Synthesis of functionalized tryptamines by Brønsted acid catalyzed cascade reactions

Nicola Melis,^a Francesco Secci,^a Thomas Boddaert,^b David J. Aitken^b and Angelo Frongia^{*a}

^aDipartimento di Scienze Chimiche e Geologiche, Università degli studi di Cagliari, Complesso Universitario di Monserrato, S.S. 554, Bivio per Sestu, I-09042, Monserrato, Cagliari, Italy. E-mail: afrongia@unica.it

^bCP3A Organic Synthesis Group, ICMMO – CNRS UMR 8182 Université Paris-Sud, 15 rue Georges Clemenceau, 91405 Orsay cedex, France

Table of Contents

General methods	S2-5
Copies of NMR spectra	S6-S40
Synthesis of tryptamines derived from two different anilines	S41-S76

General Methods

¹H NMR spectra were recorded at 500, or 400 MHz spectrometer at ambient temperature with CDCl₃ as solvent. Data are reported as follows: chemical shifts (δ), multiplicity, coupling constants and integration. ¹³C NMR spectra were recorded operating respectively at 126, or 101 MHz at 27°C with CDCl₃ as solvent. Infrared spectra were recorded on a FT-IR spectrophotometer. Low resolution mass spectral analyses were recorded in E.I. (70 eV) mode. High resolution mass spectra (HRMS) was recorded on a spectrometer using Positive Electro Ionization (ESI) mode. Analytical thin layer chromatography was performed using 0.25 mm silica gel 60 (0.040-0.063 mm). Yields refer to chromatographically pure materials.

General procedure for the synthesis of tryptamines 3

A mixture of aryl amine 2 (0.930 mmol), freshly distilled 2-hydroxy cyclobutanone 1 (0.465 mmol), and PTSA (0.093 mmol) was stirred at room temperature for 6 days. The crude reaction mixture was directly loaded on silica gel column without aqueous work-up and pure products were obtained by flash column chromatography (silica gel, mixture of hexane/ether, $10:1\rightarrow1:1$).

3a: Yield 67% (82 mg); yellow oil. IR (neat): 3057, 3027, 2937, 2882, 2822, 1601, 1508, 1474, 1377, 1328 cm⁻¹. ¹H NMR (500 MHz, CDCl₃) δ 7.60 (d, *J* = 7.9 Hz, 1H), 7.33 – 7.26 (m, 2H), 7.26 – 7.19 (m, 2H), 7.17 – 7.08 (m, 1H), 6.85 (s, 1H), 6.78 (d, *J* = 8.0 Hz, 2H), 6.70 (t, *J* = 7.2 Hz, 1H), 3.73 (s, 3H), 3.67 – 3.60 (m, 2H), 3.04 – 2.97 (m, 2H), 2.94 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 149.19, 137.18, 129.38, 128.06, 126.67, 121.73, 118.98, 118.93, 116.16, 112.45, 112.32, 109.37, 53.89, 38.53, 32.71, 22.34. MS m/z: 264 (M⁺ (19)), 144 (11), 120 (100), 105 (3). HRMS (ESI) Calcd. For C₁₈H₂₀N₂ (M+1) m/z 265,1699, found 265.1693.

3b: Yield 51% (69 mg); yellow oil. IR (neat): 3015, 2916, 2863, 1620, 1522, 1494, 1378 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 7.36 (s, 1H), 7.18 (d, *J* = 8.4 Hz, 1H), 7.06 (t, *J* = 8.7 Hz, 3H), 6.81 (s, 1H), 6.72 (d, *J* = 8.5 Hz, 2H), 3.71 (s, 3H), 3.59 (dd, *J* = 9.1, 6.6 Hz, 2H), 2.96 (d, *J* = 8.1 Hz, 2H), 2.93 (s, 3H), 2.47 (s, 3H), 2.27 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 147.25, 135.62, 129.90, 128.27, 128.08, 126.72, 125.45, 123.32, 118.68, 112.80, 111.97, 109.07, 54.18, 38.72, 32.76, 22.12, 21.66, 20.38. MS m/z: 292 (M⁺ (18)), 158 (9), 134 (100), 119 (5). HRMS (ESI) Calcd. For C₂₀H₂₄N₂(M+1) m/z 293,2012, found 293.2005.

3c: Yield 59% (88 mg); yellow oil. IR (neat): 3015, 2962, 2926, 2868, 1617, 1522, 1491, 1453, 1377 cm⁻¹. ¹H NMR (500 MHz, CDCl₃) δ 7.39 (d, J = 0.8 Hz, 1H), 7.26 – 7.17 (m, 1H), 7.13 – 7.05 (m, 3H), 6.82 (s, 1H), 6.78 – 6.71 (m, 2H), 3.71 (s, 3H), 3.63 – 3.57 (m, 2H), 3.00 – 2.95 (m, 2H), 2.94 (s, 3H), 2.76 (q, J = 7.6 Hz, 2H), 2.57 (q, J = 7.6 Hz, 2H), 1.30 (t, J = 7.6 Hz, 3H), 1.22 (t, J = 7.6 Hz, 3H). ¹³C NMR (126 MHz, CDCl3₃) δ 147.45, 135.78, 134.88, 132.05, 128.70, 128.26, 126.69, 122.32, 117.45, 112.71, 112.18, 109.16, 54.14, 38.68, 32.75, 29.21, 27.94, 22.25, 16.71, 16.09. HRMS (ESI) Calcd. For C₂₂H₂₈N₂(M+1) m/z 321,2325, found 321.2317.

3d: Yield 45% (73 mg); yellow oil. IR (neat): 2957, 2926, 2868, 1615, 1519, 1491, 1453, 1378 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 7.37 (s, 1H), 7.24 – 7.16 (m, 1H), 7.11 – 7.02 (m, 3H), 6.82 (s, 1H), 6.73 (d, J = 8.6 Hz, 2H), 3.71 (s, 3H), 3.67 – 3.54 (m, 2H), 2.97 (dd, J = 9.0, 6.7 Hz, 2H), 2.93 (s, 3H), 2.76 – 2.62 (m, 2H), 2.58 – 2.42 (m, 2H), 1.69 (dd, J = 15.0, 7.5 Hz, 2H), 1.61 (dd, J = 15.1, 7.4 Hz, 2H), 0.97 (t, J = 5.6 Hz, 3H), 0.94 (t, J = 5.6 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 147.42, 135.78, 133.21, 130.46, 129.30, 128.18, 126.63, 122.82, 118.19, 112.58, 112.14, 109.03,

54.13, 38.65, 38.44, 37.21, 32.74, 25.54, 25.03, 22.27, 14.09, 14.05. HRMS (ESI) Calcd. For $C_{24}H_{32}N_2(M+1)$ m/z 349,2638, found 349.2621.

3e: Yield 59% (104 mg); yellow oil. IR (neat): 3015, 2954, 2924, 2858, 1615, 1522, 1491, 1456, 1373, 1355 cm⁻¹. ¹H NMR (500 MHz, CDCl₃) δ 7.37 (d, *J* = 0.8 Hz, 1H), 7.23 – 7.15 (m, 1H), 7.11 – 7.00 (m, 3H), 6.81 (s, 1H), 6.76 – 6.67 (m, 2H), 3.70 (s, 3H), 3.64 – 3.56 (m, 2H), 3.01 – 2.94 (m, 2H), 2.93 (s, 3H), 2.76 – 2.69 (m, 2H), 2.57 – 2.49 (m, 2H), 1.70 – 1.62 (m, 2H), 1.61 – 1.53 (m, 2H), 1.38 (tq, *J* = 14.6, 7.3 Hz, 4H), 0.95 (t, *J* = 5.1 Hz, 3H), 0.92 (t, *J* = 5.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 147.41, 135.77, 133.41, 130.65, 129.25, 128.21, 126.62, 122.79, 118.12, 112.61, 112.15, 109.03, 54.14, 38.64, 35.98, 34.74, 34.70, 34.17, 32.73, 22.60, 22.55, 22.29, 14.19, 14.16. HRMS (ESI) Calcd. For C₂₆H₃₆N₂(M+1) m/z 377,2951, found 377.2935.

3f: Yield 55% (94 mg); orange oil. IR (neat): 2954, 2906, 2870, 1615, 1523, 1489, 1362, 1297, 1254 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 7.63 – 7.57 (m, 1H), 7.31 (ddd, *J* = 9.0, 7.7, 2.0 Hz, 3H), 7.23 (d, *J* = 8.6 Hz, 1H), 6.83 (s, 1H), 6.80 – 6.73 (m, 2H), 3.70 (s, 3H), 3.66 – 3.57 (m, 2H), 3.05 – 2.97 (m, 2H), 2.95 (s, 3H), 1.41 (s, 9H), 1.32 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 147.00, 141.79, 138.80, 135.40, 127.81, 126.54, 126.16, 120.03, 114.72, 112.53, 112.16, 108.88, 54.03, 38.53, 34.72, 33.86, 32.70, 32.13, 31.72, 22.27. HRMS (ESI) Calcd. For C₂₆H₃₆N₂(M+1) m/z 377,2951, found 377.2942.

3g: Yield 60% (91 mg); yellow oil. IR (neat): 2989, 2939, 2904, 2833, 1622, 1575, 1511, 1494, 1459, 1426, 1247, 1226, 1176 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 7.18 (d, *J* = 8.8 Hz, 1H), 7.01 (d, *J* = 2.4 Hz, 1H), 6.93 – 6.81 (m, 4H), 6.77 (d, *J* = 9.1 Hz, 2H), 3.85 (s, 3H), 3.77 (s, 3H), 3.71 (s, 3H), 3.56 (dd, *J* = 8.9, 6.6 Hz, 2H), 2.97 – 2.91 (m, 2H), 2.90 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 153.88, 151.71, 144.28, 132.61, 128.37, 127.20, 115.05, 114.58, 112.10, 111.89, 110.11, 101.03, 56.15, 56.01, 54.86, 39.21, 32.92, 22.16. HRMS (ESI) Calcd. For C₂₀H₂₄N₂O₂(M+1) m/z 325,1911, found 325.1900.

3h+**3h**¹: Inseparable 85:15 mixture of two regioisomers. Yield 81% (111 mg); yellow oil. IR (neat): 3040, 3030, 2914, 2858, 2815, 1602, 1580, 1499, 1475, 1378, 1327, 1247, 1226, 1176 cm⁻¹. ¹H NMR (500 MHz, CDCl₃) δ 7.49 (d, *J* = 8.1 Hz, 1H), 7.26 (s, 1H), 7.17 – 7.10 (m, 3H), 7.08 (dd, *J* = 3.0, 2.4 Hz, 2H), 6.95 (dd, *J* = 8.0, 0.9 Hz, 1H), 6.86 – 6.82 (m, 1H), 6.81 (s, 1H), 6.77 (s, 1H), 6.63 – 6.56 (m, 3H), 6.55 – 6.50 (m, 2H), 3.70 (s, 3H), 3.69 (s, 3H), 3.65 – 3.57 (m, 4H), 3.15 (dd, *J* = 8.7, 6.9 Hz, 2H), 2.99 – 2.95 (m, 2H), 2.94 (s, 3H), 2.93 (s, 3H), 2.73 (s, 3H), 2.50 (s, 3H), 2.32 (s, 3H), 2.31 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 149.36, 149.29, 139.03, 138.98, 137.60, 137.53, 131.55, 130.91, 129.23, 126.94, 126.47, 126.04, 125.96, 121.74, 120.72, 120.68, 118.67, 117.18, 117.12, 113.15, 113.11, 112.36, 109.58, 109.37, 107.45, 107.29, 55.11, 53.92, 38.55, 38.52, 32.79, 32.61, 24.19, 22.44, 22.12, 22.09, 22.00, 20.48. HRMS (ESI) Calcd. For C₂₀H₂₄N₂(M+1) m/z 293,2012, found 293.2007.

3i: Yield 0%. **Ai**: Yield 35% (34 mg); colourless oil. The spectroscopic data are in accordance with those presented in literature¹. ¹H NMR (400 MHz, CDCl₃) δ 6.98 (ddd, J = 15.2, 7.6, 1.7 Hz, 2H), 6.93 – 6.80 (m, 2H), 4.92 (tt, J = 10.7, 2.2 Hz, 1H), 3.84 (s, 3H), 2.83 (s, 3H), 2.81 – 2.71 (m, 1H), 2.65 (dddd, J = 17.3, 9.9, 4.8, 2.4 Hz, 1H), 2.29 – 2.09 (m, 2H).

3j: Yield 23% (33 mg); white solid; m. p. 154-158°C. IR (nujol): 3015, 2934, 2906, 2851, 2218, 1605, 1522, 1486, 1388, 1350, 1174 cm⁻¹. ¹H NMR (500 MHz, CDCl₃) δ 7.87 (d, *J* = 0.8 Hz, 1H), 7.45 (ddd, *J* = 5.2, 4.2, 1.8 Hz, 3H), 7.34 (d, *J* = 8.5 Hz, 1H), 6.95 (s, 1H), 6.62 (d, *J* = 9.0 Hz, 2H), 3.77 (s, 3H), 3.71 – 3.64 (m, 2H), 3.05 – 2.99 (m, 2H), 2.94 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 151.34, 138.59, 133.68, 129.16, 127.62, 124.83, 124.37, 112.92, 111.44, 110.40, 102.22, 97.60, 53.13, 38.74, 33.03, 22.42. HRMS (ESI) Calcd. For C₂₀H₁₈N₄. (M+1) m/z 315,1604, found

315.1593. **Aj:** Yield 45% (42 mg); yellow oil. IR (neat): 3047, 2961, 2928, 2831, 2213, 1785, 1605, 1519, 1399, 1384, 1320, 1179, 1123, 1077 cm-1. ¹H NMR (400 MHz, CDCl₃) δ 7.54 – 7.42 (m, 2H), 6.73 (d, *J* = 9.0 Hz, 2H), 5.14 (dd, *J* = 12.8, 5.9 Hz, 1H), 3.03 – 2.91 (m, 1H), 2.95 (s, 3H), 2.83 (dddd, *J* = 17.7, 10.1, 4.6, 2.4 Hz, 1H), 2.47 (ddd, *J* = 14.7, 10.6, 4.4 Hz, 1H), 2.14 (dt, *J* = 19.8, 9.8 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 204.98, 151.36, 133.62, 120.12, 112.80, 99.82, 73.06, 41.10, 34.00, 16.89. Calcd. For C₁₂H₁₂N₂O(M+Na) m/z 223,0842, found 223.0839.

3k: Yield 48% (59 mg); yellow oil. IR (neat): 3058, 2939, 2823, 1628, 1612, 1580, 1511, 1489, 1426, 1355, 1179 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 7.21 – 7.13 (m, 2H), 6.95 (ddd, *J* = 14.3, 6.8, 2.4 Hz, 3H), 6.86 (s, 1H), 6.69 – 6.60 (m, 2H), 3.71 (s, 3H), 3.54 (dd, *J* = 8.7, 6.6 Hz, 2H), 2.91 (d, *J* = 7.9 Hz, 2H), 2.88 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 158.94, 156.60, 154.26, 145.98, 133.81, 128.36, 115.69 (d, *J* = 22.0 Hz), 113.61 (d, *J* = 7.1 Hz), 112.31 (d, *J* = 4.5 Hz), 110.15 (d, *J* = 12.3 Hz), 109.97 (d, *J* = 3.7 Hz), 103.75 (d, *J* = 23.2 Hz), 54.47, 39.02, 32.99, 22.20. HRMS (ESI) Calcd. For C₁₈H₁₈F₂N₂(M+1) m/z 301,1511, found 301.1506.

3I: Yield 73% (137 mg); yellow oil. IR (neat): 3055, 3025, 2954, 2926, 2856, 1597, 1504, 1469, 1368, 1191 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 7.61 (d, *J* = 8.0 Hz, 1H), 7.31 (d, *J* = 7.9 Hz, 1H), 7.27 – 7.19 (m, 3H), 7.11 (t, *J* = 7.4 Hz, 1H), 6.91 (s, 1H), 6.74 (d, *J* = 8.6 Hz, 2H), 6.65 (t, *J* = 7.2 Hz, 1H), 4.05 (t, *J* = 7.2 Hz, 2H), 3.63 – 3.54 (m, 2H), 3.31 – 3.22 (m, 2H), 3.05 – 2.97 (m, 2H), 1.79 (dd, *J* = 14.0, 7.0 Hz, 2H), 1.62 – 1.52 (m, 2H), 1.29 (d, *J* = 3.6 Hz, 12H), 0.88 (dd, *J* = 6.7, 4.2 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 148.09, 136.45, 129.44, 128.11, 125.56, 121.54 (s), 119.04, 118.80, 115.41, 112.37, 111.88, 109.57, 52.06, 51.34, 46.36, 31.89, 31.60, 30.44, 27.52, 27.02, 26.86, 23.06, 22.83, 22.69, 14.20, 14.16. MS m/z: 404 (M⁺ (11)), 331 (2), 228 (2), 214 (4), 190 (100), 120 (16), 106 (8). HRMS (ESI) Calcd. For C₂₈H₄₀N₂(M+1) m/z 405,3264, found 405.3246.

3m: Yield 37% (68 mg); yellow oil. IR (neat): 3058, 2931, 2856, 1597, 1504, 1461, 1448, 1360, 1343, 1300, 1214, 1156 cm⁻¹. ¹H NMR (500 MHz, CDCl₃) δ 7.63 (d, *J* = 7.7 Hz, 1H), 7.36 (d, *J* = 8.3 Hz, 1H), 7.29 – 7.22 (m, 2H), 7.20 (ddd, *J* = 8.2, 7.0, 1.1 Hz, 1H), 7.11 (ddd, *J* = 7.9, 7.0, 0.9 Hz, 1H), 7.07 (s, 1H), 6.85 (d, *J* = 8.1 Hz, 2H), 6.68 (t, *J* = 7.2 Hz, 1H), 4.20 (tt, *J* = 11.9, 3.7 Hz, 1H), 3.61 (tt, *J* = 11.5, 3.4 Hz, 1H), 3.53 – 3.46 (m, 2H), 3.03 – 2.96 (m, 2H), 2.16 – 2.09 (m, 2H), 1.98 – 1.66 (m, 10H), 1.56 – 1.23 (m, 7H), 1.15 (qt, *J* = 12.6, 3.5 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 148.69, 135.96, 129.43, 128.04, 121.62, 121.36, 119.20, 118.89, 115.94, 112.94, 112.73, 109.61, 57.60, 55.14, 46.08, 33.73, 31.02, 26.48, 26.17, 25.85, 25.67. HRMS (ESI) Calcd. For C₂₈H₃₆N₂(M+1) m/z 401,2951, found 401.2939.

3n: Yield 60% (104 mg); yellow oil. IR (neat): 3080, 3012, 2959, 2924, 2868, 1617, 1519, 1486, 1451, 1377, 1189 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 7.40 (s, 1H), 7.24 – 7.17 (m, 1H), 7.07 (t, *J* = 6.9 Hz, 3H), 6.87 (s, 1H), 6.72 (d, *J* = 8.6 Hz, 2H), 5.95 (ddd, *J* = 22.4, 10.5, 5.4 Hz, 1H), 5.85 (ddt, *J* = 17.0, 10.1, 5.0 Hz, 1H), 5.25 – 4.98 (m, 4H), 4.63 (d, *J* = 5.4 Hz, 2H), 3.90 (d, *J* = 4.9 Hz, 2H), 3.68 – 3.53 (m, 2H), 3.02 (dd, *J* = 9.2, 6.6 Hz, 2H), 2.76 (q, *J* = 7.6 Hz, 2H), 2.56 (q, *J* = 7.6 Hz, 2H), 1.30 (t, *J* = 7.6 Hz, 3H), 1.21 (t, *J* = 7.6 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 146.46, 135.15, 135.01, 134.85, 133.91, 131.84, 128.67, 128.46, 125.58, 122.36, 117.54, 117.19, 115.97, 112.50, 109.52, 53.65, 51.81, 48.85, 29.16, 27.89, 23.16, 16.59, 16.05. HRMS (ESI) Calcd. For C₂₆H₃₂N₂(M+1) m/z 373,2638, found 373.2626.

3o: Yield 32% (60 mg); yellow oil. IR (neat): 3060, 2979, 2934, 1749, 1602, 1506, 1464, 1368, 1262, 1194, 1027 cm⁻¹. ¹H NMR (500 MHz, CDCl₃) δ 7.60 (d, J = 7.9 Hz, 1H), 7.25 – 7.21 (m, 4H), 7.17 – 7.09 (m, 1H), 6.92 (s, 1H), 6.76 – 6.68 (m, 3H), 4.79 (s, 2H), 4.21 (q, J = 7.1 Hz, 2H), 4.19 – 4.13 (m, 3H), 3.95 (s, 2H), 3.74 (dd, J = 8.5, 6.8 Hz, 2H), 3.15 – 3.05 (m, 2H), 1.26 (dd, J = 7.8, 5.5 Hz, 3H), 1.23 (t, J = 6.7 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 171.45, 168.78, 147.85,

137.03, 129.48, 128.30, 126.28, 122.36, 119.66, 119.24, 117.06, 113.70, 112.10, 109.17, 61.79, 61.06, 53.36, 52.93, 47.87, 23.40, 14.37, 14.31. HRMS (ESI) Calcd. For $C_{24}H_{28}N_2O_4(M+Na)\ m/z$ 431,1941, found 431.1926.

3p: Yield 80% (118 mg); orange oil. IR (neat): 3040, 2931, 2881, 2851, 2841, 1602, 1575, 1504, 1476, 1453, 1345, 1247, 1211, 1194 cm⁻¹. ¹H NMR (500 MHz, CDCl₃) δ 7.43 (dd, *J* = 8.0, 0.7 Hz, 1H), 7.08 (td, *J* = 8.2, 1.7 Hz, 1H), 7.02 (dd, *J* = 7.9, 7.0 Hz, 1H), 6.98 – 6.93 (m, 1H), 6.90 (dd, *J* = 7.1, 0.8 Hz, 1H), 6.89 (s, 1H), 6.72 (d, *J* = 8.1 Hz, 1H), 6.56 (td, *J* = 7.3, 1.0 Hz, 1H), 4.17 – 3.98 (m, 2H), 3.63 – 3.46 (m, 2H), 3.39 – 3.20 (m, 2H), 3.04 – 2.99 (m, 2H), 2.97 (t, *J* = 6.1 Hz, 2H), 2.75 (t, *J* = 6.4 Hz, 2H), 2.28 – 2.15 (m, 2H), 1.99 – 1.79 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 145.17, 134.68, 129.32, 127.29, 125.52, 123.89, 122.42, 121.86, 119.34, 118.58, 116.57, 115.50, 112.60, 110.66, 77.42, 77.16, 76.91, 52.64, 49.59, 44.00, 28.37, 24.85, 23.07, 22.39, 22.23. MS m/z: 316 (M⁺ (20)), 170 (9), 146 (100), 130 (4). HRMS (ESI) Calcd. For C₂₂H₂₄N₂(M+1) m/z 317,2012, found 317.2006.

References:

¹⁾ D. J. Aitken, P. Caboni, H. Eijsberg, A. Frongia, R. Guillot, J. Ollivier, P. P. Piras, F. Secci, *Adv. Synth. Catal.* 2014, **356**, 941.

Copies of NMR spectra

3b

Зс

3h R¹=Me, R²=H + 3h¹ R¹=H, R₂=Me

	2000 200 2000 2		2.5.6 2.7.7.2 2.6 2.7.7 2.7.7 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8		2.1
		M	ul	A Maral M	k
95 90 8	85 80 75 70 65	50 55 50 45	40 35 30		

3k

3m

3n

3р

3q

Synthesis of tryptamines derived from two different anilines by one pot sequential procedure (Scheme 4)

General procedure: 2-hydroxy cyclobutanone 1 (0.465 mmol), 2 (0.465 mmol) and PTSA (0.093 mmol) were made to react for 4h at room temperature and then, after addition of 2'(0.465 mmol) the mixture was stirred for 4d. Yields were calculated by GC-MS analysis of the crude reaction mixture. Because of the closeness in R_f values, we were unable to separate tryptamines 3, 3', 4 and 5 by silica gel column chromatography. Tryptamines 4 and 5 were characterized by mass spectrometry:

MS *m/z*: 278 (M⁺ (20)), 158 (4), 134 (100), 120 (18), 91 (3).

MS m/z: 278 (M⁺ (19)), 158 (19), 120 (100), 105 (3).

MS m/z: 334 (M⁺ (14)), 190 (100), 158 (6), 144 (8), 120 (26), 106 (12)

MS m/z: 334 (M⁺ (18)), 214 (14), 190 (15), 120 (100).

MS m/z: 290 (M⁺ (18)), 146 (100), 131 (5), 118 (5), 91 (5).

MS m/z: 290 (M⁺ (24)), 170 (27), 142 (8), 120 (100), 105 (3).

GC-MS analysis of the crude reaction mixture

¹H NMR of the inseparable reaction products

¹H NMR of the inseparable reaction products

GC-MS analysis of the crude reaction mixture

peak	R.T.	first	max	last	PK	peak	corr.	corr.	% of
#	min	scan	scan	scan	TY	height	area	% max.	total
1	4.447	193	206	539	M4	108428	151724041	19.24%	6.708%
2	8.665	569	572	774	М	2139673	788691545	100.00%	34.869%
3	20.788	1620	1624	1774	M2	1415815	437929147	55.53%	19.361%
4	25.536	2030	2036	2069	М	919366	106436526	13.50%	4.706%
5	25.950	2069	2072	2158	M2	910921	275952017	34.99%	12.200%
6	29.315	2359	2364	2487	М	2706289	501146389	63.54%	22.156%

¹H NMR of the inseparable reaction products

GC-MS analysis of the crude reaction mixture

pea} #	R.T. min	first scan	max scan	last scan	PK TY	peak height	corr. area	corr. % max.	% of total
1	3.295	103	106	376	M3	422761	173983926	14.05%	4.365%
2	8.515	558	559	805	М	2937771	1238217843	100.00%	31.062%
3	20.523	1601	1601	1749	М	2768541	751396797	60.68%	18.850%
4	25.178	1999	2005	2029	M	2226220	195303486	15.77%	4.899%
5	25.535	2029	2036	2147	М	1942798	673479764	54.39%	16.895%
6	29.165	2348	2351	2458	М	5985083	953846271	77.03%	23.929%

3a N

¹H NMR of the inseparable reaction products

GC-MS analysis of the crude reaction mixture

peak #	R.T. min	first scan	max scan	last scan	PK TY	peak height	corr. area	corr. % max.	% of total
1	2,903	69	72	307	M2	792365	273333012	35.76%	10.605%
2	7.040	430	431	647	M5	1325940	764335321	100.00%	29.656%
3	20.696	1613	1616	1765	М	1939018	503342442	65.85%	19.529%
4	24.579	1949	1953	2021	M2	970010	217151534	28.41%	8.425%
5	25.432	2024	2027	2208	M2	899382	473278110	61.92%	18.363%
6	29.027	2334	2339	2508	М2	1020174	345934134	45.26%	13.422%

5ap N

¹H NMR of the inseparable reaction products

GC-MS analysis of the crude reaction mixture

peak #	R.T. min	first scan	max scan	last scan	PK TY	peak height	corr. area	corr. % max.	% of total
	2 210	107	100	450		40.67.01	0.00000000	00 518	10 0770
1	3.318	107	108	450	M2	486701	263649548	29.518	12.9/18
2	8.123	523	525	696	M6	617000	336696452	37.69%	16.572%
3	21.099	1647	1651	1779	М	814946	249110163	27.89%	12.261%
4	24.729	1966	1966	1997	M4	400517	33792420	3.78%	1.663%
5	25.167	2001	2004	2226	М	1770074	893302144	100.00%	43.969%
6	29.200	2347	2354	2514	М	769010	255132934	28.56%	12.558%

¹H NMR of the inseparable reaction products

