Supporting Information

In situ detection of salicylate in Ocimum Basilicum plant leaves via reverse iontophoresis

M. I. Gonzalez-Sanchez^{a,b}, P. T. Lee^a, R. H. Guy^{a,c}, R. G. Compton^{*a}

^aDepartment of Chemistry, Physical and Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford OX1 3QZ, United Kingdom.

^bDepartment of Physical Chemistry, Castilla-La Mancha University, Albacete, 02071, Spain.

^cDepartment of Pharmacy and Pharmacology, Bath University, BA2 7AY, Bath, United Kingdom.

*Corresponding author: Richard.compton@chem.ox.ac.uk

Experimental

Materials and Reagents

Salicylic acid (SA), potassium chloride, potassium monohydrogen phosphate and potassium hydroxide were purchased at their highest available purity from Sigma-Aldrich (UK) and were used as received. All solutions were prepared with deionized water (resistivity \geq 18.2 M Ω ·cm at 25°C) (Millipore, Watford, UK). A phosphate buffer solution (100 mM, pH = 7.0) was prepared with 100 mM potassium chloride added as the supporting electrolyte. *Ocimum Basilicum* (basil) plants were obtained locally and were used within a week of purchase. Each passive and iontophoresis measurement described in the work was repeated at least three times on a new leaf.

Instrumentation

Electrochemical experiments were performed using a computer-controlled potentiostat (μ AUTOLAB Type III, ECO-chemie, NL) in a thermostatically controlled Faraday cage (25 ± 2) °C.

The vertical, glass iontophoresis cell (Figure 2) ¹ comprises a lower chamber and an upper component with two electrode compartments separated by an intervening space. The basil leaf was interposed horizontally, with the abaxial side facing up, between the upper and lower parts of the cell (contact area: 1.6 cm²). The anode compartment was filled with 1.0 mL of phosphate buffer (pH 7.0); the cathode contained either 1.0 ml of phosphate buffer, or a phosphate-buffered solution of

SA at either 1, 3, 7 or 10 mM. The lower chamber was charged with 7.0 mL of buffer. A constant current of 0.5 mA (with the voltage limited to 10V) was imposed for a period of between 8, 9 and 10 hours between the Ag/AgCl cathode and the silver wire anode, which were introduced into the electrode chambers prior to the initiation of the experiment.

Following iontophoresis, the extracted salicylate was quantified using cyclic voltammetry (50 mV·s⁻¹) at a multi-walled carbon nanotube disposable screen-printed electrode (MWCNT-SPE, DropSens, Spain). The latter comprised a multi-walled carbon nanotube working electrode (diameter = 4.0 mm), a silver wire quasi-reference electrode, and a carbon counter electrode all printed on an inert substrate. Prior to performing the cyclic voltammetry, approximately 50 μ L of solution was deposited onto the chip to ensure that all three electrodes were completely covered. For each extraction, it was accompanied by a new electrode.

Method	Plant	Concentration	Reference
	Arabidopsis	SA = 29 ng/g FW	2
	Thaliana	SAG = 1603 ng/g FW	
	Arabidopsis	Торассо	3
	<i>Thaliana</i> and	SA \approx 4 µg/g FW	
	lobacco	SAG ≈ 20 μg/g FW Arabidopsis	
		SA ≈ 0.1- 1 μg/g FW	
		SAG ≈ 18 - 65 μg/g	
		FVV	
HPLC-MS	Hybrid Poplar	SA ≈ 31.0 µg/ g FW	4
	Oilseed rape	SA ≈ 5-90 ng/g FW	5
	Arabidancia	$SA \sim 20$ pg/g $SA/$	6
	Thaliana	MeSA ≈ 3 ng/g FW	
			_
	F G. Uralensis	SA ≈ 7 μg - 12 μg /g FW	/
	Oilseed rape	SA ≈1.1 - 5.8 ng/g FW	8
	Rose	SA ≈ 0.68 μg/g FW	9
	Coffea Arabica	SA ≈ 0.10 µg/g FW	10
Fluorescence	Arabidopsis	SA+SAG ≈ 2 μg/g FW	11
	Thaliana	-	
Flectrochemical	Oilseed rape	4 uM	12
	Tomato	0.3 μg/ g FW	13

Table S1. Analytical methods to measure salicylates in leaf extracts

Method	Sensor	Target	Plant	Reference
Electrochemical	POPD–Pt-MP–Pt electrode	H ₂ O ₂	Oilseed rape leafstalk	14, 15
Electrochemical	SWCNTs and Hb modified carbon fiber ultramicroelectrode	H ₂ O ₂	Aloe vera	16
Electrochemical	Self-reference Pt-CNT microelectrode	Indole-3-acetic acid	Maize roots	17
Fluorescence	Fluorescent proteins: mRFP1 and EGFP	H ⁺	Arabidopsis Thaliana leaves	18
Fluorescence	H ₂ DCFDA	Reactive oxygen species	Arabidopsis Thaliana leaves	19

Table S2. In vivo methods to quantify plant metabolites

References

- 1. P. Glikfeld, C. Cullander, R. S. Hinz and R. H. Guy, *Pharm. Res.*, 1988, **5**, 443-446.
- 2. W. Rozhon, E. Petutschnig, M. Wrzaczek and C. Jonak, *Anal. Bioanal. Chem.*, 2005, **382**, 1620-1627.
- 3. M. A. M. Aboul-Soud, K. Cook and G. J. Loake, *Chromatographia*, 2004, **59**, 129-133.
- 4. S. M. Wilbert, L. H. Ericsson and M. P. Gordon, *Anal. Biochem.*, 1998, **257**, 186-194.
- 5. Y.-H. Li, F. Wei, X.-y. Dong, J.-h. Peng, S.-y. Liu and H. Chen, *Phytochem. Anal.*, 2011, **22**, 442-449.
- 6. X. Pan, R. Welti and X. Wang, *Nat. Protocols*, 2010, **5**, 986-992.
- 7. Y. Xiang, X. Song, J. Qiao, Y. Zang, Y. Li, Y. Liu and C. Liu, J. Nat. Med., 2015, 69, 278-286.
- 8. K. Cui, Y. Lin, X. Zhou, S. Li, H. Liu, F. Zeng, F. Zhu, G. Ouyang and Z. Zeng, *Microchem. J.*, 2015, **121**, 25-31.
- 9. R. Bosco, E. Daeseleire, E. Van Pamel, V. Scariot and L. Leus, J. Agric. Food Chem., 2014, 62, 6278-6284.
- 10. M. de Sá, J. P. Ferreira, V. T. Queiroz, L. Vilas-Boas, M. C. Silva, M. H. Almeida, L. Guerra-Guimarães and M. R. Bronze, *J. Sci. Food Agric.*, 2014, **94**, 529-536.
- 11. C. T. DeFraia, E. A. Schmelz and Z. Mou, *Plant Methods*, 2008, 4, 28-38.
- 12. Z. Wang, F. Wei, S.-Y. Liu, Q. Xu, J.-Y. Huang, X.-Y. Dong, J.-H. Yu, Q. Yang, Y.-D. Zhao and H. Chen, *Talanta*, 2010, **80**, 1277-1281.
- 13. L.-J. Sun, Z.-Q. Pan, J. Xie, X.-J. Liu, F.-T. Sun, F.-M. Song, N. Bao and H.-Y. Gu, *J. Electroanal. Chem.*, 2013, **706**, 127-132.
- 14. Q. Xu, F. Wei, Z. Wang, Q. Yang, Y.-D. Zhao and H. Chen, *Phytochem. Anal.*, 2010, **21**, 192-196.
- 15. Q. Xu, F. Wei, Z. Wang, Q. Yang, Y.-D. Zhao and H. Chen, *Sens. Actuators, B*, 2009, **141**, 599-603.
- 16. Q.-Q. Ren, X.-J. Yuan, X.-R. Huang, W. Wen, Y.-D. Zhao and W. Chen, *Biosens. Bioelectron.*, 2013, **50**, 318-324.
- 17. E. S. McLamore, A. Diggs, P. Calvo Marzal, J. Shi, J. J. Blakeslee, W. A. Peer, A. S. Murphy and D. M. Porterfield, *Plant J.*, 2010, **63**, 1004-1016.
- 18. K. S. K. Gjetting, C. K. Ytting, S. Alexander and A. Fuglsang, T., *J. Exp. Bot.*, 2012, **63**, 3207-3218.
- 19. L. Zheng, J. Zhou, B. Li and D. Xing, *Front. Recent Dev. Plant Sci.*, 2015, **6**, 1-8.