482 ( $2 \mathrm{H}, \mathrm{m}, \mathrm{H}$-ortho').
${ }^{13} \mathrm{C}$ NMR ( $150.93 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 300.0 \mathrm{~K}$ ): $\delta 20.07$ (C-1), 21.31 ( $\mathrm{CH}_{3}$-para ${ }^{\mathrm{Ts}), ~} 23.41$ (C-7"), 23.57 (C7), 32.71 (C-6), 72.33 (C-2'), 77.00 (C-4), 80.59 (C-4"), 81.54 (C-3"), 81.96 (C-3'), 84.74 (C-3), 89.06 (C-2), 100.04 (C-5), 127.09 (C-para'), 127.32 (C-ortho ${ }^{\text {Ts }), ~} 127.40$ (C-ortho), 127.65 (Cpara), 128.06 (C-ortho'), 128.38 (C-meta'), 128.83 (C-meta), 129.46 (C-metaTs), 141.35 (Cpara $^{\mathrm{Ts}}$ ), 143.81 (C-ipso ${ }^{\text {Ts }}$ ), 145.61 (C-ipso), 148.45 (C-ipso').

HRMS (ESI + ) calculated for $\mathrm{C}_{31} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{RuS}[\mathrm{M}+\mathrm{H}]+:$ 601.1457; found: 601.1459.

### 1.3.2 Synthesis of $\left[\operatorname{RhCl}\left(\eta^{5}-\mathbf{C p}^{*}\right)(S, S)\right.$-TsDPEN] (F)

$\left[\mathrm{RhCl}_{2} \mathrm{Cp}^{*}\right]_{2}(154.5 \mathrm{mg}, 0.25 \mathrm{mmol})$ and $(S, S)$-TsDPEN ( $183 \mathrm{mg}, 0.5 \mathrm{mmol}$ ) were dissolved in dichloromethane ( 5 mL ), triethylamine ( $139.1 \mu \mathrm{~L}, 101 \mathrm{mg}, 1 \mathrm{mmol}$ ) was added and the solution was stirred for 20 min at room temperature. The reaction mixture was washed with water ( 2.5 mL ), dried over $\mathrm{MgSO}_{4}$ and filtered. The solvent was evaporated under reduced pressure to give an orange solid. Yield: $300 \mathrm{mg}, 94 \%$. m.p. 219-220 ${ }^{\circ} \mathrm{C}$ (dec.).

${ }^{1} \mathrm{H}$ NMR ( $400.00 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 303.2 \mathrm{~K}$ ): $\delta 1.817\left(15 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}{ }^{\mathrm{Cp}}\right.$ ), 2.291 ( $3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}$-para ${ }^{\mathrm{Ts}}$ ), 3.447 ( $1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4$ '), $3.713\left(1 \mathrm{H}, \mathrm{ddd}, J=10.8,13.6,2.3, \mathrm{H}-3^{\prime}\right), 3.903\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4^{\prime}\right), 3.972(1 \mathrm{H}, \mathrm{d}, J=10.8$, H-2'), 6.29 ( $2 \mathrm{H}, \mathrm{m}, \mathrm{H}$-ortho), 6.653 ( $2 \mathrm{H}, \mathrm{m}, \mathrm{H}$-ortho'), $6.780(2 \mathrm{H}, \mathrm{m}, \mathrm{H}$-meta'), 6.85 ( $2 \mathrm{H}, \mathrm{m}, \mathrm{H}-$ meta $\left.^{\text {Ts }}\right), 6.86(1 \mathrm{H}, \mathrm{m}, \mathrm{H}$-para'), 7.13 (2H, m, H-meta), $7.14(1 \mathrm{H}, \mathrm{m}, \mathrm{H}$-para), $7.311(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-$ ortho ${ }^{\text {Ts }}$ ).
${ }^{13} \mathrm{C}$ NMR ( $100.59 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 303.2 \mathrm{~K}$ ): $\delta 9.98\left(\mathrm{CH}_{3}{ }^{\mathrm{Cp}}\right)$, 21.42 ( $\mathrm{CH}_{3}$-para ${ }^{\mathrm{Ts}}$ ), 69.91 (C-2'), 72.14 (C-3'), 94.52 (ССр), 94.61 (ССр), 126.88 (C-para'), 127.58 (C-meta'), 127.62 (C-ortho), 128.32 (C$m^{2}$ ta $^{\mathrm{Ts}}$ ), 128.55 (C-ortho $^{\mathrm{Ts}}$ ), 128.83 (C-para), 129.01 (C-meta), 129.35 (C-ortho'), 139.89 (Cpara ${ }^{\mathrm{Ts}}$ ), 140.06 (C-ipso), 140.32 (C-ipso'), 142.38 (C-ipso ${ }^{\mathrm{Ts}}$ ).

HRMS ( $\mathrm{ESI}^{+}$) calculated for $\mathrm{C}_{31} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{RhS}[\mathrm{M}-\mathrm{Cl}]+$ : 603.1553; found 603.1556.

### 1.3.3 Synthesis of 4-(4-methylcyclohexa-1,4-dienyl)butan-1-ol (13a)

1,2-Bis(diphenylphosphino)ethane (DPPE) ( $102.0 \mathrm{mg}, 0.256 \mathrm{mmol}$ ), $\mathrm{CoBr}_{2}$ ( 54.3 $\mathrm{mg}, 0.248 \mathrm{mmol}$ ), $\mathrm{ZnI}_{2}(157.6 \mathrm{mg}, 0.494 \mathrm{mmol})$ and Zn powder ( $31.8 \mathrm{mg}, 0.486 \mathrm{mmol}$ ) were mixed with tetrahydrofuran ( 33 mL ) at $70^{\circ} \mathrm{C}$ and the mixture was stirred for 15 min . Isoprene ( $1.00 \mathrm{~g}, 14.7 \mathrm{mmol}, 1.47 \mathrm{~mL}$ ) and 5-hexyn-1-ol ( $1.18 \mathrm{~g}, 12.1 \mathrm{mmol}, 1.33$ mL ) were added and then further stirred for 2 hours at $70^{\circ} \mathrm{C}$. The solvent was evaporated under reduced pressure and the crude oily product was purified by flash column chromatography (hexane/EtOAc $=3: 1$ ) to afford colourless oil consisting of 13a and side-products 13b and 13c. Yield: 1.86 g ( 93 \%).


13a (74\%)


13b (19\%)


13a: ${ }^{1} \mathrm{H}$ NMR ( $600.23 \mathrm{MHz}, \mathrm{CDCl}_{3}, 293.2 \mathrm{~K}$ ): $\delta 1.479(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-3), 1.56(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2), 1.663(3 \mathrm{H}, \mathrm{s}$, $\mathrm{H}-11$ ), 1.995 ( $2 \mathrm{H}, \mathrm{dd}, J=7.5,7.5, \mathrm{H}-4$ ), $2.574(4 \mathrm{H}, \mathrm{s}, \mathrm{H}-7, \mathrm{H}-10), 3.635$ ( $2 \mathrm{H}, \mathrm{dd}, J=6.4,6.4, \mathrm{H}-1$ ), $5.407(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-9), 5.421(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-6)$.
${ }^{13} \mathrm{C}$ NMR ( $150.93 \mathrm{MHz}, \mathrm{CDCl}_{3}, 293.2 \mathrm{~K}$ ): $\delta 22.98$ (C-11), $23.50(\mathrm{C}-3), 29.81$ (C-10), 31.57 (C-7), 32.35 (C-2), 36.73 (C-4), $62.83(\mathrm{C}-1), 118.45(\mathrm{C}-6), 118.57(\mathrm{C}-9), 131.22(\mathrm{C}-8), 134.60(\mathrm{C}-5)$.

13b: ${ }^{1} \mathrm{H}$ NMR ( $600.23 \mathrm{MHz}, \mathrm{CDCl}_{3}, 293.2 \mathrm{~K}$ ): $\delta 1.493(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-3), 1.545(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2), 1.758$ (3H, s, H-11), $2.076(2 \mathrm{H}, \mathrm{dd}, J=7.4,7.4, \mathrm{H}-4), 2.093(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-7), 2.10(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-6), 3.635(2 \mathrm{H}, \mathrm{dd}, J=$ $6.4,6.4, \mathrm{H}-1), 5.582(1 \mathrm{H}, \mathrm{d}, J=6.6, \mathrm{H}-10), 5.590(1 \mathrm{H}, \mathrm{d}, J=6.6, \mathrm{H}-9)$.
${ }^{13} \mathrm{C}$ NMR ( $150.93 \mathrm{MHz}, \mathrm{CDCl}_{3}, 293.2 \mathrm{~K}$ ): $\delta 22.92$ (C-11), 23.73 (C-3), 26.92 (C-6), 28.66 (C-7), 32.34 (C-2), 36.61 (C-4), 62.81 (C-1), 119.02 (C-10), 119.25 (C-9), 133.01 (C-8), 135.97 (C-5).

13c: ${ }^{1} \mathrm{H}$ NMR ( $600.23 \mathrm{MHz}, \mathrm{CDCl}_{3}, 293.2 \mathrm{~K}$ ): $\delta 1.543(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-3), 1.565(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2), 1.676(3 \mathrm{H}$, s, H-11), $2.008(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-4), 2.472(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.0, \mathrm{H}-6), 2.667(2 \mathrm{H}, \mathrm{br} . \mathrm{s} ., \mathrm{H}-9), 3.635(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-1)$, 5.421 ( $2 \mathrm{H}, \mathrm{m}, \mathrm{H}-8, \mathrm{H}-10$ ).
${ }^{13} \mathrm{C}$ NMR (150.93 MHz, $\left.\mathrm{CDCl}_{3}, 293.2 \mathrm{~K}\right): \delta 23.19$ (C-11), $23.39(\mathrm{C}-3), 27.64(\mathrm{C}-9), 32.36(\mathrm{C}-2)$, 33.79 (C-6), 36.86 (C-4), 62.83 (C-1), 118.29, 118.48 (C-8, C-10), 131.20, 131.22 (C-5, C-7).

HRMS (ESI ${ }^{+}$) calculated for $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{O}$ [M-H]- : 165.1279; found: 165.1277.
IR: $v_{\max }=3622,3442,3082,3011,2935,2879,2861,2820,1662,1610,1475,1448,1439,1384$, $1053,1022 \mathrm{~cm}^{-1}$.

### 1.3.4 Synthesis of [ $\boldsymbol{\eta}^{6}$-(4-( $p$-tolyl)butan-1-ol) $\left.\mathrm{RuCl}_{2}\right]_{2}(14 \mathrm{a})$

Diene 13a ( $1.50 \mathrm{~g}, 9.02 \mathrm{mmol}$ ) was dissolved in ethanol ( 70 mL ) and $\mathrm{RuCl}_{3} \cdot \mathrm{xH}_{2} \mathrm{O}$ ( 387 mg , 1.48 mmol , trihydrate assumed) was added. The reaction mixture was stirred for 18 h under reflux. After the reaction, the mixture was hot-filtered to remove Ru black. The volatiles were removed on a rotary evaporator giving red-brown oil. The oil was washed with cold and degassed EtOH ( $3 \times 3 \mathrm{~mL}$ ) and hexane ( $3 \times 3 \mathrm{~mL}$ ). The resulting red-brown solid was dried in vacuum ( 1 Torr). Yield: 372 mg ( $75 \%$ ). M.p. 168$171{ }^{\circ} \mathrm{C}$ (dec.).



14a: ${ }^{1} \mathrm{H}$ NMR ( $400.00 \mathrm{MHz}, \mathrm{DMSO}_{6}, 303.2 \mathrm{~K}$ ): $\delta 1.461$ ( $2 \mathrm{H}, \mathrm{m}, \mathrm{H}-8$ ), 1.584 ( $2 \mathrm{H}, \mathrm{m}, \mathrm{H}-7$ ), 2.082 $(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-1), 2.383(2 \mathrm{H}, \mathrm{t}, J=7.7, \mathrm{H}-6), 3.403(2 \mathrm{H}, \mathrm{t}, J=6.3, \mathrm{H}-9), 5.751(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-3), 5.786(2 \mathrm{H}, \mathrm{m}$, H-4).
${ }^{13} \mathrm{C}$ NMR (100.58 MHz, DMSO- $d_{6}, 303.2 \mathrm{~K}$ ): $\delta 17.86$ (C-1), 25.89 (C-7), 31.69 (C-6), 32.00 (C-8), 60.38 (C-9), 86.93 (C-3), 87.01 (C-4), 99.62 (C-2), 101.71 (C-5).

14b: ${ }^{1} \mathrm{H}$ NMR ( $400.00 \mathrm{MHz}, \mathrm{DMSO}_{6}, 303.2 \mathrm{~K}$ ): $\delta 1.565$ ( $2 \mathrm{H}, \mathrm{m}, \mathrm{H}-9$ ), 1.576 ( $2 \mathrm{H}, \mathrm{m}, \mathrm{H}-8$ ), 2.129 $(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-1), 2.423(2 \mathrm{H}, \mathrm{br} . \mathrm{t} ., J=7.6, \mathrm{H}-7), 3.412(2 \mathrm{H}, \mathrm{t}, J=6.4, \mathrm{H}-10), 5.449(1 \mathrm{H}, \mathrm{d}, J=5.7, \mathrm{H}-3)$, $5.484(1 \mathrm{H}, \mathrm{d}, J=5.7, \mathrm{H}-5), 5.640(1 \mathrm{H}, \mathrm{br}$. s., $\mathrm{H}-11), 5.964(1 \mathrm{H}, \mathrm{t}, J=5.7, \mathrm{H}-4)$.
${ }^{13} \mathrm{C}$ NMR (100.58 MHz, DMSO- $d_{6}, 303.2 \mathrm{~K}$ ): $\delta 18.52$ (C-1), 25.64 (C-8), 32.10 (C-9), 32.47 (C-7), 60.39 (C-10), 80.19 (C-5), 81.09 (C-3), 84.18 (C-11), 88.33 (C-4), 106.58 (C-2), 109.62 (C-6).

HRMS (ESI + ) calculated for $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{O}_{2} \mathrm{Ru}_{2} \mathrm{Cl}_{3}[\mathrm{M}-\mathrm{Cl}]+$ : 636.9555; found 636.9556 .
IR: $v_{\max }=3482,3067,3047,3008,2944,2869,1530,1495,1450,1377,1065,1033,809 \mathrm{~cm}^{-1}$.

### 1.3.5 Synthesis of $\left[\operatorname{RuCl}\left(\eta^{6}-(4-(p-t o l y l) b u t a n-1-o l)(S, S)-T s D P E N\right](G)\right.$

Dimer 14a ( $250.0 \mathrm{mg}, 0.372 \mathrm{mmol}$ ) and ligand $(S, S)$-TsDPEN ( $272.5 \mathrm{mg}, 0.744$ mmol ) were dissolved in dichloromethane ( 8.3 mL ). Triethylamine ( $207.4 \mu \mathrm{~L}, 150.5 \mathrm{mg}$, 1.487 mmol ) was added thereto and the solution was stirred for 1 hour at room temperature. The orange precipitate was filtered off, washed with water ( $3 \times 2 \mathrm{~mL}$ ) and dried in vacuum ( 1 Torr). Yield: 415 mg , ( $84 \%$ ). m.p. $205-207^{\circ} \mathrm{C}$ (dec.).

${ }^{1} \mathrm{H}$ NMR ( 700.13 MHz, DMSO- $_{6}, 303.2 \mathrm{~K}$ ): $\delta 1.542$ ( $2 \mathrm{H}, \mathrm{m}, \mathrm{H}-8$ ), $1.693(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-7$ ), $2.214(3 \mathrm{H}, \mathrm{s}$, $\mathrm{CH}_{3}$-para ${ }^{\mathrm{Ts}}$ ), 2.247 ( $3 \mathrm{H}, \mathrm{s}, \mathrm{H}-1$ ), $2.568(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-6 \mathrm{u}), 2.599(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-6 \mathrm{~d}), 3.179(1 \mathrm{H}, \mathrm{dd}, J=10.3$, $12.5, \mathrm{H}-4$ '), $3.474(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-9), 3.557\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3^{\prime}\right), 3.708(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=11.2, \mathrm{H}-2 \mathrm{C}), 4.455(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=$ 5.1, 9-OH), 5.496 ( $1 \mathrm{H}, \mathrm{d}, J=5.6, \mathrm{H}-3$ ), 5.595 ( $2 \mathrm{H}, \mathrm{s}, \mathrm{H}-3^{\prime \prime}, \mathrm{H}-4 \mathrm{C}$ ), 5.641 ( $1 \mathrm{H}, \mathrm{d}, J=5.6, \mathrm{H}-4$ ), 6.530 ( $2 \mathrm{H}, \mathrm{d}, J=7.4, \mathrm{H}$-ortho'), 6.673 ( $2 \mathrm{H}, \mathrm{dd}, J=7.4,7.4, \mathrm{H}-$ meta'), 6.778 ( $1 \mathrm{H}, \mathrm{t}, J=7.4, \mathrm{H}-$ para'), 6.805 ( $2 \mathrm{H}, \mathrm{m}, \mathrm{H}$-ortho), 6.819 ( $2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.9, \mathrm{H}-$ meta $^{\mathrm{Ts}}$ ), 7.043 ( $2 \mathrm{H}, \mathrm{d}, J=7.9, \mathrm{H}$-ortho ${ }^{\mathrm{Ts}}$ ), $7.10(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-$ meta, $\mathrm{H}-$ para $), 7.354$ ( $1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.8, \mathrm{H}-4$ ').
${ }^{13} \mathrm{C}$ NMR ( 176.06 MHz , DMSO-d $\mathrm{d}_{6}, 303.2 \mathrm{~K}$ ): $\delta 18.35$ (C-1), 20.82 ( $\mathrm{CH}_{3}$-para ${ }^{\text {Ts }}$ ), 26.49 (C-7), 32.11 (C-6), 32.17 (C-8), 60.48 (C-9), 68.58 (C-2'), 71.10 (C-3'), 81.95 (C-3"), 81.97 (C-4), 83.17 (C-3), 83.95 (C-4"), 95.09 (C-2), 96.65 (C-5), 125.96 (C-para'), 126.62 (C-meta', C-ortho ${ }^{\text {Ts }), ~} 127.15$ (Cortho), 127.56 (C-meta ${ }^{\text {Ts }}$ ), 127.64 (C-para), 128.19 (C-meta), 128.93 (C-ortho'), 138.11 (Cpara $^{\mathrm{Ts}}$ ), 139.24 (C-ipso'), 139.90 (C-ipso), 143.78 (C-ipso ${ }^{\text {Ts }}$ ).

HRMS (ESI ${ }^{+}$) calculated for $\mathrm{C}_{32} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{RuS}[\mathrm{M}-\mathrm{Cl}]^{+}$: 631.1568; found 631.1569.
IR: $v_{\max }=3455,3279,3226,3084,3064,3030,2933,2861,1599,1494,1453,1378,1270,1128$, $1105,1084,1039,821,813,689 \mathrm{~cm}^{-1}$.
$[\alpha]^{20_{589}}=+66.7^{\circ}$ (c 0.397, DMSO).

### 1.3.6 Synthesis of 4-(4-methylcyclohexa-1,4-dienyl)butane (15a)

DPPE ( $102.0 \mathrm{mg}, 0.256 \mathrm{mmol}$ ), $\mathrm{CoBr}_{2}(54.3 \mathrm{mg}, 0.248 \mathrm{mmol}), \mathrm{ZnI}_{2}$ ( 157.6 mg , 0.494 mmol ) and Zn powder ( $31.8 \mathrm{mg}, 0.486 \mathrm{mmol}$ ) were mixed with tetrahydrofuran $(33 \mathrm{~mL})$ at $70{ }^{\circ} \mathrm{C}$ and the mixture was stirred for 15 min . Isoprene ( $1.00 \mathrm{~g}, 14.7 \mathrm{mmol}$, 1.47 mL ) and 1-hexyne ( $1.00 \mathrm{~g}, 12.1 \mathrm{mmol}, 1.39 \mathrm{~mL}$ ) were added and then further stirred for 2 hours at $70^{\circ} \mathrm{C}$. The solvent was evaporated under reduced pressure and the crude oily product was purified by flash column chromatography (hexane/EtOAc =3:1) to afford colourless oil consisting of 15a-c. ${ }^{1}$ Yield: 1.54 g ( $84 \%$ ).


15a (70\%)



15b (16\%)


15a: ${ }^{1} \mathrm{H}$ NMR ( $600.23 \mathrm{MHz}, \mathrm{CDCl}_{3}, 303.2 \mathrm{~K}$ ): $\delta 0.899(3 \mathrm{H}, \mathrm{t}, J=7.2, \mathrm{H}-1), 1.306(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2), 1.389$ (2H, m, H-3), 1.674 (3H, s, H-11), 1.968 ( $2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.5, \mathrm{H}-4$ ), $2.584(4 \mathrm{H}, \mathrm{m}, \mathrm{H}-7, \mathrm{H}-10), 5.416$ (1H, m, H-6), 5.421 ( $1 \mathrm{H}, \mathrm{m}, \mathrm{H}-9$ ).
${ }^{13} \mathrm{C}$ NMR (150.93 MHz, $\left.\mathrm{CDCl}_{3}, 303.2 \mathrm{~K}\right): \delta 14.01$ (C-1), 22.44 (C-2), 23.05 (C-11), $29.70(\mathrm{C}-3)$, 29.92 (C-10), 31.61 (C-7), 36.81 (C-4), 117.97 (C-6), 118.72 (C-9), 131.28 (C-8), 135.15 (C-5).

15b: ${ }^{1} \mathrm{H}$ NMR ( $600.23 \mathrm{MHz}, \mathrm{CDCl}_{3}, 303.2 \mathrm{~K}$ ): $\delta 0.899(3 \mathrm{H}, \mathrm{t}, J=7.2, \mathrm{H}-1), 1.306(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2), 1.398$ (2H, m, H-3), $1.767(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-11), 2.049(2 \mathrm{H}, \mathrm{t}, J=7.6, \mathrm{H}-4), 2.102(4 \mathrm{H}, \mathrm{m}, \mathrm{H}-6, \mathrm{H}-7), 5.578(1 \mathrm{H}, \mathrm{m}$, H-10), 5.602 ( $1 \mathrm{H}, \mathrm{m}, \mathrm{H}-9$ ).
${ }^{13} \mathrm{C}$ NMR ( $150.93 \mathrm{MHz}, \mathrm{CDCl}_{3}, 303.2 \mathrm{~K}$ ): $\delta 14.00(\mathrm{C}-1), 22.41(\mathrm{C}-2), 22.98(\mathrm{C}-11), 27.05(\mathrm{C}-6)$, 28.72 (C-7), 29.88 (C-3), 36.69 (C-4), 118.60 (C-10), 119.34 (C-9), 132.83 (C-8), 136.73 (C-5).

15c: ${ }^{1} \mathrm{H}$ NMR ( $600.23 \mathrm{MHz}, \mathrm{CDCl}_{3}, 303.2 \mathrm{~K}$ ): $\delta 0.899$ ( $3 \mathrm{H}, \mathrm{m}, \mathrm{H}-1$ ), 1.315 ( $2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2$ ), 1.375 ( 2 H , m, H-3) 1.687 (3H, s, H-11), 1.979 (2H, m, H-4), 2.482 ( $2 \mathrm{H}, \mathrm{t}, J=8.0, \mathrm{H}-6$ ), 2.678 ( $2 \mathrm{H}, \mathrm{br} . \mathrm{s} ., \mathrm{H}-9$ ), 5.412 (2H, m, H-8, H-10).
${ }^{13} \mathrm{C}$ NMR ( $150.93 \mathrm{MHz}, \mathrm{CDCl}_{3}, 303.2 \mathrm{~K}$ ): $\delta 14.01$ (C-1), 22.46 (C-2), 23.26 (C-11), 27.69 (C-9), 29.58 (C-3), 33.89 (C-6) 36.95 (C-4), 117.80 (C-10), 118.48 (C-8), 131.37 (C-7, C-5).

[^1]15d: ${ }^{1} \mathrm{H}$ NMR ( $600.23 \mathrm{MHz}, \mathrm{CDCl}_{3}, 303.2 \mathrm{~K}$ ): $\delta 0.899(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-1), 1.291(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2), 1.577$ ( 2 H , m, H-3), $2.318\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-\right.$ para $\left.-\mathrm{CH}_{3}\right), 2.570(2 \mathrm{H}, \mathrm{t}, J=7.9, \mathrm{H}-4), 7.074(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-$ ortho $), 7.090(2 \mathrm{H}$, m, H-meta).
${ }^{13} \mathrm{C}$ NMR ( $150.93 \mathrm{MHz}, \mathrm{CDCl}_{3}, 303.2 \mathrm{~K}$ ): $\delta 13.96(\mathrm{C}-1), 20.98\left(\mathrm{C}-\right.$ para $\left.-\mathrm{CH}_{3}\right), 22.36(\mathrm{C}-2), 33.80(\mathrm{C}-$ 3), 35.19 (C-4), 128.26 (C-ortho), 128.88 (C-meta), 134.91 (C-para), 139.81 (C-ipso).

HRMS (EI) calculated for $\mathrm{C}_{11} \mathrm{H}_{18}\left[\mathrm{M}^{+}\right]$: 150.1409; found 150.1410.
IR: $v_{\max }=3080,3036,2960,2930,2873,2859,2820,1662,1610,1467,1457,1379 \mathrm{~cm}^{-1}$.

### 1.3.7 Synthesis of [ $\boldsymbol{\eta}^{6}$-(1-butyl-4-methylbenzene) $\left.\mathrm{RuCl}_{2}\right]_{2}$ (16a)

Diene 15a ( $1.547 \mathrm{~g}, 10.3 \mathrm{mmol}$ ) was dissolved in ethanol ( 80 mL ) and $\mathrm{RuCl}_{3} \cdot \mathrm{XH}_{2} \mathrm{O}$ ( $538 \mathrm{mg}, 2.1 \mathrm{mmol}$, trihydrate assumed) was added. The reaction mixture was stirred for 18 h under reflux. After the reaction, the mixture was hot-filtered to remove Ru black. The volatiles were removed on a rotary evaporator giving red-brown oil. The oil was washed with cold and degassed EtOH ( $3 \times 3 \mathrm{~mL}$ ) and hexane ( $3 \times 3 \mathrm{~mL}$ ). The resulting red-brown solid was dried in vacuum (1 Torr). Yield: 988 mg (75 \%). M.p. 192 ${ }^{\circ} \mathrm{C}$ (dec.).



16a: ${ }^{1} \mathrm{H}$ NMR ( 700.13 MHz, DMSO-d ${ }_{6}, 303.2 \mathrm{~K}$ ): $\delta 0.894$ ( $3 \mathrm{H}, \mathrm{t}, J=7.3, \mathrm{H}-9$ ), 1.333 ( $2 \mathrm{H}, \mathrm{m}, \mathrm{H}-8$ ), $1.539(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-7), 2.080(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-1), 2.379(2 \mathrm{H}, \mathrm{t}, J=7.4, \mathrm{H}-6), 5.745(2 \mathrm{H}, \mathrm{d}, J=5.5, \mathrm{H}-3), 5.789$ ( $2 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.5, \mathrm{H}-4$ ).
${ }^{13} \mathrm{C}$ NMR ( $176.06 \mathrm{MHz}, \mathrm{DMSO}_{6}, 303.2 \mathrm{~K}$ ): $\delta 13.76$ (C-9), 17.85 (C-1), 21.85 (C-8), 31.27 (C-7), 31.55 (C-6), 86.92 (C-3), 86.98 (C-4), 99.59 (C-2), 101.70 (C-5).

16b: ${ }^{1} \mathrm{H}$ NMR ( 700.13 MHz, DMSO- $d_{6}, 303.2 \mathrm{~K}$ ): $\delta 0.893$ ( $3 \mathrm{H}, \mathrm{m}, \mathrm{H}-10$ ), 1.347 ( $2 \mathrm{H}, \mathrm{m}, \mathrm{H}-9$ ), 1.538 $(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-8), 2.126(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-1), 2.418(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.6, \mathrm{H}-7), 5.445(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.2, \mathrm{H}-3), 5.483(1 \mathrm{H}, \mathrm{d}$, $J=5.2, \mathrm{H}-5), 5.643(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-11), 5.958(1 \mathrm{H}, \mathrm{t}, J=5.2, \mathrm{H}-4)$.
${ }^{13} \mathrm{C}$ NMR ( 176.06 MHz , DMSO- $d_{6}, 303.2 \mathrm{~K}$ ): $\delta 13.78$ (C-10), 18.52 (C-1), 21.96 (C-9), 31.03 (C-8), 32.35 (C-7), 80.15 (C-5), 81.06 (C-3), 84.16 (C-11), 88.32 (C-4), 106.53 (C-2), 109.55 (C-6).

HRMS (MALDI) calculated for $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{Ru}_{2} \mathrm{Cl}_{3}[\mathrm{M}-\mathrm{Cl}]$ : 604.9651 ; found 604.9659 .
IR: $v_{\max }=3067,3045,3009,2951,2927,2868,2859,1530,1497,1466,1377,1034,811 \mathrm{~cm}^{-1}$.

### 1.3.8 Synthesis of $\left[\operatorname{RuCl}\left(\boldsymbol{\eta}^{6}\right.\right.$-(1-butyl-4-methylbenzene) $(S, S)$-TsDPEN] (H)

Dimer 16a ( $200.0 \mathrm{mg}, 0.312 \mathrm{mmol}$ ) and ligand ( $S, S$ )-TsDPEN ( $228.9 \mathrm{mg}, 0.625$ mmol ) were dissolved in dichloromethane ( 7 mL ). Triethylamine ( $174.2 \mu \mathrm{~L}, 126.4 \mathrm{mg}$, 1.249 mmol ) was added thereto and the solution was stirred for 1 hour at room temperature and washed with water ( $3 \times 2 \mathrm{~mL}$ ). Removal of solvents gave the crude product. The product was purified by flash chromatography (gradient elution from hexane to EtOAc to MeOH ) and dried in vacuum (1 Torr) to give a dark orange solid. Yield: 225 mg , (56 \%). m.p. $149^{\circ} \mathrm{C}$ (dec.).

${ }^{1} \mathrm{H}$ NMR ( $600.23 \mathrm{MHz}, \mathrm{CDCl}_{3}, 303.2 \mathrm{~K}$ ): $\delta 0.964(3 \mathrm{H}, \mathrm{t}, J=7.3, \mathrm{H}-9), 1.421(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-8), 1.654(2 \mathrm{H}$, m, H-7), 2.215 ( $3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}$-para ${ }^{\text {Ts }}$ ), 2.249 ( $3 \mathrm{H}, \mathrm{s}, \mathrm{H}-1$ ), $2.582(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-6), 3.187$ ( $1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4 \mathrm{H}^{\prime} \mathrm{u}$ ), $3.556\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3^{\prime}\right), 3.712(1 \mathrm{H}, \mathrm{d}, J=11.2, \mathrm{H}-2$ '), $5.498(1 \mathrm{H}, \mathrm{d}, J=5.4, \mathrm{H}-3 \mathrm{a}), 5.592(2 \mathrm{H}, \mathrm{s}, \mathrm{H}-3 \mathrm{~b}, \mathrm{H}-$ 4b), $5.639(1 \mathrm{H}, \mathrm{d}, J=5.4, \mathrm{H}-4 \mathrm{a}), 6.534(2 \mathrm{H}, \mathrm{d}, J=7.5, \mathrm{H}-$ ortho'), $6.676(2 \mathrm{H}, \mathrm{t}, J=7.5, \mathrm{H}-$ meta'), $6.782\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.5, \mathrm{H}\right.$-para'), $6.802\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}\right.$-ortho), $6.818\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-\right.$ meta $\left.^{\mathrm{Ts}}\right), 7.048(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-$ ortho ${ }^{\text {Ts }}$ ), 7.097 ( $1 \mathrm{H}, \mathrm{m}, \mathrm{H}$-para), 7.102 ( $2 \mathrm{H}, \mathrm{m}, \mathrm{H}-$ meta), $7.343(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4$ 'd).
${ }^{13} \mathrm{C}$ NMR ( $\left.150.93 \mathrm{MHz}, \mathrm{CDCl}_{3}, 303.2 \mathrm{~K}\right): \delta 13.80(\mathrm{C}-9), 18.30(\mathrm{C}-1), 20.77\left(\mathrm{CH}_{3}\right.$-para $\left.{ }^{\mathrm{Ts}}\right)$, 21.94 (C8), 31.92 (C-7), 31.94 (C-6), 68.56 (C-2'), 71.11 (C-3'), 81.91 (C-3b), 81.94 (C-4a), 83.17 (C-3a), 83.83 (C-4b), 95.01 (C-2), 96.68 (C-5), 125.94 (C-para'), 126.58 (C-meta'), 126.62 (C-ortho ${ }^{\text {Ts }), ~}$ 127.11 (C-ortho), 127.51 (C-meta ${ }^{\text {Ts }), ~} 127.61$ (C-para), 128.16 (C-meta), 128.89 (C-ortho'), 138.09 (C-para ${ }^{\text {Ts }}$ ), 139.27 (C-ipso'), 139.87 (C-ipso), 143.74 (C-ipso ${ }^{\text {Ts }}$ ).

HRMS (ESI + ) calculated for $\mathrm{C}_{32} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{RuS}$ [M-Cl] ${ }^{\text {: }}$ 615.1619; found 615.1608.
IR: $v_{\max }=3275,3219,3085,3061,3029,2956,2927,2871,1599,1534,1494,1466,1378,1269$, $1132,1129,1085,811,618 \mathrm{~cm}^{-1}$.
$[\alpha]^{20}{ }_{589}=+28.5^{\circ}(c 0.134$, DMSO $)$.

### 1.3.9 AH in batch pressure reactors - optimized setup

The substrate ( $44 \mu \mathrm{~mol}$ ) was weighed into a GC vial and dissolved in methanol ( 0.5 mL ). Trifluoroacetic acid ( $3.4 \mu \mathrm{~L}, 44 \mu \mathrm{~mol}$ ) was added thereto, and the mixture was stirred for 5 min . The catalyst solution ( $0.44 \mu \mathrm{~mol}$ of catalyst; concentration $5.4 \mathrm{mg} / 1$ mL in methanol) was added to the mixture and the vial was closed by a pierced square of Parafilm. The vial was placed in an autoclave, which was closed, purged ( $3 \times 5 \mathrm{bar}$ ) and filled with hydrogen (15 bar).

After 6 h , the autoclave was opened and a sample of the reaction mixture (200 $\mu \mathrm{L}$ ) was mixed with a saturated solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}(1 \mathrm{~mL})$. The solution was extracted with diethyl ether ( $3 \times 1.5 \mathrm{~mL}$ ) and the organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ for 1 h . The ether solution was stripped to dryness in a stream of air. The stripped residue was dissolved in acetonitrile (GC analysis) or acetonitrile- $d_{3}$ (NMR analysis).

### 1.3.10 ATH in an NMR spectrometer

The reactions were monitored in situ in an NMR spectrometer at $30{ }^{\circ} \mathrm{C}$ by following the same protocol as described in our previous publications. ${ }^{9 a}$

Acetonitrile- $d_{3}$ (volume calculated so as to reach $730 \mu \mathrm{~L}$ of total volume of the reaction mixture), formic acid ( $13.1 \mu \mathrm{~L}, 0.347 \mathrm{mmol}$ ) and triethylamine ( $19.3 \mu \mathrm{~L}, 0.139$ mmol ) were mixed in an NMR tube. The catalyst ( $0.275 \mu \mathrm{~mol}$ ) dissolved in acetonitrile$d_{3}$ (conc. $5.4 \mathrm{mg} / \mathrm{mL}$ ) was added to the mixture. Finally, after 5 minutes, the substrate ( $55 \mu \mathrm{~mol}$ ) was added to the reaction mixture. The reaction was followed by ${ }^{1} \mathrm{H}$ NMR.

In the end of the kinetic experiment, a sample of the reaction mixture ( $200 \mu \mathrm{~L}$ ) was mixed with a saturated solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}(1 \mathrm{~mL})$. The solution was extracted with diethyl ether ( $3 \times 1.5 \mathrm{~mL}$ ) and the organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ for 1 h . The ether solution was stripped to dryness in a stream of air. The stripped residue was dissolved in acetonitrile ( 0.8 mL ) and enantioselectivity was measured by GC. ${ }^{9 e}$

### 1.3.11 AH of 1 on a synthetic scale

Substrate $\mathbf{1}$ ( $90 \mathrm{mg}, 0.44 \mathrm{mmol}$ ) was weighed into a vial and dissolved in methanol ( 5 mL ). Trifluoroacetic acid ( $34 \mu \mathrm{~L}, 0.44 \mathrm{mmol}$ ) was added thereto, and the mixture was stirred for 5 min . The catalyst solution ( 0.0044 mmol of catalyst; concentration $5.4 \mathrm{mg} / 1 \mathrm{~mL}$ in methanol) was added to the mixture, and the vial was closed by a pierced square of Parafilm. The vial was placed in an autoclave, which was closed, purged ( $3 \times 5$ bar) and filled with hydrogen ( 15 bar).

After 6 h , the autoclave was opened and the reaction mixture was alkalized with a solution of NaOH . The solution was extracted with diethyl ether ( $3 \times 5 \mathrm{~mL}$ ) and filtered through a plug of silica gel to remove the catalyst. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated. Pale yellow oil was obtained. Yield: 84 mg (92\%). 97\% $e e$ and $>95 \%$ purity.

## 2. Supplementary results

### 2.1 Asymmetric hydrogenation experiments

Table S1. Screening of reaction conditions in the AH of $\mathbf{1}$ with catalyst A. ${ }^{\text {a }}$

|  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Entry | Concentration $(\mathrm{mM})$ | Volume (mL) | Solvent | Conv (\%) |
| 1 | 44 | 1 | acetonitrile | 0 |
| 2 | 88 | 0.5 | acetonitrile | 0 |
| 3 | 176 | 0.25 | acetonitrile | 0 |
| 4 | 44 | 1 | DMSO | 2 |
| 5 | 88 | 0.5 | DMSO | 4 |
| 6 | 176 | 0.25 | DMSO | 3 |
| 7 | 44 | 1 | MeOH | 6 |
| 8 | 88 | 0.5 | MeOH | 10 |
| 9 | 176 | 0.25 | MeOH | 6 |

a Amount of substrate $n=44 \mu \mathrm{~mol}$, catalyst loading $1 \mathrm{~mol} \%, p\left(\mathrm{H}_{2}\right)=15$ bar, RT, 6 h .

Table S2. Screening of acid additives in the AH of $\mathbf{1}$ with catalyst A. ${ }^{\text {a }}$

|  |  |  |  |
| :---: | :---: | :---: | :---: |
| Entry | Acid | Acid/Substrate ${ }^{\text {b }}$ | Conv (\%) |
| 1 | $\mathrm{HBF}_{4}(48 \%)$ | 1 | 19 |
| 2 | TfOH | 1 | 9 |
| 3 | $\mathrm{CF}_{3} \mathrm{COOH}$ | 1 | 57 |
| 4 | $\mathrm{CF}_{3} \mathrm{COOH}$ | 0.5 | 18 |
| 5 | $\mathrm{CF}_{3} \mathrm{COOH}$ | 0.75 | 42 |
| 6 | $\mathrm{CF}_{3} \mathrm{COOH}$ | 1.25 | 52 |
| 7 | $\mathrm{CF}_{3} \mathrm{COOH}$ | 1.5 | 54 |

a Amount of substrate $n=44 \mu \mathrm{~mol}$, concentration of substrate $c=88 \mathrm{mM}$, catalyst loading $1 \mathrm{~mol} \%, p\left(\mathrm{H}_{2}\right)=15 \mathrm{bar}, \mathrm{RT}, 6 \mathrm{~h} .{ }^{\mathrm{b}}$ Molar ratio.


Fig. S1 ATH of imines $\mathbf{1 - 4}, \mathbf{8}-\mathbf{1 0}$ and $\mathbf{1 2}$ catalysed by complexes $\mathbf{A}, \mathbf{G}$ and $\mathbf{H}$ using $\mathrm{HCOOH} / \mathrm{Et}_{3} \mathrm{~N}$ (5:2) in $\mathrm{CD}_{3} \mathrm{CN}$ at $0.5 \mathrm{~mol} \%$ catalyst loading and a temperature of $30{ }^{\circ} \mathrm{C}$. In parentheses: ee, TON after 50 min , TOF at $20 \%$ conversion in $\mathrm{h}^{-1}$.

### 2.2 Synthesis of G and H, structural elucidation of $13 \mathrm{a}-\mathrm{c}$



Scheme S1 Synthesis of complexes G and H.




13b


13c

Fig. S2 Parts of a ${ }^{1} \mathrm{H}^{-13} \mathrm{C}$ HMBC NMR spectrum of isolated mixture of 13a-c. a) 13b: Correlation of methyl 11 with methylene 7, correlation between methylenes 4 and 6;
b) 13c: Correlation of methyl 11 and methylene 4 to common methylene 6

### 2.3 X-ray diffraction analysis of complex G



Fig. S3 Solid-state molecular structure of complex G


Fig. S4 The molecule of dichloromethane crystallized with $\mathbf{G}$ in an equimolar ratio. The crystal structure was held together by $\mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds of $2.39(5) \AA$ between the hydroxyl group (donor) and chloride (acceptor) as evident from the packing view down the $c$ axis. Such a hydrogen bond has been observed for similar compounds, although in an intramolecular manner. ${ }^{10}$

Table S3 Crystallographic and structure refinement for complex $\mathbf{G}$

| Empirical formula | $\mathrm{C}_{33} \mathrm{H}_{39} \mathrm{Cl}_{3} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{RuS}$ |
| :--- | :--- |
| Formula weight | 751.21 |
| Crystal system, space group | monoclinic, $P 2_{1}$ |
| $T(\mathrm{~K})$ | 180 |
| $a(\AA)$ | $7.77870(10)$ |
| $b(\AA)$ | $22.4690(4)$ |
| $c(\AA)$ | $9.7911(2)$ |
| $\beta(\mathrm{deg})$ | $104.5931(14)$ |
| $V\left(\AA^{3}\right)$ | $1656.08(5)$ |
| $Z$ | 2 |
| $\mu\left(\mathrm{~mm}^{-1}\right)$ | 6.937 |
| Crystal size $(\mathrm{mm})$ | $0.38 \times 0.24 \times 0.18$ |
| $T_{\min }$ | 0.487 |
| $T_{\max }$ | 1 |
| Measured reflections | 35936 |
| Independent reflections | 6809 |
| Reflections with $I>3 \sigma(I)$ | 6754 |
| Parameters | 400 |
| $R_{\text {int }}$ | 0.034 |
| $S$ | 2.64 |
| $R\left[F^{2}>3 \sigma\left(F^{2}\right)\right]$ | 0.0291 |
| $w R(F)$ | 0.0405 |
| $\Delta \rho_{\text {max }}\left(\mathrm{e} \AA^{-3}\right)$ | 0.44 |
| $\Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$ | -0.91 |

The title compound crystallizes in the monoclinic space group $P 2_{1}$. The molecular structure is given in Figure 1. The single-crystal structure of $\mathrm{C}_{33} \mathrm{H}_{39} \mathrm{Cl}_{3} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{RuS}$ is built up of discrete moieties of $\mathrm{C}_{32} \mathrm{H}_{37} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{RuS}$ and dichloromethane with the two formula units in the asymmetric unit.

The absolute structure was tested by introducing twinning and refining volume fractions. The inversion was used as a merohedral twinning operation. In this case, the volume fraction of the inversion twin is the Flack parameter. ${ }^{11}$ This parameter refined to a final value of $-0.008(7)$, which confirms that the above configuration is the correct absolute structure.

Crystallographic data (including structure factors) for the structure reported in this article has been deposited with the Cambridge Crystallographic Center, CCDC No. 1021406 Copies of the data can be obtained free of charge on application to The Director, CCDC, 12 Union Road, Cambridge CB2 1EZ, UK, fax: +44 1223336 033, e-mail: deposit@ccdc.cam.ac.uk or http://www.ccdc.cam.ac.uk.

## 3. References

1. L. Palatinus and G. J. Chapuis, Appl. Cryst., 2007, 40, 786-790.
2. V. Petříček, M. Dušek and L. Palatinus (2006) JANA2006. Institute of Physics, Czech Academy of Sciences, Prague.
3. L. J. Farrugia, J. Appl. Crystallogr., 1999, 32, 837-838.
4. C. F. Macrae, P. R. Edgington, P. McCabe, E. Pidcock, G. P. Shields, R. Taylor, M. Towler and J. van de Streek, J. Appl. Crystallogr., 2006, 39, 453-457.
5. K.-J. Haack, S. Hashiguchi, A. Fujii, T. Ikariya and R. Noyori, Angew. Chem. Int. Ed. Engl., 1997, 36, 285-288; Angew. Chem., 1997, 109, 297-300.
6. (a) J. Mao and D. C. Baker, Org. Lett., 1999, 1, 841-843; (b) T. Wang, L.-G. Zhuo, Z. Li, F. Chen, Z. Ding, Y. He, Q.-H. Fan, J. Xiang, Z.-X. Yu and A. S. C. Chan, J. Am. Chem. Soc., 2011, 133, 9878-9891.
7. T. Touge, T. Hakamata, N. Hideki, T. Kobayashi, N. Sayo, T. Saito, Y. Kayaki and T. Ikariya, J. Am. Chem. Soc., 2011, 133, 14960-14963.
8. T. Reiner, M. Waibel, A. N. Marziale, D. Jantke, F. J. Kiefer, T. F. Fässler and J. Eppinger, J. Org. Chem., 2010, 695, 2667-2672.
9. (a) J. Václavík, J. Přech, M. Kuzma, P. Kačer and L. Červený, Chem. Listy, 2012, 106, 206-210; (b) J. Václavík, J. Pecháček, B. Vilhanová, P. Šot, J. Januščák, V. Matoušek, J. Přech, S. Bártová, M. Kuzma and P. Kačer, Catal. Lett., 2013, 143, 555-562; (c) J. Václavík, P. Šot, B. Vilhanová, J. Pecháček, M. Kuzma and P. Kačer, Molecules, 2013, 18, 6804-6828; (d) M. Kuzma, J. Václavík, P. Novák, J. Přech, J. Januščák, J. Červený, J. Pecháček, P. Šot, B. Vilhanová, V. Matoušek, I. I. Goncharova, M. Urbanová and P. Kačer, Dalton Trans., 2013, 42, 5174-5182; (e) J. Přech, V. Matoušek, J. Václavík, J. Pecháček, K. Syslová, P. Šot, J. Januščák, B. Vilhanová, M. Kuzma and P. Kačer, Am. J. Anal. Chem., 2013, 4, 125-133; (f) J. Přech, J. Václavík, P. Šot, J. Pecháček, B. Vilhanová, J. Januščák, K. Syslová, R. Pažout, J. Maixner, J. Zápal, M. Kuzma and P. Kačer, Catal. Commun., 2013, 36, 67-70; (g) S. Watanuki, K. Matsuura, Y. Tomura, M. Okada, T. Okazaki, M. Ohta, S. Tsukamoto, Chem, Pharm. Bull. 2011, 59, 10291037; (h) I. Ivanov, S. Nikolova, S. Statkova-Abeghe, Heterocycles 2005, 65, 24832492; (i) Q.-R. Zhang, J.-R. Huang, W. Zhang, L. Dong, Org. Lett. 2014, 16, 16841687.
10. J. Čubrilo, I. Hartenbach, T. Schleid and R. F. Winter, Zeitschrift für Anorg. und Allg. Chemie, 2006, 632, 400-408.
11. H. D. Flack, Acta Crystallogr., Sect. A: Found. Cryst., 1983, 39, 876-881.

## 4. Copies of NMR spectra

### 4.1 4-(4-methylcyclohexa-1,4-dienyl)butan-1-ol (13a-c)



BV007_4
solvent: CDCl3
temp: 293.2 K
date: 8 Apr 2013

4.2 [ $\eta^{6}$-(4-(p-methylphenyl)butanol) $\left.\mathrm{RuCl}_{2}\right]_{2}(14 a, b)$

BV011-3
solvent: DMSO-d6
temp: 303,2 K
date: 29 MAR 2013


BV011-3
solvent: DMSO-d6
temp: 303,2 K
date: 29 MAR 2013


## 4.3 [ $\mathrm{RuCl}\left(\eta^{6}-(p\right.$-methylphenyl) butanol$)(\mathrm{S}, \mathrm{S})$-TsDPEN] (G)

BV023-1
solvent: DMSO-d6
temp: 303,2 K
date: 9 Apr 2013


BV023-1
solvent: DMSO-d6
temp: 303,2 K
date: 9 Apr 2013

4.4 4-(4-methylcyclohexa-1,4-dienyl)butane (15a-c)

```
BV-D4
solvent: CDCl3
temp: 293.2 K
date : 22 Aug 2014
```



BV-D 4
solvent: DMSO
temp: 303.2 K
date: 22 Aug 2014


## 4.5 [ $\eta^{6}$-(4-(p-methylphenyl)butane) $\left.\mathrm{RuCl}_{2}\right]_{2}(16 \mathrm{a}, \mathrm{b})$

BV-037-1
solvent: DMSO
temp: 303.2 K
date : 24 Jul 2014


BV-037-1
solvent: DMSO
temp: 303.2 K
date : 24 Jul 2014


## $4.6\left[\mathrm{RuCl}\left(\eta^{6}-(p-m e t h y l p h e n y l) b u t a n e\right)(S, S)-T s D P E N\right](H)$

```
BV038-1a
    solvent: DMSO
    temp: 303.2 K
    date : 20 Aug 2014
```



BV038-1a
solvent: DMSO
temp: 303.2 K
date: 20 Aug 2014



[^0]:    Department of Organic Technology, University of Chemistry and Technology, Technická 5, CZ-166 28 Prague, Czech Republic.
    ${ }^{\text {b. Institute of Organic Chemistry and Biochemistry, v.v.i., Academy of Sciences of the Czech Republic, Flemingovo nám. 2, CZ-166 } 10 \text { Prague, Czech }}$ Republic.
    c. Laboratory of Molecular Structure Characterization, Institute of Microbiology, v.v.i., Academy of Sciences of the Czech Republic, Videňská 1083, CZ-142 20 Prague, Czech Republic.
    ${ }^{\text {d. }}$ Central Laboratories, University of Chemistry and Technology, Technická 5, CZ-166 28 Prague, Czech Republic.

[^1]:    ${ }^{1}$ Small amount (9d) of aromatic impurity was formed as a decomposition product, which has been assigned for the sake of completeness.

